
Solution to Problem 4.1

We are given the energy spectrum:

E(k) =
1√
2π

ū2λg(kλg)
4e−(kλg)

2/2. (1)

We need to find the characteristic wavenumbers ke and kd.

Finding ke (Energy-containing Wavenumber)

The characteristic energy-containing wavenumber ke corresponds to the peak of
the energy spectrum. This is found by setting the derivative dE(k)/dk = 0:

d

dk

[
(kλg)

4e−(kλg)
2/2

]
= 0. (2)

Using the product rule,

4(kλg)
3e−(kλg)

2/2 + (kλg)
4e−(kλg)

2/2

(
−kλg

1

)
= 0. (3)

Factoring out common terms,

(kλg)
3e−(kλg)

2/2
(
4− (kλg)

2
)
= 0. (4)

Setting the bracketed term to zero,

4− (kλg)
2 = 0. (5)

Solving for k,

ke =
2

λg
. (6)

Finding kd (Dissipation Wavenumber)

The dissipation spectrum is given by:

D(k) = 2νk2E(k). (7)

Substituting E(k):

D(k) = 2νk2 · 1√
2π

ū2λg(kλg)
4e−(kλg)

2/2. (8)

Simplifying,

D(k) =
2ν√
2π

ū2λg(kλg)
6e−(kλg)

2/2. (9)

To find kd, we take the derivative of D(k) and set it to zero:
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d

dk

[
(kλg)

6e−(kλg)
2/2

]
= 0. (10)

Using the product rule,

6(kλg)
5e−(kλg)

2/2 + (kλg)
6e−(kλg)

2/2

(
−kλg

1

)
= 0. (11)

Factoring out common terms,

(kλg)
5e−(kλg)

2/2
(
6− (kλg)

2
)
= 0. (12)

Setting the bracketed term to zero,

6− (kλg)
2 = 0. (13)

Solving for k,

kd =

√
6

λg
. (14)

Distance Between ke and kd

Now we compute the distance:

kd − ke =

√
6

λg
− 2

λg
≈ 0.45

λg
(15)

Showing that the distance between kd and ke is inversely proportional to the
Taylor microscale, i.e., for high Re flows the peaks are clearly separated.
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