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Chapter 9: Boundary Layer (Chap. 8 Bernard) 

 

 

Inner (viscous) and outer (inviscid; often potential) flow divided by sharp 

corrugated interface defined by intermittency function. 

 

Stability and transition: arguably top of list of difficult/complex fluid mechanics 

problems still at forefront of research. 

 

𝑅𝑒𝑥𝑐𝑟𝑖𝑡  ~ 4 × 10
5       𝑅𝑒𝑥 =

𝑈∞𝑥

𝜈
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8.1 General Properties 

Common structure other wall flows (e.g., channel and pipe), except stronger 

influence of departure from log law in the outer layer. Also 𝛿(𝑥) not constant as 

per ℎ and 𝐷. 

 

𝑈(𝑥, 𝛿) = 0.99𝑈∞(𝑥) 

 

Where the factor 0.99 is chosen arbitrarily.  

 

𝛿∗: displacement thickness (𝛿1) defined 

using equivalent discharge: 

 

∫ 𝑈(𝑥, 𝑦)𝑑𝑦
∞

0

= ∫ 𝑈∞(𝑥)𝑑𝑦
∞

𝛿1(𝑥)

 

 

Or equivalently: 

 

𝛿1(𝑥) = ∫ (1 −
𝑈(𝑥, 𝑦)

𝑈∞(𝑥)
)𝑑𝑦

∞

0

 

 

Measure of distance outer flow displaced 

by BL. 

 

𝜃: momentum thickness 

𝜃(𝑥) ≡ ∫
𝑈(𝑥, 𝑦)

𝑈∞(𝑥)
(1 −

𝑈(𝑥, 𝑦)

𝑈∞(𝑥)
)𝑑𝑦

∞

0

 

 

Measure of loss of momentum due to BL. 

 

Different Reynolds numbers can be defined using these quantities: 

𝑅𝑒𝑥 =
𝑈∞𝑥

𝜈
     𝑅𝛿 =

𝑈∞𝛿

𝜈
    𝑅𝛿1 =

𝑈∞𝛿1
𝜈

    𝑅𝜃 =
𝑈∞𝜃

𝜈
 

Outer Flow 

𝑈∞
2

2
+
𝑝

𝜌
=
𝑈0
2

2
+
𝑝0
𝜌
= reference values 

𝑝𝑥̅̅ ̅ = −𝜌𝑈∞𝑈∞𝑥  
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Intermittency 

𝛿(𝑥) = mean BL thickness → intermittent. 

𝛾 = fraction of time flow at 𝑦/𝛿 is completely 

turbulent. 

Early formulation for 
𝜕𝑝

𝜕𝑥
= 0: 

𝛾(𝑦) =
1

2
(1 − erf (5 (

𝑦

𝛿
− 0.78))) 

𝛾 = 0.78𝛿 ± 0.14𝛿 

Subsequent formulation:  𝛾(𝑦) =
1

1+5.5(
𝑦

∆
)
6 

Where length scale ∆= 𝑓(flow). 

 

𝑅𝜃 = 1130 
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Boundary Layer Growth 

Blasius laminar boundary layer: 

𝜃

𝑥
=
0.664

𝑅𝑒𝑥
→ 𝜃 ∝ √𝑥 

𝐹𝑥 = 0.664
𝜌𝑈∞

2 𝐿

𝑅𝑒𝐿
 per unit width 

Turbulent flow: 

𝜕𝑈
2

𝜕𝑥
+
𝜕𝑈 𝑉

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

𝜕2𝑈

𝜕𝑦2
−
𝜕𝑢𝑣

𝜕𝑦
     (1) 

And  

𝜕

𝜕𝑦
(
𝑝

𝜌
+ 𝑣2) = 0     (2) 

 

Since turbulence and viscous effects are confined in the BL, outer flow satisfies 

condition for Bernoulli’s law: 

 

𝑈0
2

2
+
𝑝0
𝜌
=
𝑈∞
2

2
+
𝑝

𝜌
     (3) 

 

