Machining is a general term describing a group of processes that consist of the removal of material an modification of the surfaces of a workpiece after it has been produced.

- Advantages
 - Good dimensional accuracy
 - Good geometry, sharp edges
 - Economical

- Disadvantages
 - Wasted material
 - More time than some other processes
Elements of Machining

- Machine (machine tool)
- Material
- Cutting tool
- Operational plan and settings
 - feeds, speeds, etc.
- Environment (coolant)

Examples of Machining

- Figure 21.1 Some examples of common machining operations.

Machine Tools: Lathe

Milling Machine Tools

Cutting Material with Tool

Turning

Schematic illustration of the turning operation showing various features.

Page 2
Tool Types

- Tool steels
- High-speed steel
- Ceramics (aluminum oxide)
- Coated carbides
Characteristics of Tool Materials

- **TABLE 22.2**
 - General Characteristics of Cutting Tool Materials: These Tool Materials Have a Wide Range of Compositions and Properties - overlapping (characteristics exist in many categories of Tool Materials)

- **Relative Cutting Time of Tool Materials**

- **Select Proper Tool Video**

- **Wear Patterns on Tools**

- **Machined Steel Surfaces**

- **Applying Cutting Fluids**

Figure 22.12 Schematic illustration of the proper methods of applying cutting fluids (flooding) in various machining operations: (a) turning, (b) milling, (c) thread milling, and (d) drilling.
Turned Surface Feed Marks

Surface roughness:

\[R_a = \frac{\sum f}{N} \]

where

- \(f = \) feed
- \(R_a = \) tool nose radius

Feed and Speed Selection

Factors Influencing Machining

Energy Requirements

Tool Life Economics

Terminology

- Independent Variables
 - Material (machinability)
 - Cutting tool
 - Speed (sfpm)
 - Depth of cut (in)
 - Feed (ipr or ips)
 - Cutting conditions

- Dependent Variables
 - Metal removal rate
 - Cut time
 - Horsepower
 - Temperature
 - Surface finish

Table 21.1 Factors Influencing Machining Operations

Table 21.2 Approximate Range of Energy Requirements in Cutting Operations at the Drive Motor of the Machine Tool (For Dull Tools, Multiply by 1.25)

Figure 21.18 Cost per hour for a machining process versus cutting speed.
Tool Life

- Taylor’s tool life model
- Fredrick Taylor – 1907 (ASME)
- \(VT^n = C \) (.08 < n < .7)
 - Where \(V \) = surface speed (in/min)
 - \(T \) = tool life in minutes
 - \(n \) = value based on material and tool
 - \(C \) = a constant

Taylor Tool Life Equation

\[
VT^n = C
\]

Buying Tools - Companies

- Carboloy
- Kennemetal
- Many others