Chapter 9: Boundary Layer (Chap. 8 Bernard)

Consider high Re flow (1) around streamlined/slender body for which viscous
effects are confined to a narrow boundary layer near the solid surface/wall or (2) for
free shear flows, i.e., jets, wakes and mixing layers for which the vorticity is
similarly confined to a narrow region. In both cases Prandtl’s boundary layer theory
is applicable.
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Figure 8.1 Turbulent boundary layer over a flat plate.

Figure 8.2 Smoke visualization of a turbulent boundary layer at R, = 3000 [1].

Inner (viscous) and outer (inviscid; often potential) flow divided by sharp
corrugated interface defined by intermittency function.

Stability and transition: arguably top of list of difficult/complex fluid mechanics
problems still at forefront of research.
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1. Stable laminar flow near the leading edge.

2. Unstable two-dimensional Tollmien-Schlichting waves.

. 3. Development of three-dimensional unstable waves and hairpin eddies.
‘ 4. Vortex breakdown at regions of high localized shear.

t 5. Cascading vortex breakdown into fully three-dimensional fluctuations.
! | 6. Formation of turbulent spots at locally intense fluctuations.

J 7. Coalescence of spots into fully turbulent flow.
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FIGURE 5-26

Patterns of unstable vortex breakdown in a boundars
layer: (a) K-type (u'/U,, ~ | percent) aligne# ~ phase
and similar to a Tollmien-Schlichting wave; (b) C"ﬂ”
(0.3 percent) staggered subharmonic with 4. ~ I.D_/‘
(c) H-type (0.6 percent) staggered subharmonic wit*
i. ® 0.74,. [Courtesy of Dr. William S. Saric).

(b)

FIGURE 5-28

Description of the boundary-layer transition process: (a) ide-
alized sketch of flat-plate flow and (b) smoke visualization of
flow with transition induced early by acoustic input at Re; =
814,000 and 500 Hz. [Courtesy of 1.T. Kegelman and T.J
Mueller, University of Notre Dame).
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8.1 General Properties

Common structure other wall flows (e.g., channel and pipe), except stronger
influence of departure from log law in the outer layer. Also §(x) not constant as
per h and D.

U(x,8) = 0.99U,, (x)

outer
layer

Where the factor 0.99 is chosen arbitrarily.

&*: displacement thickness (8, ) defined
using equivalent discharge: U
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Figure 8.3 Boundary layer zones, not drawn to scale.
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Measure of loss of momentum due to BL.

Different Reynolds numbers can be defined using these quantities:
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Intermittency

6 (x) = mean BL thickness — intermittent.

y = fraction of time flow at y/& is completely 0

turbulent.
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Where length scale A= f(flow). v

Figure 8.4 Intermittency factor in a turbulent boundary layer [5].



Boundary Layer Growth

Blasius laminar boundary layer:

6 0.664
—= -0 < \x
X Re,
pUZ, o
E, = 0.664 per unit width
Re;

Turbulent flow:
U UV __19p U _ow
dx dy  pox Vayz dy M
And

(P =\ _
@(;4‘02)—0 (2)

Since turbulence and viscous effects are confined in the BL, outer flow satisfies
condition for Bernoulli’s law:

Ug Uz p
-0 @:_4_3 (3)
2 p 2 p

Constant on streamlines. Taking an x-derivative in Eq. (3) gives:
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Similarly, taking an x-derivative of Eq. (2) yields:

02 (p — d (dp
PivZ)=0- —(22) =
dxdy \p dy \ 0x

i.e., Eqg. (4) applies across BL.

Substituting Eq. (4) into (1) and integrating normal to the wall to a point d where

U=U, gives:

jUd+UV(d) JdUdUd w5

Integrating the continuity equation across the boundary layer gives:
49V 19U

—dy=—| —d
o 0y oaxy

_ 19U
V(x,d) = —f ady (6)
0

And substituting Eq. (6) into (5) yields:
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Letting d — oo, since the integrands approach 0 as y increases to o, Eq. (7)

becomes:
[ ] _
TW—dIUZJOOU 1= T gy 4 ey jw1 " a
p dx| =), U \" U, y| dx @ ), Uy )™
6
Tw _d dU,
o 200, 2 4 220 Wy s
p * dx “dx  dx 1!