Constant on streamlines. Taking an x-derivative in Eq. (3) gives: 

 

0 =
𝜕

𝜕𝑥
(
𝑈∞
2

2
+
𝑝

𝜌
) 

𝜕𝑝

𝜕𝑥
= −𝜌𝑈∞

𝑑𝑈∞
𝑑𝑥

     (4) 
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Similarly, taking an x-derivative of Eq. (2) yields: 

 

𝜕2

𝜕𝑥𝜕𝑦
(
𝑝

𝜌
+ 𝑣2) = 0 → 

𝜕

𝜕𝑦
(
𝜕𝑝

𝜕𝑥
) = 0 

 

i.e., Eq. (4) applies across BL.  

 

Substituting Eq. (4) into (1) and integrating normal to the wall to a point 𝑑 where 

𝑈 = 𝑈∞ gives: 

 

𝜕

𝜕𝑥
∫ 𝑈

2
𝑑𝑦

𝑑

0

+ 𝑈∞𝑉(𝑥, 𝑑) = ∫ 𝑈∞
𝑑𝑈∞
𝑑𝑥

𝑑𝑦
𝑑

0

−
𝜏𝑤
𝜌
     (5) 

 

Integrating the continuity equation across the boundary layer gives: 

 

∫
𝜕𝑉

𝜕𝑦
𝑑𝑦

𝑑

0

= −∫
𝜕𝑈

𝜕𝑥
𝑑𝑦

𝑑

0

 

𝑉(𝑥, 𝑑) = −∫
𝜕𝑈

𝜕𝑥
𝑑𝑦

𝑑

0

     (6) 

 

And substituting Eq. (6) into (5) yields: 

 

𝜕

𝜕𝑥
∫ 𝑈

2
𝑑𝑦

𝑑

0

− 𝑈∞∫
𝜕𝑈

𝜕𝑥
𝑑𝑦

𝑑

0

= ∫ 𝑈∞
𝑑𝑈∞
𝑑𝑥

𝑑𝑦
𝑑

0

−
𝜏𝑤
𝜌

 

𝑑

𝑑𝑥
∫ (𝑈

2
− 𝑈𝑈∞)𝑑𝑦

𝑑

0

=
𝑑𝑈∞
𝑑𝑥

∫ (𝑈∞ − 𝑈)𝑑𝑦
𝑑

0

−
𝜏𝑤
𝜌
      

𝑑

𝑑𝑥
[𝑈∞

2 ∫
𝑈

𝑈∞
(
𝑈

𝑈∞
− 1)𝑑𝑦

𝑑

0

] =
𝑑𝑈∞
𝑑𝑥

𝑈∞∫ (1 −
𝑈

𝑈∞
)𝑑𝑦

𝑑

0

−
𝜏𝑤
𝜌
    (7) 

 

 

𝑢𝑣|0
𝑑 = 0 
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Letting 𝑑 → ∞, since the integrands approach 0 as 𝑦 increases to ∞, Eq. (7) 

becomes: 

𝜏𝑤
𝜌
=
𝑑

𝑑𝑥

[
 
 
 
 

𝑈∞
2 ∫

𝑈

𝑈∞
(1 −

𝑈

𝑈∞
)𝑑𝑦

∞

0⏟            
𝜃(𝑥) ]

 
 
 
 

+
𝑑𝑈∞
𝑑𝑥

𝑈∞∫ (1 −
𝑈

𝑈∞
)𝑑𝑦

∞

0⏟          
𝛿1(𝑥)

 

𝜏𝑤
𝜌
=
𝑑

𝑑𝑥
(𝑈∞

2  𝜃) +
𝑑𝑈∞
𝑑𝑥

𝑈∞𝛿1    (8) 

