Chapter 8: Channel and Pipe Flow (Chap. 7 Bernard)

Part 2: Pipe Flow

R,~2000 transition turbulence.

Fully developed flow: Qz(ﬁ(r),0,0)% averaged streamwise momentum
equation:
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Where 7 is the outward radial coordinate, i.e., r = 0 at the center of the pipe and
r = R, at the wall. Introduce wall coordinate:

Y=Ry—7T

Such that:

U (y) =U(Ry —y)

However, the * symbol will be dropped.

The wall shear stress:

du
Tw = H@ (0)
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Which also defines R, = ” where U; = \/% = friction velocity.




Integrating Eq. (1) over the pipe cross-section yields
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And

vr(0) = uv,-(0) = uv,(Ry) = 0
Eq. (2) shows that % = f(ty).

The volumetric flow rate:

Ry
Q = Zﬂf U(r)dr
0

can be determined once ﬁ(r) is known, which determines the averaged velocity
U,, = Q/A where A=mtR¢ and defines the Reynolds number

U,D
e = iy




Define friction factor for pipe flow f as:
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The Moody diagram can be used to find values of f(Re).

Moody Diagram
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Reynolds Number, Re = %

Current analysis presumes that the pipe is smooth. For engineering applications, it
is necessary to consider f(Re, %), where 2 represents the relative pipe roughness.

Alternatively explicit formulas are available for smooth and rough pipes, e.g.:

For R, < 10°, the Blasius smooth pipe friction law

-1/4

f = 0.266R,

And substituting this into Eq. (3) gives a relationship between R, and R,

R, = 0.182R./®



Previous channel flow analysis neglected outer layer, which should be included
for pipe and especially BL flows.

In viscous sublayer (y* < 5):

=Y

—
And log law valid for intermediate layer of pipe flow: U = %lny++B.

For high Re pipe flow, central core mean velocity cannot be scaled using viscosity,
so similarity is achieved using the velocity defect law:

-U & _

=9

Where U, = mean centerline velocity and & = y/R,, is a similarity variable. In
practice, this equation is found to work also in most of the intermediate region.

If velocity defect law applies in overlap region, then:

T,
fON =T =5-g© @

Differentiating Eq. (4) with respect to y gives

af U, ~
Zon=--Log y*t =1




And multiplying both sides of the equation by y gives:
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LHS only f(y*) and RHS only f(§); thus, both sides must be equal and constant.
Setting the constant to be 1/k:

1

df .1
dy+(y)—k

y+
Integration gives the log law:
7t -1 +
U =k “logy™+B
i.e., using velocity defect law in intermediate layer recovers log-law.

New high Re data shows k = 0.42, B = 5.6 for 600 < y* < 0.12R§ vs. historical
0.41and 5.2.

The details of the velocity defect law for outer flow will be analyzed for BL flow.
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When compared with previously defined composite sub-layer, blending layer, and

logarithmic-overlap formula
Ur=y —e™|le™ —1-xU"

Shows its limitations.
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Figure 7.18 Mean velocity profiles in pipe flow [6] showing the collective approach to a log law. The
curves are for Reynolds numbers between R, = 31 x 10° and R, = 18 x 10°. Reprinted with permission

of Cambridge University Press.
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Power Law

Early studies showed that power laws can represent flow behavior over the entire

pipe cross-section:
U (y >1/n
Ucl RO

Where n increases with Re, shows good fit with data, but cannot provide 7,,.
Taking a derivative of the power law gives:
1
dU Ucl ( y) n 1
dy n \R,

Where experimental fits show that n~6 — 10, such that % —1~—(0.85-0.9).
Therefore, e.g., for n = 10:
L (Ro)’
( ot (2 )
y

Showing that the shear stress approaches co as y — 0.

Linear-log plots of power law show good fit to the data for range of n:
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Figure 7.19 Plots of (U/Umax )!/™ in pipe flow for empirically fitted exponents, n. From left to right

N 4 =6.0,6.6.7.0.8.8.10.0, and 10.0, and the Reynolds numbers are
4x10%23x10% 1.1 x10°,1.1 X 10°,2 x 10°, and 3.2 x 10°. From [25], p. 563.
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Subsequently, power laws were generalized to include not only inner law variables

(y, ., V, p) but also outer law variable Ry, i.e., dU/dy = f(y,T,,V, p, R,) for the
intermediate layer to include dependence on v and Ry, i.e., generalization of the
log law approach, but in this case not independent of Re (partial similarity).