Ty 20 dUg N do N dU, 6,
pU%Z U, dx dx dx U,

é
H = ?1 = shape parameter

Representing the momentum integral equation for BL with pressure gradient. This

equation represents t,, = f(8,,0).

Assuming a power law form of the mean velocity, similarly to what was done for

pipe flow:

1/n

And substituting the power law U into the definitions of 6, (x) and 6(x) yields:

5
=1+n
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Substituting these relations into Eq. (8) and taking n = 7 yields a dfferential
equation for § in the form:

7AUZ0 1dUs o Ty
72 dx 8dx *  p ®

Need for 7, = f(&) — power law fit data, for U,, = constant:

2
Tw v 7/4
? = OOZZSERGS

And substituting this into Eq. (9) gives:

ds 72 i
a = 002257 R€5

5 _
— = 0.37Re; /*
X

4 1
0 X x5 > x2 laminar flow

This result is consistent with EFD for Re < 10°, for higher Re use n = 8 or higher.



-3 Method

As mentioned earlier. the momentum mntegral equation for turbulent
flow has the identical form as the laminar-flow relation:

dé C; g dU
—=——(2+H)——=

e jL-; dx @

With U(x) assumed known, there are three unknown f'H .6 for

turbulent flow. Thus. at least two additional relations are needed to find
unknowns. There are many possibilities for additional relations all of
which require a certain amount of empirical data. As an example we will
review the m—p method.

Cole’s law of the wake:

By adding the wake to the log-law._ the velocity profile for both overlap
and outer lavers can be written as:

,,
u’ =l]11_1-*' +8 +£f{r,.1]

K '
where
n=y/d

. AL

f(r?}=5m2(5n}=3n2 -2’
MM=xAd/2

The quantity IT 1s called Coles’ wake parameter.

By integrating wall-wake law across the boundary layer:
H
A=a(ll)——
(IT) 71
2+3.179I1+1.5IT°
w(1+1I)
_U8_1+TI

Re, =
L xH

a(IT) =

exp(ad — kB — 211



If we eliminate ITbetween these formulas. we obtain a unique relation
among C, =2/4" Hand 6.

C,=2/4A"=2/[a(ll)—/T]
; (oD ——]
o 23T+ 1 STE
x(1+1I) (II)
Re, =20 -1 oot — xB—2m)
| ¥, e

Clauser's equilibrium parameter -

For outer layer,

- ap
U —-u=fir,.po.v.06,—

. fr,.p.. {ﬁ}
Usmg dimensional analysis:

T _}eﬁdp

(r, [ o) r.'i'rdr

Clauser (1954) replaced & by displacement thickness 5™

U -u ¥
W=E’{E=ﬁ}
_ & dp _ g dU,
r, dx I, dx

B 15 called Clauser's equalibrum parameter.

Das (1987) showed that EFD data pomts fit into the following
polynomial correlation:
8 =—04+0.76IT+0.421T°

Therefore:

& au, 2
A'H 'L_f = —0.4+076I1+04201 (III)
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If we eliminate TTusing that Re, _Ue_ —Hﬂq:(ﬁ:.-! —xE-21IT). we obtamn
' L

Hand 8.

-

another relation among €, =2/4

Equations (I). (II). and (III) can be solved simultaneously using say a
Runge-Kutta method to find C ¥ .H. B Equations are solved with matial

condition for 8(x;) and integrated to x=x;+Ax iteratively. Estimated 6
gives Reg and IT, B gives H. Lastly Cris evaluated using Rep and H.
Iterations required until all relations satisfied and then proceed to next
Ax

Log-Law Behavior of the Velocity Mean and Variance
EFDuptoR, = U,;6/v = 13600.

10

1,000
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Figure 8.5 Mean and variance of the streamwise velocity in boundary layer flow at R_ = 13.600. o, U;

—, y*c)-(T/dy; o, F; straight line is a fit to Eq. (8.25). Data from [11]. Figure reproduced from [12] by
permission of Annual Reviews.