𝜏𝑤
𝜌
= 2𝜃𝑈∞

𝑑𝑈∞
𝑑𝑥

+ 𝑈∞
2
𝑑𝜃

𝑑𝑥
+
𝑑𝑈∞
𝑑𝑥

𝑈∞𝛿1      

𝜏𝑤
𝜌𝑈∞

2
=
2𝜃

𝑈∞

𝑑𝑈∞
𝑑𝑥

+
𝑑𝜃

𝑑𝑥
+
𝑑𝑈∞
𝑑𝑥

𝛿1
𝑈∞
      

𝜏𝑤
𝜌𝑈∞

2
=
𝑑𝜃

𝑑𝑥
+ (2 + 𝐻)

𝜃

𝑈∞

𝑑𝑈∞
𝑑𝑥

  

 

Representing the momentum integral equation for BL with pressure gradient. This 

equation represents 𝜏𝑤 = 𝑓(𝛿1, 𝜃). 

 

Assuming a power law form of the mean velocity, similarly to what was done for 

pipe flow: 

𝑈 = 𝑈∞ (
𝑦

𝛿
)
1/𝑛

 

 

And substituting the power law 𝑈 into the definitions of 𝛿1(𝑥) and 𝜃(𝑥) yields: 

 

𝛿1 =
𝛿

1 + 𝑛
 

𝜃 =
𝛿𝑛

(𝑛 + 1)(𝑛 + 2)
 

𝐻 =  
𝛿1
𝜃
= shape parameter 
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Substituting these relations into Eq. (8) and taking 𝑛 = 7 yields a dfferential 

equation for 𝛿 in the form: 

 

7

72

𝑑𝑈∞
2 𝜃

𝑑𝑥
+
1

8

𝑑𝑈∞
𝑑𝑥

𝑈∞𝛿 =
𝜏𝑤
𝜌
     (9) 

 

Need for 𝜏𝑤 = 𝑓(𝛿) → power law fit data, for 𝑈∞ = constant: 

 

𝜏𝑤
𝜌
= 0.0225

𝜈2

𝛿2
𝑅𝑒𝛿

7/4
 

 

And substituting this into Eq. (9) gives: 

 
𝑑𝛿

𝑑𝑥
= 0.0225

72

7
 𝑅𝑒𝛿

−1/4
 

 

i.e.,  

 
𝛿

𝑥
= 0.37𝑅𝑒𝑥

−1/5
 

 

𝛿 ∝ 𝑥
4
5 ≫ 𝑥

1
2  laminar flow 

 

This result is consistent with EFD for 𝑅𝑒 < 106, for higher Re use 𝑛 = 8 or higher. 
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- Method 
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Log-Law Behavior of the Velocity Mean and Variance 

EFD up to 𝑅𝜏 = 𝑈𝜏𝛿/𝜈 = 13600. 

 

𝑈+ =
1

𝑘
log𝑦+ + 𝐵 

𝑘 = 0.41, 𝐵 = 5.0 for 30 ≤ 𝑦+ ≤ 0.15𝛿 → log law region. 
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Log-law indicator function: 

𝑦+
𝜕𝑈

+

𝜕𝑦+
 

It is expected to be constant in the region where exact log-law behavior occurs, plot 

shows that for 𝑦+ < 100 this function rises and then stays almost constant up to 

𝑦+ = 2500.   

 

Similar behavior channel and pipe flow with primary differences due outer layer.  

Combining all these flows, log law found for 3√𝑅𝜏 ≤ 𝑦
+ ≤ 0.15𝑅𝜏 with 𝑘 = 0.39 

and 𝐵 = 4.3. 

 

Attached eddy hypothesis Townsend: 

𝑢2
+
= 𝐵1 − 𝐴1 log (

𝑦

𝛿
) 

 

Where 𝐴1 = 2.39 and 𝐵1 = 1.03. This equation describes the measured normal 

stress in the outer part of log-law region, as per Fig. 8.5. 
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Outer Layer 

Intermittency distinguishes BL outer region from channel and pipe flows, which 

reach fully developed condition vs BL spatially developing in streamwise direction. 

Also 𝑉 ≠ 0, since 𝑈𝑥 ≠ 0. 

