
Solution to Problem 5.4

Step-by-Step Solution

We start with the given Loitsianski integral invariant:

ū2(t)

∫ ∞

0

r4f(r/L(t))dr = C (1)

Since the integral term has dimensions of L5, we can conclude:

L5ū2 = C (2)

Solving for L:

L = k(ū2)−1/5 (3)

where k is some constant.

Next, we substitute this into the given energy decay equation:

dū2

dt
= −A

(ū2)3/2

L
(4)

Replacing L:

dū2

dt
= −A

(ū2)3/2

k(ū2)−1/5
(5)

Simplifying:

dū2

dt
= −Ak−1(ū2)17/10 (6)

Solving the Differential Equation

Rewriting:

(ū2)−17/10dū2 = −Ak−1dt (7)

Integrating both sides:
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∫
(ū2)−17/10dū2 = −Ak−1

∫
dt (8)

Using the power rule:

(ū2)−7/10

−7/10
= −Ak−1t+ C ′ (9)

Rearranging:

(ū2)−7/10 =
7

10
Ak−1t+ C ′ (10)

Taking reciprocals:

ū2 =

(
C ′ +

7

10
Ak−1t

)−10/7

(11)

For large t, the dominant term gives:

ū2 ∝ t−10/7 (12)

Conclusion

Thus, we have derived that the velocity squared decays as:

ū2 ∼ t−10/7 (13)

This matches the expected result.
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Solution to Problem 5.5

Step-by-Step Solution

We are given that the integral invariant from Eq. (4.78) satisfies:

ū2

π

∫ ∞

0

(3f + rf ′)2r dr = 0. (1)

For this equality to hold, the integral must be identically zero, which implies:

(3f + rf ′) = 0. (2)

Step 1: Solving for f(r)

Rearranging the equation:

rf ′ = −3f. (3)

This is a separable differential equation:

df

f
= −3

r
dr. (4)

Integrating both sides:

ln f = −3 ln r + C. (5)

Exponentiating:

f(r) = Cr−3. (6)

where C is a constant.

Step 2: Substituting into Ψ(r/L)

From Eq. (5.156), we are given the self-similar form:

Ψ(r/L) ≡ 3f(r) + r
df

dr
. (7)

Substituting f(r) = Cr−3:
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Ψ = 3(Cr−3) + r(−3Cr−4). (8)

= 3Cr−3 − 3Cr−3 = 0. (9)

Thus, the given form of f(r) satisfies Eq. (4.78), confirming the assumption
of self-similarity.

Step 3: Energy Decay Equation

We use the decay equation from Eq. (5.155):

dū2

dt
= −A

(ū2)3/2

L
. (10)

From our previous result, we established that:

L ∝ ū−2. (11)

Thus, substituting into the decay equation:

dū2

dt
= −A

(ū2)3/2

k(ū2)−2
. (12)

dū2

dt
= −Ak−1(ū2)7/2. (13)

Step 4: Solving the Differential Equation

Separating variables:

(ū2)−7/2dū2 = −Ak−1dt. (14)

Integrating:

(ū2)−5/2

−5/2
= −Ak−1t+ C ′. (15)

Rearranging:

(ū2)−5/2 =
5

2
Ak−1t+ C ′. (16)

Taking reciprocals:

ū2 =

(
C ′ +

5

2
Ak−1t

)−2/5

. (17)

For large t, the dominant term gives:

ū2 ∝ t−6/5. (18)
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Conclusion

Thus, we have shown that ū2 decays as:

ū2 ∼ t−6/5. (19)

This satisfies the required decay law.

Solution to Problem 5.6

Equation (5.88) contains derivatives with respect to both points x and y and
velocities at both points. In the limit as y− > x the two-point correlation
reduces to a single-point quantity, and the sum of the derivatives with respect
to x and y becomes the spatial derivative of the single-point tensor. In the limit
of y− > x:

∂Rij

∂yk
= 0. (20)
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