Chapter 8: Channel and Pipe Flow (Chap. 7 Bernard)

Channel, pipe, and BL flows similar due to wall boundaries, especially near wall,
however some differences due to differences in their outer flows.

Pipe curvature effects are not discernable.

Channel flow experiments are difficult due requirement large span with 2D mean
flow vs. DNS which can use periodic boundary conditions. Whereas pipe flow is
amendable to both.

BL amendable both experiments and DNS and better for experimental study of
coherent structures and transition to fully turbulent flow.

Pat 1: Channel flow
Flow between two parallel plates, with constant P,: Poiseuille flow.

y A Figure 7.1 Geometry of channel
flow.
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For fully developed laminar flow:

Ue) = ——22 5 2h - y)
Y) = Z,uaxy y

This solution holds for R, = hU,,,/v < 1000, where:

1 2h

U, = o U(y)dy = mean bulk velocity
0



For turbulent flow U = (U(y),0,0) and u = (w, v, w).

Periodic BCs in x, z assuming large enough domain such that, e.g., f(r) — 0 for
large r.

Channel flow simulations characterized using:

h = length scale channel
U h ;
R; = = — = viscous length scale = size flow
v v/U,) Uy
features near wall viscous region
Based on the friction velocity
T
U, = |—=
p
Where:
dU )
Ty = U—

Is the wall shear stress.

For large R; clear separation inner and outer flow.
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Reynolds Stress and Force Balance

For fully developed mean flow, momentum equations become:

0— aﬁ+d au -\ aﬁ+ dr Sroct
=" Tdy U & puv | = — = & (D x —direction
au —
T=H T puv = Total mean shear stress
0 oP  dv? , p—
=% p & (2) y —direction
0=0 z —direction

Note that U, ﬁ, ﬁ, F, uv = f(y).
Taking an x derivative of Egs. (1) and (2) shows that

oP - -

=7 f(x,y) = constant (i.e., Py, = Py, = Py, = 0)
Integration of Eq. (2) across the channel from O toy:

P(x,y) = P(x,0) — pv2(y)

Since ﬁ(O) = 0, showing that P(x, y) is minimum where ﬁ(y) is maximum,
which differs from laminar flow where the pressure is constant across the flow.

oP
— = constant,

Also, since 5

P(x,y) = P(x+L,y) # f(¥)




Integration of Eq. (1) over thearea 0 < x < L,0 < y < 2h yields force balance:

L r2h L r2h aﬁ d dﬁ
0dxd =f j [——+—(u—— W)]dxd
—];) -[0 Y 0o Jo dx dy\  dy P Y

AP2h—1,2L =0 (3a)

Where:

_ oP — _
AP = —La =P(x,0) —P(x+L,0)

Is the pressure drop between x locations. Note that in deriving Eq. (3) the channel
centerline asymmetry condition was used:

dUO _du o
ay O =g, @

Eq. (3) shows that pressure force is balanced by t,, force. For turbulent flow,
channel center high momentum fluid is better able to penetrate wall region vs.
laminar flow resulting in steeper velocity gradient near the wall.
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Figure 7.2 Average velocity in channel flow of width 2h scaled by mean centerline velocity, U,: —,
turbulent flow; ——, laminar flow.



Differentiating the velocity profile of fully developed laminar flow [U(y) =

1 0P

o au o
— Zay(Zh — y)] and substituting T, e (0) gives:
dUu _ 1 0P 2h ) = (h )
dy  2uox Y= T ox Y
10P y
e (1-3)
dUu 10P Ty opP
—0)=—-—-h=—>—-—=
dy U ox U d0x
B 0P
tw= "5
dU dP y
hy =T w15 =w(i-5

_ auv . ..
i.e., the shear stress 74,= Ho s linear across the channel: momentum flux (shear

stress) across channel from the centerline towards walls due to —P.,.

(c¢) Plane Couette flow

Figure 9.4 Various cases of parallel flow in a channel.

