HW #2 Turbulent Flows

5.19  Starting from the Reynolds equation (Eq. (4.12)) show that the mean-
kinetic-energy equation (for E = 1(U) - (U)) is
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520 By subtracting the Reynolds equations (Eq. (4.12)) from the Navier—
Stokes equation (Eq. (2.35)), show that the fluctuating velocity u(x, 1)

evolves by
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where p’ is the fluctuating pressure field (p’ = p — (p)). Hence show
that the turbulent kinetic energy evolves by
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For the turbulent kinetic energy, this identity will be useful:
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525  Obtain the following relationship between the dissipation ¢ and the
pseudo-dissipation Z:
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In homogeneous isotropic turbulence, the fourth-order tensor
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is isotropic, and hence can be written
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where «,f, and y are scalars. In view of the continuity equation
du;/0x, = 0, show that a relation between the scalars is
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By considering (&/dx;){u; u;/0x,) (which is zero on account of ho-

mogeneity) show that
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is zero, and hence
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Show that Eq. (5.165) then becomes
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11.1

Show that the Poisson equation for pressure (Eq. (2.42)) can alterna-
tively be written
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Hence show that the mean pressure satisfies
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and that the fluctuation pressure satisfies Eq. (11.9).