1
Ut = Elogy+ + B

k =0.41,B =5.0for30 < y* < 0.156 — log law region.
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Log-law indicator function:

—+

LU

It is expected to be constant in the region where exact log-law behavior occurs, plot
shows that for y* < 100 this function rises and then stays almost constant up to
y* = 2500.

Similar behavior channel and pipe flow with primary differences due outer layer.
Combining all these flows, log law found for 3,/R, < y* < 0.15R, with k = 0.39
and B = 4.3.

Attached eddy hypothesis Townsend:

u? =B, —A,log (%)

Where A; = 2.39 and B; = 1.03. This equation describes the measured normal
stress in the outer part of log-law region, as per Fig. 8.5.

Townsend (1976), Page 153:

It is difficult to imagine how the presence of the wall
could impose a dissipation length-scale proportional to distance
from it unless the main eddies of the flow have diameters propor-
tional to distance of their ‘centres’ from the wall because their
motion is directly influenced by its presence. In other words, the
velocity fields of the main eddies, regarded as persistent, organised
flow patterns, extend to the wall and, in a sense, they are attached
to the wall. We proceed to consider the observed characteristics of
a motion made up from the superposition of attached eddies of a
wide range of sizes.

Let us suppose that the main, energy-containing motion is made
up of contributions from ‘attached’ eddies with similar velocity
distributions,
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Outer Layer

Intermittency distinguishes BL outer region from channel and pipe flows, which
reach fully developed condition vs BL spatially developing in streamwise direction.

Also V # 0, since U, # 0.

Outer flow scaling:
_ dP,
Uy, —U(y) = F(y,&p, UT’W) *f()

Using dimensional analysis:

If § replaced by §; =

Uo—U®) . —+ y & dP, Clauser (1954, 1956)
—7. Ve U O=FlsTmar ] (A0 | equitibrium

parameter f3.

equilibrium parameter

—+
EFD suggests that Uf, — U (y) for BLwith differentddi;o but same [ collapses under

same profile, so called turbulent equilibrium.
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FIGURE 6-12
Equilibrium-defect profiles, as correlated by the Clauser parameter §
and the theory of Mellor and Gibson (1966): (a) flat-plate data; (b)
equilibrium adverse gradients. x (6)
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The weakness of the Clauser approach to the outer layer is that the curves do not
have a recognizable shape, which was resolved by Coles (1956) who notes the
deviations of the velocity above the overlap layer when normalized by the
maximum deviation at y = & would be a single wake like function of y/3 only.

ﬁ(y) deviates from log-law for 0.15 < % <1

<

o

wake contribution

________________

ylo

Fig. 7.28. The mean velocity profile in a turbulent boundar i

_ y layer showing the la
of the wake. Symbols, expenmen_tal data of Klebanoff (1954); dashed Iine% log laz
(_fc = 041, B = 5.2); dot-dashed line, wake contribution Iw(y/6)/x (I1 = 0.5); solid
line, sum of log law and wake contribution (Eq. (7.148)).

Imposing Eqg. (10) to match log-law in the intermediate layer gives (neglecting
pressure gradient):

1

Iny* +B= U;—F(X)

)

So that F (%) = difference between outer flow U, and log-law.

Fory « 6, i.e., overlap region:

F(2) = vz~ [giny* + 8] = [vz - ms* ] -2 (2)

5t =U,8/v
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For y/& in both overlap, and outer regions include wake function W (%)

F(3)=[vz-pms* —B]-em(Z)-2w () an

—+
%W (%) = amount that U rises above log-law in outer region beyond y > 0.156,

and is equal to O in log law region. I is a parameter and F + %W is the difference

between U2, and the log law extended into the outer layer.

Since, according to Eq. (10), F (% = 1) =0:
11 1
W(l)E =Uf—=Iné6*—B (12)

k

And combining this result with Eqgs. (10) and (11) gives the Coles “law of the wake”:

—+ 1 I1 y
— + — -
U —klny +B+kW(6)
y
1 w (3) 1
= —Iny* +B (vg -1 +—B>
kny + +W(1) U kn6

W(%) U —1lny+ —B

_ %
W) oy —%1n6+ _B

Representing the fractional velocity deficit relative to the log-law.