(d) Plane Poiseuille flow




For turbulent flow:
oP
—LQZh - ZTWL =0 (3b)

aﬁ_rw_ fant (4
32—, - constan (€))

Substituting Eq. (4) into Eq. (1) and integrating from 0 to y, gives:

0 Jyr”d( dU _)d
= —+——|U5——puv
o LA dy 'udy P

y
O_TW N dUu _y
O_TW N auv  __
=Y T w Mdy puv
dU y

gy P =t (1-3) ©

i.e., same as laminar flow, with the addition of —puv. i.e., the sum of viscous and
turbulent stress varies linearly across the channel.



Eg. (5) can be scaled using the friction velocity, such that:

dUu y
g =p2(1 -2
4 &y uv = U7 (1 h)
dU° W
uv
&m0
dy U h
dU Ur uv y
———=U|1—-7
dytv U, T( h)
—+
v y y*vU, _Ujh
—uv =1->=1—-"—— R, =
dy* h U, VR, v
—+ "
Z;; —up =1- J;T= T" = total scaled mean shear stress (of course also linear)
Where:
—+ U —t uv . U,y
= UT uv = UTZ yr = "
1I 1_%
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Figure 7.3 Decomposition of the total stress as given by Eq. (7.14) in turbulent channel flow: — - —,
dU'/dy’; ——,—uv";—1 —y*/R,.Data taken from [13].

The mean viscous (molecular) momentum transport/flux is confined to a thin layer
near the wall. The drop in molecular momentum transport/flux is compensated by
the turbulent momentum transport/flux, which is asymmetric across the channel.
The peak in —uv’ s at y* ~ 53 after which it has a nearly linear variation to zero
at the channel centerline where the mean shear is zero.



Eq. (1) scaling:

0_rw+d dU
=k Tay\Fay TP f
0_m@+d v Ve= |
~Th Tay\Fay TP
G Vi, dU( dUU g+ =22
h yt v ytv uv v
v, d { dU __ d_d U
0= . +dy+ Urdy+—uv dy dy* v
VU, d (dU ww p = Ut
0=—+U,— T =7,
h dyt\dy*t U,
v d (1 dU uv —+ U
0=—+ — U =—
hU, dy*t\U,dy* U? U,

1 d [(dU" _,
0=—+
R, dy*\dy*

0 =(1) pressure force + (2) viscous force — (3) turbulence force
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Fgu 7.4 Dec omp osition of the mean momentum equation (7.16) in turbulent channel flow: — - —
viscous force; —, turbulent transport; - - -, pressure force. Data taken from [13].

Pressure force (1) Is constant across channel and balanced by (3) for y* >
approximately 70.

Near wall y* < approximately 70, complex physics wherein (3) transports
momentum from outer channel towards wall (gain), which is counterbalanced by
viscous diffusion (2) again towards the wall (loss).



Mean Flow Similarity: Flow field regions.

1) Viscous sublayer: f(u)

2) Channel center = outer/core region = f(u)

3) Overlap layer = intermediate region, requires high Re for separation of 1)
and 2).

Between 1) and 3) = buffer layer where turbulence is maximum: 5 < y* < 30, as
per later discussion.

Viscous sublayer (see Appendix A.1 for Taylor Series for u; and (uiuj) neary = 0)

Viscosity is essential for flow near solid boundaries. Evaluating Eq. (1) at y = 0 and
using Eq. (4) gives:

0=22+u57(0)- 7& L0 + 12 0)

dZU
d—yz(o) = ———(0) (6)
Where the fact that
duv(0) B
dy B
Follows from the identity:
Juv B ou dv

oy “oyt T ey

: i : oP d [ dU
Differentiating Eq. (1) with respect to y: 0= -+ @(ME — puv

) (1

373

d_y3(0) =0 (7




Since

GZW(O)—O

dy? N
OZW d (ou i ov 26u6v+ 02v +62
9y? 9y ayv ay dydy  0dy* 0y?

B Zauau d0%v +62 Coat 0
B dy 0x ay dy? v ar=

Using continuity v, = —u, andw, = 0.

