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Chapter 8: Channel and Pipe Flow (Chap. 7 Bernard) 

Part 2: Pipe Flow 

 

𝑅𝑒~2000 transition turbulence. 

𝑅𝑒 =
𝑈𝑚𝐷

𝜈
     𝑈𝑚 =

𝑄

𝐴
 

 

Fully developed flow: 𝑈 = (𝑈(𝑟), 0,0) → averaged streamwise momentum 

equation: 

0 = −
𝜕𝑝

𝜕𝑥
+

1

𝑟

𝑑

𝑑𝑟
(𝜇𝑟

𝑑𝑈

𝑑𝑟
− 𝜌𝑟𝑢𝑣𝑟)     (1) 

 

Where 𝑟 is the outward radial coordinate, i.e., 𝑟 = 0 at the center of the pipe and 

𝑟 = 𝑅0 at the wall. Introduce wall coordinate: 

 

𝑦 ≡ 𝑅0 − 𝑟 

Such that: 

 

𝑈
∗
(𝑦) = 𝑈(𝑅0 − 𝑦) 

 

However, the ∗ symbol will be dropped. 

 

The wall shear stress: 

𝜏𝑤 = 𝜇
𝑑𝑈

𝑑𝑦
(0) 

Which also defines 𝑅𝜏 =
𝑈𝜏𝐷

𝜈
 where 𝑈𝜏 = √

𝜏𝑤

𝜌
 = friction velocity. 
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Integrating Eq. (1) over the pipe cross-section yields 

 

0 = ∫ ∫ −
𝜕𝑝

𝜕𝑥
+

1

𝑟

𝑑

𝑑𝑟
(𝜇𝑟

𝑑𝑈

𝑑𝑟
− 𝜌𝑟𝑢𝑣𝑟)

2𝜋

0

𝑅0

0

𝑟𝑑𝑟𝑑𝜃 

0 = −𝜋𝑅0
2

𝜕𝑝

𝜕𝑥
− 2𝜋𝑅0𝜏𝑤 

−𝜋𝑅0
2

𝜕𝑝

𝜕𝑥
= 2𝜋𝑅0𝜏𝑤     (2) 

Since  

𝑑𝑈

𝑑𝑟
(𝑅0) = −

𝑑𝑈

𝑑𝑦
(0) 

And 

𝑣𝑟(0) = 𝑢𝑣𝑟(0) = 𝑢𝑣𝑟(𝑅0) = 0 

 

Eq. (2) shows that 
𝜕𝑝

𝜕𝑥
= 𝑓(𝜏𝑤).  

 

The volumetric flow rate: 

 

𝑄 = 2𝜋 ∫ 𝑈(𝑟)𝑑𝑟
𝑅0

0

 

 

can be determined once 𝑈(𝑟) is known, which determines the averaged velocity 

𝑈𝑚 = Q/A where A=𝜋𝑅0
2 and defines the Reynolds number 

𝑅𝑒 =
𝑈𝑚𝐷

𝜈
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Define friction factor for pipe flow 𝑓 as: 

 

𝑓 =
∆𝑝

∆𝑥

2𝐷

𝜌𝑈𝑚
2

= 8
𝑅𝜏

2

𝑅𝑒
2

=
8𝜏𝑤

𝜌𝑈𝑚
2

    (3) 

 

The Moody diagram can be used to find values of 𝑓(𝑅𝑒).  

 

Current analysis presumes that the pipe is smooth. For engineering applications, it 

is necessary to consider 𝑓(𝑅𝑒,
𝜀

𝑑
), where 

𝜀

𝑑
 represents the relative pipe roughness. 

 

Alternatively explicit formulas are available for smooth and rough pipes, e.g.: 

For 𝑅𝑒 < 105, the Blasius smooth pipe friction law 

 

𝑓 = 0.266𝑅𝑒
−1/4

 

 

And substituting this into Eq. (3) gives a relationship between 𝑅𝜏 and 𝑅𝑒 

 

𝑅𝜏 = 0.182𝑅𝑒
7/8

 



4 
 

Previous channel flow analysis neglected outer layer, which should be included 

for pipe and especially BL flows. 

In viscous sublayer (𝑦+ < 5): 

𝑈
+

= 𝑦+ 

 

And log law valid for intermediate layer of pipe flow: 𝑈
+

=
1

𝜅
𝑙𝑛𝑦++B. 

 

For high Re pipe flow, central core mean velocity cannot be scaled using viscosity, 

so similarity is achieved using the velocity defect law: 

 

𝑈𝑐𝑙 − 𝑈(𝑦)

𝑈𝜏
= 𝑔(𝜉) 

 

Where 𝑈𝑐𝑙 = mean centerline velocity and 𝜉 ≡ 𝑦/𝑅0 is a similarity variable. In 

practice, this equation is found to work also in most of the intermediate region. 