Dimensional analysis gives:

U _Ueier) 6
dy  y/ Vo

But since R is related to R,,, Eq. (6) can be rewritten as:

U _Ue i my )
dy  y e

If f = constant, log law is implied, alternatively if f obeys a power law:

f(y+rRe) = ﬂ*(Re)(y+)a(Re) 8)

For large y* and R,.



—+
Both U and f will follow power laws after integration of Eq. (7) using (8).
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Applying BC at the wall gives:

*

A _B_ +\a
u (y")= = ™)
U () = BRIGH)*®)  (9)

Where f is defined from « and * after the integration, i.e., f=8"/ .

To determine a form of a(R,), consider behavior of Eq. (9) as v— 0. If % is

constant, T,, remains constant as v— 0, and so does U, as per Eq. (2).

Since U is bounded, U+ is bounded, so LHS of Eq. (9) is bounded as v— 0.
Consequently, RHS must be bounded as y* — oo and R, — 0.
Noting the identity

(y*)*Re) = ga(Re)logy™

Eqg. (9) can be rewritten as:

U (") = B(R etk 108"
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a(R,) is assumed of the form:

a;
a(R,) = logR,
e

Such that:

U (") = B(R.) (y*)oERe

and gives good agreement with experiments. It is assumed that S(R,) shows the
same dependence on R, as a:

B
logR,

B(R.) = By +

Where 3, and [3; are constants.

It is then derived that:

B
ogR.

T ) = (B + o) OeER (10)

Where the appearance of R, in the form of its logarithm means that if R, is
replaced by yR, = logyR, = logy + log R, which converges to logR, as R, —

00,

a; and 8, should have universal form and together with 5, are determined by
empirical fit, comparing with EFD data.

For4 x 103 <R, <3.24x 10% a; = 1.5, 8, = 0.578, and 8, = 2.5.
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e Figure 7.20 y vs.logy* where y = y* in this
i figure. Data are taken from 16 different

i E Reynolds numbers from 4 x 10% to 3.24 x 10°

gl measured in [29]. From [31]. Reprinted with

permission from ASME International.
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From Eq. (10):
U o
1
= ( +)10gRe =a
BR)
a logR
loga = loglRe logy*t - logy™ = il ®loga =y

i.e., Eq. (10) is equivalent to y = logy™.

Since the power law is meant to cover larger region of the pipe than the log law, it
can be used to explain large y* departure from log law.
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Pope 7.3.4

In the overlap region (v/U, < y « §) two velocities profiles are possible, i.e., the

log law:
ut = L
k

And the power law:

logy* + B

u+ — C(y+)a

The coefficients k, B, &, and C can be f(R,). If that’s not the case, the laws are

said to be universal.
20

Fig. 7.31. A log-log plot of mean velocity profiles in turbulent pipe flow at six
Reynolds number (from left to right: Re = 32 x 10°, 99 x 10°, 409 x 10°, 1.79 x 10°,
7.71 % 10°, and 29.9 x 10%), The seale for u* pertains to the lowest Reynolds number:
subsequent profiles are shifted down successively by a factor of 1,1. The range shown
is the overlap region, 504, < y < (.1 R. Symbols, experimental data of Zagarola and
Smits (1997); dashed lines, log law with x = 0.436 and B = 6.13: solid lines, power
law (Eq. (7.157)) with the power « determined by the best fit to the data.
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Fig. 7.32. The exponent o = l/n (Eq. (7.158)) in the power-law relationship u*

C(y*)* = C(y*)'/" for pipe flow as a function of the Reynolds number.

It is clear that a decreases significantly with R,. An empirical formula is given by:

1.085

6.535

*= logR,

aq _ 1.5
log R, - log R,

Vs Bernard a =

T (logRy)?
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Streamwise normal RS u2 for high Re data shows 2" peak in addition to peak at
y* = 15, but reason for this is still under discussion.
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Figure 7.21 Streamwise velocity variance at high Reynolds numbers in pipe flow [32]. Reprinted with
permission of Cambridge University Press.
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