Taylor series expansion for U(y) neary = 0:

n TlU
U) = Zy, 57 © ®

Substituting Egs. (6) and (7) into (8) gives

— av vy d2U y? Y4
U(y) = hd—(O)E+h2 (O)W-I_O(h)

2

= _
T0) ~ o OF -h O 2

— ., au y y?
U(y)~h5<0)(ﬁ—ﬁ> ©)

Scaling Eq. (9) with U, yields

—+ oH?
U N =yt —
)=y IR +

Which shows U = f(y,1,,, p, V) ; from dimensional analysis U = Ui = f(y™); for

—+
small y* using Taylor Series U (y*) = y* # f(R,), i.e., compete similarity; and
lastly from EFD and DNS valid for y* < 5.
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Intermediate layer
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Fig. 74. Profiles of the fractional contributions of the viscous and Reynolds stresses
to the total stress. DNS data of Kim et al. (1987): dashed lines, Re = 5,600; solid

lines, Re = 13,750.

—+
av’
Fory® =50 - o <€ wv" such that:

. _¥/

For large R;

yr T
w o~ -1
T
| ~ = (9)
p

Therefore, U # f(v),i.e., U = f(y, Ty, p,) or similarly Z—z = f(y,1,,p,) suchthat:

au
Y Z2- constant. (10)
U; dy

. . , . au .
And assuming in the intermediate layer yaz constant. Introducing a

dimensionless constant of proportionality k = 0.41, known as the Von Karman
constant, Eq. (10) becomes
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Expressing Eq. (11) in wall units and integrating gives

1dU 1

U dy  ky
v U, U,
dy+7= ky*tv

- (fundamental property I log-law region)

—t

dUu 1
+_ | = g+

fdy+dy ‘fky+dy

k=041
—+ 1 N
Uu ") = Elogy +B (12) B =52
Where B = 5.2 is a constant, which is determined by experiments.
30
0 /"//
o
Pr-- — ety
15 L (K" n(y+) + B
u+=(1/a"2)*atan(a"2 * y+)
10 F van Driest
Spalding
0 C i} - ——e - P
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Mean velocity profiles in wall units. Circles, boundary-layer experiments of
Klebanofl (1954), Rey = 8,000; dashed line, boundary-layer DNS of Spalart (1988),
Rey = 1,410; dot-dashed line, channel flow DNS of Kim er al. (1987), Re = 13,750;
solid line, van Driest’s law of the wall, Eqgs. (7.144)—(7.145).

More precise determination of whether a log law is present can be obtained by
examination of
—+
B =yt av 1
Y ot Tk

Which will be constant, and equal to 1/k, in log-law regions if they exist.
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Figure 7.6 f as defined in Eq. (7.32) for the mean velocities in Figure 7.5. — - — R_ = 541; ——,
R, = 1000; —, R_ = 5186. Data from [10, 13].

p constant only for R, = 5186 — intermediate layer developed only for R, >
2200.

Buffer layer: Merges smoothly with the viscosity-dominated sub-layer and
turbulence-dominated log-layer in the region 5< y* < 30. Unified Inner layer: There
are several ways to obtain composite of sub-/buffer and log-layers.

Evaluating <uv> near the wall (Appendix A.1) shows that:
<uv>~y3 y-0

Several expressions which satisfy this requirement have been derived and are
commonly used in turbulent-flow analysis, e.g., Spalding (Appendix A.2) using the
following assumptions:

—+
. Passes through yt=0at U =0.
—+
. Is tangent at this pointto y*t= U

1
2
—+
3. Isasymptoticat large y*toU (y*) = 2.5logy* + 5.5
4. Fits the experimental points at intermediate y* values

13
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Fig. 6-11 shows a comparison of this equation with experimental data obtained
very close to the wall. The agreement is excellent. It should be recognized that
obtaining data this close to the wall is very difficult.
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FIGURE 4-11

Comparison of Spalding’s inner-law expression with the pipe-flow data of Lindgren (19630
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Velocity moments

Effect of Re negligible in core region of the channel.