 

If velocity defect law applies in overlap region, then: 

 

𝑓(𝑦+) = 𝑈
+

=
𝑈𝑐𝑙

𝑈𝜏
− 𝑔(𝜉)     (4) 

 

Differentiating Eq. (4) with respect to 𝑦 gives 

 
𝑑𝑓

𝑑𝑦+
(𝑦+)

𝑈𝜏

𝜈
= −

𝑑𝑔

𝑑𝜉
(𝜉)

1

𝑅0
 

 

 

𝑦+ =
𝑈𝜏𝑦

𝜈
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And multiplying both sides of the equation by 𝑦 gives: 

 

𝑦+
𝑑𝑓

𝑑𝑦+
(𝑦+) = −𝜉

𝑑𝑔

𝑑𝜉
(𝜉)     (5) 

 

LHS only f(𝑦+) and RHS only f(𝜉); thus, both sides must be equal and constant.  

Setting the constant to be 1/𝑘: 

 

𝑦+
𝑑𝑓

𝑑𝑦+
(𝑦+) =

1

𝑘
 

 

Integration gives the log law: 

 

𝑈
+

= 𝑘−1 log 𝑦+ + 𝐵 

 

i.e., using velocity defect law in intermediate layer recovers log-law. 

 

New high Re data shows 𝑘 = 0.42, 𝐵 = 5.6 for 600 ≤ 𝑦+ ≤ 0.12𝑅0
+ vs. historical 

0.41 and 5.2. 

 

The details of the velocity defect law for outer flow will be analyzed for BL flow. 
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In the region beyond the viscous 

sublayer, up to 𝑦+~300, a power law 

gives: 

𝑈
+

= 8.48(𝑦+)0.142 

 

For 5 < 𝑦+ < 300.  

 

 

 

When compared with previously defined composite sub-layer, blending layer, and 

logarithmic-overlap formula 

( ) ( )













−−−−−=

++
+−++ +

62
1

32
UU

UeeyU uB 


 

Shows its limitations. 
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Power Law 

Early studies showed that power laws can represent flow behavior over the entire 

pipe cross-section: 

𝑈

𝑈𝑐𝑙
= (

𝑦

𝑅0
)

1/𝑛

 

 

Where 𝑛 increases with Re, shows good fit with data, but cannot provide 𝜏𝑤. 

Taking a derivative of the power law gives: 

𝑑𝑈

𝑑𝑦
=

𝑈𝑐𝑙

𝑛
(

𝑦

𝑅0
)

1
𝑛

−1

 

Where experimental fits show that 𝑛~6 − 10, such that 
1

𝑛
− 1~ − (0.85 − 0.9). 

Therefore, e.g., for n = 10: 

𝑑𝑈

𝑑𝑦
(0)~

𝑈𝑐𝑙

𝑛
(

𝑅0

𝑦
)

0.9

 

Showing that the shear stress approaches ∞ as 𝑦 → 0. 

Linear-log plots of power law show good fit to the data for range of n: 

 
n 
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Subsequently, power laws were generalized to include not only inner law variables 

(𝑦, 𝜏𝑤, 𝜈, 𝜌) but also outer law variable 𝑅0, i.e., 𝑑𝑈/𝑑𝑦 = 𝑓(𝑦, 𝜏𝑤, 𝜈, 𝜌, 𝑅0) for the 

intermediate layer to include dependence on 𝜈 and 𝑅0, i.e., generalization of the 

log law approach, but in this case not independent of Re (partial similarity). 

 

Dimensional analysis gives: 

 

𝑑𝑈

𝑑𝑦
=

𝑈𝜏

𝑦
𝑓(𝑦+, 𝑅𝜏)     (6) 

 

But since 𝑅𝜏 is related to 𝑅𝑒, Eq. (6) can be rewritten as: 

 

𝑑𝑈

𝑑𝑦
=

𝑈𝜏

𝑦
𝑓(𝑦+, 𝑅𝑒)     (7) 

 

If 𝑓 = constant, log law is implied, alternatively if 𝑓 obeys a power law: 

 

𝑓(𝑦+, 𝑅𝑒) = 𝛽∗(𝑅𝑒)(𝑦+)𝛼(𝑅𝑒)     (8) 

 

For large 𝑦+ and 𝑅𝑒.  
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Both 𝑈
+

 and 𝑓 will follow power laws after integration of Eq. (7) using (8).  

𝑑𝑈 =
𝑈𝜏

𝑦
𝛽∗(𝑅𝑒)(𝑦+)𝛼(𝑅𝑒)𝑑𝑦 

𝑑𝑈
+

= 𝛽∗(𝑦+)𝛼−1𝑑𝑦+ 

∫ 𝑑𝑈
+

𝑈
+

(𝑦+)

𝑈
+

(0)

= 𝛽∗ ∫ (𝑦+)𝛼−1𝑑𝑦+
𝑦+

0

 

 

Applying BC at the wall gives: 

𝑈
+

(𝑦+) =
𝛽∗

𝛼
(𝑦+)𝛼 

 

𝑈
+

(𝑦+) = 𝛽(𝑅𝑒)(𝑦+)𝛼(𝑅𝑒)     (9) 

 

 

Where 𝛽 is defined from 𝛼 and 𝛽∗ after the integration, i.e., 𝛽=𝛽∗/ 𝛼. 
 