 

Outer flow scaling: 

𝑈∞ − 𝑈(𝑦) = 𝐹 (𝑦, 𝛿, 𝜌, 𝑈𝜏,
𝑑𝑃∞
𝑑𝑥
) ≠ 𝑓(𝜈) 

Using dimensional analysis: 

 

𝑈∞ − 𝑈(𝑦)

𝑈𝜏
= 𝑈∞

+ − 𝑈
+
(𝑦) =  𝐹 (

𝑦

𝛿
,
𝛿

𝜌𝑈𝜏
2

𝑑𝑃∞
𝑑𝑥⏟    
)     (10) 

 

 

EFD suggests that 𝑈∞
+ − 𝑈

+
(𝑦) for BL with different 

𝑑𝑃∞

𝑑𝑥
 but same 𝛽 collapses under 

same profile, so called turbulent equilibrium. 

 
 

If 𝛿 replaced by 𝛿1 = 

Clauser (1954, 1956) 

equilibrium 

parameter 𝛽. 

equilibrium parameter  
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The weakness of the Clauser approach to the outer layer is that the curves do not 

have a recognizable shape, which was resolved by Coles (1956) who notes the 

deviations of the velocity above the overlap layer when normalized by the 

maximum deviation at y =  would be a single wake like function of y/ only. 

 

𝑈(𝑦) deviates from log-law for 0.15 ≤
𝑦

𝛿
≤ 1.  

 

Imposing Eq. (10) to match log-law in the intermediate layer gives (neglecting 

pressure gradient): 

1

𝑘
ln 𝑦+ + 𝐵 = 𝑈∞

+ − 𝐹 (
𝑦

𝛿
) 

So that 𝐹 (
𝑦

𝛿
) = difference between outer flow 𝑈∞

+  and log-law. 

For 𝑦 ≪ 𝛿, i.e., overlap region: 

 

𝐹 (
𝑦

𝛿
) = 𝑈∞

+ − [
1

𝑘
ln 𝑦+ + 𝐵] = [𝑈∞

+ −
1

𝑘
ln 𝛿+ − 𝐵] −

1

𝑘
ln (

𝑦

𝛿
) 

 

𝛿+ = 𝑈𝜏 𝛿/ν 
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For 𝑦/𝛿 in both overlap, and outer regions include wake function 𝑊(
𝑦

𝛿
). 

𝐹 (
𝑦

𝛿
) = [𝑈∞

+ −
1

𝑘
ln 𝛿+ − 𝐵] −

1

𝑘
ln (

𝑦

𝛿
) −

𝛱

𝑘
𝑊 (

𝑦

𝛿
)     (11) 

 
𝛱

𝑘
𝑊(

𝑦

𝛿
) = amount that 𝑈

+
 rises above log-law in outer region beyond 𝑦 > 0.15𝛿, 

and is equal to 0 in log law region.  𝛱 is a parameter and 𝐹 + 
𝛱

𝑘
𝑊 is the difference 

between 𝑈∞
+  and the log law extended into the outer layer. 

 

Since, according to Eq. (10), 𝐹 (
𝑦

𝛿
= 1) = 0: 

 

𝑊(1)
𝛱

𝑘
= 𝑈∞

+ −
1

𝑘
ln 𝛿+ − 𝐵     (12) 

 

And combining this result with Eqs. (10) and (11) gives the Coles “law of the wake”: 

 

𝑈
+
=
1

𝑘
ln 𝑦+ + 𝐵 +

𝛱

𝑘
𝑊 (

𝑦

𝛿
) 

=
1

𝑘
ln 𝑦+ + 𝐵 +

𝑊 (
𝑦
𝛿
)

𝑊(1)
(𝑈∞

+ −
1

𝑘
ln 𝛿+ − 𝐵) 

i.e.,  

𝑊(
𝑦
𝛿
)

𝑊(1)
=
𝑈
+
−
1
𝑘
ln 𝑦+ − 𝐵

𝑈∞
+ −

1
𝑘
ln 𝛿+ − 𝐵

 

Representing the fractional velocity deficit relative to the log-law. 