Near wall, for larger R, more rapid
changes in correlations and shifted
closer to the wall.

v? damped near wall.

v?2 and w? somewhat isotropic in core

region, but not uz.

u2, .. @y*t~15.5
Buffer layer: steep U_y and max u;u;

For y* < 2.5 results seem independent
of R,. However, for R, = 5186:

du;—ms
—(0)=10.5

pel©)
dzu;"_ms

dy+?
R, =1000:

(0) = —0.038

+

u
2 (0) = 0.47

dyt

2.+
d Urms

e (0) = —0.032

i.e., persistent Reynolds number effect.
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Figure 7.7 Normal Reynolds stresses in channel flow. — R_ = 5186; — - —, R_ = 1000. Top curves are
u?, middle curves are w?, lower curves are v2. Data taken from [10, 13].
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Figure 7.8 Normal Reynolds stresses in channel flow plotted with respecttoy*. —, R_=5186; — - —,
R, = 1000. Top curves are u?, middle curves are w?, lower curves are v2. Data taken from [10, 13].
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—t —

U is linear up to y© = 5, so consider a Taylor series expansion of u;’,,. = vV u?
neary = 0:
rms + 1 dzu;—ms +2 +1\3
urms = m{@ + (0) 2 gu+2 0)y™ +0((y")°) (13)
v

The distance from the boundary over which u},,,. can be modeled as linear can be

—+
analyzed considering the ratio u}t,,. /U .

—+
Recall scaling of U (y™) resulted in the equation:

. U +32
u (") =%=y+—()2]R) +0((yH"

U+<y+)zy+< ;VR> (14)

Dividing Eq. (13) by ﬁ+and combining with Eq. (14) gives:

u;—ms _ durms 1 dzu;‘}-ms (y+)
—t = (0) _+ +2 (0)
U dy* 2 dy* U U
ut dut + 1d%uf +2
S — s (0) — T (0) — " + 0((7)?)
¥ dv+ + 2 +2

v g 3’+(1_2yT) 4 3’+(1_2R)

T T

Define y*' = y* /2R,
u;"-ms — du;’ms (O) y+ dzurm
U+ dy* y+(1 _y+’) 2 dy+2
and use binomial theorem such that:
1

(1-y%)

~(0) ~+ 0"
+( +) y

~1+yt

16



Therefore,

u;rms _ du;-ms y+ 1d? ;-ms + y+ 12
= (o>< o) 5 gyer O (1435 ) + 00

2,,+

d ™ ms
0) + ’y‘ L (o>)+0((y+>2>

ui,:s _ duiTs ©0) +y* 1 durTs
dy 2R, dy
It follows that near the wall (see derivative relations pg. 15):

Uts 0.25
= 05+ y* ( .

- 0.019) +ee (%)

T
i.e., linearity maintained until y* = 2.
Similarly, spanwise rms fluctuations are given in the form:

2.,+

1d°w
Wihns = ,m/m+ ”"5<0> vt Oy + 00
v v

And computations show that at the wall the approximate expression is:

Wi = 0.25y™ + -0 (*¥)

Using continuity, it can be shown that:

dvrj_ms — 0
dyt
Such that, near the wall
+ 1 d* vy +2 +13
Vrms = Oy +0((»r™)°)

2 dy"‘z
Computations show that near the wall the approximate expression is:

Vs = 0.006y+ +0((y1)3)  (***)

(*), (**), and (***) useful near-wall anisotropic turbulence modeling.
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Fig. 7.15. Profiles of Reynolds stresses normalized by the turbulent kinetic energy
from DNS of channel flow at Re = 13,750 (Kim et al. 1987).
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Fig. 7.16. Profiles of the ratio of production to dissipation (P/e), normalized mean

shear rate (Sk/e), and shear stress correlation coefficient (p,,) from DNS of channel
flow at Re = 13,750 (Kim et al. 1987).