To determine a form of 𝛼(𝑅𝑒), consider behavior of Eq. (9) as ν→ 0. If 
𝜕𝑝

𝜕𝑥
 is 

constant, 𝜏𝑤 remains constant as ν→ 0, and so does 𝑈𝜏, as per Eq. (2). 

 

Since 𝑈 is bounded, 𝑈
+

 is bounded, so LHS of Eq. (9) is bounded as ν→ 0.  

 

Consequently, RHS must be bounded as 𝑦+ → ∞ and 𝑅𝑒 → ∞.  

 

Noting the identity 

 

(𝑦+)𝛼(𝑅𝑒) = 𝑒𝛼(𝑅𝑒) log 𝑦+
 

 

Eq. (9) can be rewritten as: 

 

𝑈
+

(𝑦+) = 𝛽(𝑅𝑒)𝑒𝛼(𝑅𝑒) log 𝑦+
      

𝑦+ =
𝑈𝜏𝑦

𝜈
 

𝑑𝑦+ =
𝑈𝜏

𝜈
𝑑𝑦 

𝑈
+

=
𝑈

𝑈𝜏
 

 



10 
 

𝛼(𝑅𝑒) is assumed of the form: 

 

𝛼(𝑅𝑒) =
𝛼1

log 𝑅𝑒
 

 

Such that: 

 

𝑈
+

(𝑦+) = 𝛽(𝑅𝑒)(𝑦+)
𝛼1

log 𝑅𝑒 

 

and gives good agreement with experiments. It is assumed that 𝛽(𝑅𝑒) shows the 

same dependence on 𝑅𝑒 as 𝛼: 

 

𝛽(𝑅𝑒) = 𝛽0 +
𝛽1

log 𝑅𝑒
 

 

Where 𝛽0 and 𝛽1 are constants. 

 

It is then derived that: 

 

𝑈
+

(𝑦+) = (𝛽0 +
𝛽1

log 𝑅𝑒
) (𝑦+)

𝛼1
log 𝑅𝑒      (10) 

 

Where the appearance of 𝑅𝑒 in the form of its logarithm means that if 𝑅𝑒 is 

replaced by 𝛾𝑅𝑒 → log 𝛾𝑅𝑒 = log 𝛾 + log 𝑅𝑒, which converges to log 𝑅𝑒 as 𝑅𝑒 →

∞. 

 

𝛼1 and 𝛽1 should have universal form and together with 𝛽0 are determined by 

empirical fit, comparing with EFD data. 

 

For 4 × 103 ≤ 𝑅𝑒 ≤ 3.24 × 106: 𝛼1 = 1.5, 𝛽0 = 0.578, and 𝛽1 = 2.5. 
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𝜓 ≡
log 𝑅𝑒

𝛼1
log (

𝑈
+

𝛽0 +
𝛽1

log 𝑅𝑒

) 

From Eq. (10): 

𝑈
+

𝛽(𝑅𝑒)
= (𝑦+)

𝛼1
log 𝑅𝑒 = 𝑎 

log 𝑎 =
𝛼1

log 𝑅𝑒
log 𝑦+ → log 𝑦+ =

log 𝑅𝑒

𝛼1
log 𝑎 = 𝜓 

 

i.e., Eq. (10) is equivalent to 𝜓 = log 𝑦+. 

 

Since the power law is meant to cover larger region of the pipe than the log law, it 

can be used to explain large 𝑦+ departure from log law. 

 

 

 

 

= log 𝑦+ 
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Pope 7.3.4 

In the overlap region (𝜈/𝑈𝜏 ≪ 𝑦 ≪ 𝛿) two velocities profiles are possible, i.e., the 

log law: 

𝑢+ =
1

𝑘
log 𝑦+ + 𝐵 

And the power law: 

𝑢+ = 𝐶(𝑦+)𝛼 

 

The coefficients 𝑘, 𝐵, 𝛼, and 𝐶 can be 𝑓(𝑅𝑒). If that’s not the case, the laws are 

said to be universal.  

 

It is clear that 𝛼 decreases significantly with 𝑅𝑒. An empirical formula is given by: 

𝛼 =
1.085

log 𝑅𝑒
+

6.535

(log 𝑅𝑒)2
 

Vs Bernard 𝛼 =
𝛼1

log 𝑅𝑒
=

1.5

log 𝑅𝑒
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Streamwise normal RS 𝑢2 for high Re data shows 2nd peak in addition to peak at 

𝑦+ = 15, but reason for this is still under discussion. 
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Appendix 

 