Empirical models: 

 

 



16 
 

𝛱

𝑘
𝑊 (

𝑦

𝛿
) = 2

𝛱

𝑘
sin2 (

𝜋

2

𝑦

𝛿
) 

or 

𝛱

𝑘
𝑊 (

𝑦

𝛿
) =

1

𝑘
(1 + 6𝛱) (

𝑦

𝛿
)
2

−
1

𝑘
(1 + 4𝛱) (

𝑦

𝛿
)
3

 

 

Where the latter is more accurate and 𝑊(1) = 2 is enforced in both models.   
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According to Eq. (12), 

𝛱 = 𝑓(𝑈∞
+ , 𝛿+) = 𝑓(𝑥) 

For zero-pressure gradient, it follows from  

 
𝛿

𝑥
= 0.37𝑅𝑒𝑥

−1/5
 

 

That 

𝑅𝑒𝛿 =
𝛿𝑈∞
𝜈

= 0.37𝑅𝑒𝑥
4/5

 

 

Where 𝑅𝑒𝑥 = 𝑥𝑈∞/𝜈. 

Using 

𝑈𝜏
2 =

𝜏𝑤
𝜌
= 0.0225

𝜈2

𝛿2
𝑅𝑒𝛿

7/4
 

Gives 

𝑈∞
+ =

𝑈∞
𝑈𝜏
= 5.89𝑅𝑒𝑥

1/10
 

𝛿+ = 0.0628𝑅𝑒𝑥
7/10

 

Recall Eq. (12): 

𝑊(1)
𝛱

𝑘
= 𝑈∞

+ −
1

𝑘
ln 𝛿+ − 𝐵 

𝛱 =
𝑘

2
(5.89𝑅𝑒𝑥

1
10 −

1

𝑘
(−2.77 + 0.7 ln(𝑅𝑒𝑥)) − 𝐵) 

 

Which is slowly varying with 𝑥, e.g., with 𝑘 = 0.4, 𝐵 = 5.1 and 𝑅𝑒𝑥 ranging from 

5 × 106 to 107, 𝛱 varies from 0.48 to 0.63. Typically, 𝛱 = 0.55 is used. 

𝛿 = 0.37𝑥𝑅𝑒𝑥
−1/5

 

𝑈∞𝛿

𝜈
= 0.37

𝑈∞𝑥

𝜈
𝑅𝑒𝑥

−1/5
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Variation of 𝛱 vs 𝑅𝑒𝑥. 

 

  

 

 

 

 

 

 

 

 

𝑅𝑒𝑥 𝑅𝑒𝜃 = 0.037𝑅𝑒𝑥
4/5

 

5 × 105 8460 

1 × 106 2334 

1.5 × 106 3229 

2 × 106 4605 

2.5 × 106 4859 

3 × 106 5622 
 

Comparison of mean velocity profile with logarithmic 

law using: 

𝑈
+
=
1

𝑘
ln 𝑦+ + 𝐵 +

𝛱

𝑘
𝑊 (

𝑦

𝛿
) 

𝛱 =
𝑘

2
(5.89𝑅𝑒𝑥

1
10 −

1

𝑘
(−2.77 + 0.7 ln(𝑅𝑒𝑥)) − 𝐵) 

𝑘 = 0.4,    𝐵 = 5.1 
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Alternative 𝛱 = wake parameter = 𝛱(𝛽) including pressure gradient: 

𝛱(𝛽) = 0.8(𝛽 + 0.5)0.75 → (curve fit for data) 

Note that for 𝛽 = 0 𝛱 = 0.48 and the agreement of Coles’ wake law even for 𝛽 ≠ 

constant.  Bl’s is quite good. 

 

Turbulent velocity profiles computed from the Coles wall-wake formula 

𝑈
+
=
1

𝑘
ln 𝑦+ + 𝐵 +

𝛱

𝑘
𝑊 (

𝑦

𝛿
) 

Assuming δ+ = 1000. The curve for 𝛱 = 0 is the pure law of the wall. Note that 

the plot starts at 𝑦+ = 1 or 𝑦/𝛿 = 0.001. 
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