Table 7.2. Statistics in turbulent channel flow, obtained from the DNS data of
Kim et al. (1987), Re = 13,750

Location

Peak production Loglaw Centerline
yr=118  yt=98 yF=395

() /k 1.70 1.02 0.84
w?)/k 0.04 0.39 0.57
(w?)/k 0.26 0.59 0.59
(uv)/k —0.116 —0.285 0
B —0.44 —045 0
Sk/e 156 32 g

Ple 1.81 091

: P © e s x4
¢MW-O\ W‘Cirk’ Qg‘) /4;45*«'&* )Qw-% A -'-k,uws».
(3 <2

e
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TKE budget

Simplification of TKE equation obtained in Chapter 3 for channel flow yields:

0 __dU 1 d?k  1dvuf
=—UW——& ——pUy, +V —=
dy = p'» T Vayz 2 dy
——— . . N
0.25f
02l Y
1) Production 0.15
2) Dissipation oy
0.05 '
3) Pressure work/transport 0 1_4h3) bbb et
4) Viscous diffusion/transport 005p % NILE emmemmTTTTTTINN
01} 4 PP
5) Turbulent transport = %(vg " Uy .15} 4) ?
02t/
025
0 1‘0 2‘0 3I 0 4‘0 SIQ 6‘0 7‘0 8‘0 9‘0 100
Foryt* >30uptoy/2h=1,P = . (2) y

Figure 7.9 Turbulent kinetic energy budget in channel flow R, = 5186 [10] scaled with v and u_: —,
production; ——, dissipation; +, pressure work; - - -, viscous diffusion; — - —, turbulent transport.

Poox @yt =12 (near k peak), P/ ~1.8
Emax @ ¥yt =0, i.e., at the wall and has local plateau near B,

Turbulent transport (5) is important near the wall: negative for 8 < y* < 30 and
positive for y* < 8, which suggests much of the peak of the RS near y* = 10 is
transported towards the wall.
At wall:

d?k

E=Vv—s

dy?

i.e., dissipation equals molecular diffusion.

Most complex physics is in buffer layer 5 < y* < 30.
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Location of P,,,,, can be estimated by rewriting the production term as:

—+ —+\ —+
_.dU ( yt dU>dU

—uv e =

—+ —+
" 2dU d?u _ 0
dy* | dy+? B

Where terms O(R; 1) are dropped.

—+
A , av _, oyt
Since o # 0in the region of B4, then o w =1- 7
=t Ify* K R, -
aau 1 __, (16) Y 4
= — = —Uv S
dy* 2 I
dy*

Point where Eq. (16) is satisfied is visible in Fig. 7.3 at y™ =~ 12.
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€ budget

De
— =P+ P*+P}+P*+1I,

Dt 0.025
+ T, + D, —Y; '002
P. =pr ion '
. = productio oois
Y, = dissipation of dissipation 001R .-,
0.005 -\
Il + T, + D, = redistribution 0
-0.005 F
Like homogeneous shear flow 001}
for large y*(away from wall) -0.015
4 -0.02
P~ —Y,
-0.025
0 5 10 15 20 25 30 35 40
y+
Figure 7.10 ¢ equation budget in channel flow at R, = 590 [20] scaled with vand u_. ——, P!; v, P%;

—— Pho,Pho,—Y,;— D T +T,.
Fory* < 25, P} and P? larger compared to P2 and I, + Ty,

Near wall =Y, has minimum and at the wall =Y, = D,.
Evident € behavior near the wall complex and challenge for modeling.

Reynolds Stress Budget (derived from RS transport equation)

— _du du?v d?u?
us: 0= —Zuvw — &1 — & + I, +v 07
— dv3 d?v?  2dpv
U.O—_SZZ d_y"‘nzz'l'vd Z—Edy
— dw?v d?w?
w 0 —_ _833 - dy + H33 + vV dyz
Where: 2;j = turbulent
_ > ou; auj . = 1 ou; 4 auj _ 1 55 ra;ce of strain =
T Vaxk 0y, v pp dx; 0x; B pp g 5 (i 1)