Empirical models:
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%W(%) = Z%Sin2
or
2

m 1
EW(%) = Z(1+6m) (%)

1
— 7 (L+4m) (%)

y
=

3

Where the latter is more accurate and W (1) = 2 is enforced in both models.
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Fig 10. Comparison of mean-velocity profiles with logarithmic law at low
Reynolds numbers: Boundary layer data from Purtell et al (1961).
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cquilibrium turbulent boundary layers at low Reynolds numbers.
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Replot of the veloeity profiles of Fig. 6-8 using inner-law variables y* and u*.



According to Eq. (12),

n=fUs 6% =f(x)

For zero-pressure gradient, it follows from

That

Where Re,, = xU /v.

Using

Gives

Recall Eq. (12):

5 _
— = 0.37Re,"/®
X

SUo
Res = —= = 0.37Re.’®

%
. Tw v?
U.L- = ? = 00225§R€5
Ue
U =4 = 5.89Re./ "
T

§* = 0.0628Re.’*°

11 1
W(l)z= U;—Eln6+—B

= 0.37xRe, */°

(o] Uoox —_
—_— = 0377R€x 1/5

<

7/4

k 11
I = > 5.89Re,’ — % (=2.77 + 0.7 In(Re,)) — B

Which is slowly varying with x, e.g., with k = 0.4, B = 5.1 and Re, ranging from
5 X 108 to 107, IT varies from 0.48 to 0.63. Typically, IT = 0.55 is used.
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Alternative IT = wake parameter = I1(f) including pressure gradient:

(B) = 0.8(B + 0.5)%7> - (curve fit for data)

Note that for § = 0 II = 0.48 and the agreement of Coles’ wake law even for § #
constant. Bl’s is quite good.
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Turbulent velocity profiles computed from the Coles wall-wake formula
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Assuming 87 = 1000. The curve for IT = 0 is the pure law of the wall. Note that

the plot startsat y* = 1 or y/§ = 0.001.
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Recent research:

Zero-pressufe-gradient turbulent boundary layer

William K George and Luciano Castillo
State University of New York at Buffalo, Buffalo NY 14260; tribill@eng.buffalo.edu

Of the many aspects of the long-studied field of turbulence, the zero-pressure-gradient boundary
layer is probably the most investigated, and perhaps also the most reviewed. Turbulence is a
fluid-dynamical phenomenon for which the dynamical equations are generally believed to be the
Navier-Stokes equations, at least for a single-phase, Newtonian fluid. Despite this fact, these
governing equations have been used in only the most cursory manner in the development of
theories for the boundary layer, or in the validation of experimental data-bases. This article uses
the Reynolds-averaged Navier-Stokes equations as the primary tool for evaluating theories and
experiments for the zero-pressure-gradient turbulent boundary layer. Both classical and new
theoretical ideas are reviewed, and most are found wanting. The experimental data as well is
shown to have been contaminated by too much effort to confirm the classical theory and too lit-
tle regard for the governing equations. Theoretical concepts and experiments are identified,
however, which are consistent—both with each other and with the governing equations. This arti-
cle has 77 references.

ATAA JoURNAL
Vol. 39, No. 1, January 2001

Similarity Analysis for Turbulent Boundary Layer
with Pressure Gradient: Outer Flow

Luciano Castillo*
Rensselaer Polytechnic Institute, Troy, New York 12180
and
William K. George®
State University of New York at Buffalo, Buffalo, New York 14260

The equilibrium-type similarity analysis of George and Castillo for the outer part of zero pressure gradient
boundary layers (George, W. K., and Castillo, L., “Zero Pressure Gradient Turbulent Boundary Layer,” Applied
Mechanics Reviews, Pt. 1, Vol. 50, No. 11, 1997, pp. 689-729) has been extended to include boundary layers with
pressure gradient. The constancy of a single new pressure gradient parameter is all thatis necessary to characterize
these new equilibrium turbulent boundary layers. Three major results are obtained: First, most pressure gradient
boundary experiments appear to be equilibrium flows (by the new definition), and nonequilibrium flows appear
to be the exception. Second, there appear to be only three values of the pressure gradient parameter: one for
adverse pressure gradients, one for favorable pressure gradients, and one for zero pressure gradients. Third,
correspondingly, there appearto be only three normalized velocity deficit profiles, exactly as suggested by the theory.
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