Hl-j= pressure strain correlation
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u? connected mean flow via os| )
production term. o4t
0.3 —:f
0.2-::
- S 04t l B
v?2 and w2 production via I1,, and osd S
°p°.°‘0_- o"’ o9 6 0-g D" D OTOTOTBTDTET
E o o S
IT33 orp s KRNI
w02t .-
Y. I1; = 0, thus I1;; mostly < 0. osl /e
— 04t
Consequently, P in u? is transferred to .
0

10 20 30 40 50 60 70 80 90 100

v? and w? via I1;;. y*
Figure 7.11 72l budget in channel flow for R, = 5186 [10]. —, production; ——, dissipation; o, pressure
strain; - - -, viscous diffusion; — - —, turbulent transport.
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° 5 & Pressure strain
o

0.02 ¢ ° P
Near channel center: | ° °© 0o o
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Complex physics y* < 40

Figure 7.12 V2 budget in channel flow for R, = 5186 [10]. ——, dissipation; o, pressure strain; +,

—_ —_— pressure work; - - -, viscous diffusion; — - —, turbulent transport.
u?: e~vu?,,
JES— R 0.2
2. o0 2
w2 e~V -
_2 —_ H H 0.1
. ~ RN 0900,
veipv,~iip 33 00s |2 %000 ‘
900 0 ¢ ° cF:regsutgesotralc? R
-y - 5 0
2 2.7 | N R
v*and w*: pvylvz near wall H33 P PR
l‘ g
However, net effect pv. and I1,, small '}
y 22 ,
-0.15
and mostly cancel.
-0.2

w?2; losses due to € near wall balanced

Figure 7.13 wZ budget in channel flow for R_ = 5186 [10]. —, dissipation; o, pressure strain; - - -,
viscous diffusion; — - —, turbulent transport.

by vw?,,,
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Figure 7.14 Pressure-strain term in normal Reynolds stress equations at R_ = 5186 [10): —, IT,,;- - -,
My == Tl5;.

Viscous and turbulent transport result in spatial redistribution.

Consider now Reynolds uv balance:

0=—v2——g;, +1I _duvz_ldp_u+vdzﬁ
dy dy pdy  dy?
[6]
1) Production 02
2) Dissipation: small oy
3) Pressure strain o1fp °°°°o°°
4) Turbulent transport 00s | 000000, et o
5) Pressure work 0 el e m s s b et bt
6) Viscous diffusion: small
4) and 5) cancel. o5
02 1I0 2'0 50 4.0 5'0 éO ?.O 8IO QIO 100
_ Figure 7.15 Tv budget in channel flow for R_ = 5186 [10]. —, production; ——, dissipation; o, pressure
uv < 0 lower channel produced by 1) strain; +, pressure work; - - -, viscous diffusion; — - —, turbulent transport.

Mostly balance of P and II;, = important to model it correctly.
2) and 6) small » uv # f(v)

3) and 5) nearly cancel near wall = can be combined for modeling.
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Enstrophy budget

— 2 4+ (2 2
(= w7 + w; + w3

wZ~wi~w3 away from wall.

w?(0) = w2(0)
@3(0)=0

w3(0) =113(0) » w3 (0)

Also associated .(2_3 = —U_y near wall Fig.

7.3.

Peak in wZ(0) due to spanwise motions
near wall.

Anisotropy 10 < y* < 30: complex
physics buffer layer
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Figure 7.16 Comparison of the enstrophy components in channel flow at R, = 5186 [10]. - - -, @] ;
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Figure 7.17 Evaluation of the terms in Eq. (7.54) in channel flow with R_ = 5186 [10]: - - -, —¢*; —, {*;
- dEF+/dy".



Mixing Length and Law of the Wall

Taylor Series near y = 0 shows < uv > ~ y3, whereas mixing length theory for
_<;v> ~1+% ~ y*? (Pope Ex. 7.19). Fundamental properties log

sublayer shows

law region (1)-(3) show in log-law region show [}, = ky*(Pope pg. 289). Thus, the
mixing length needs damping to properly merge between the sub and log layers via
the buffer layer. One approach is Spalding, as already discussed another is Van

Dreist, which leads to _<;”> ~y+* (Pope Ex. 7.19).
20 Plot of X" forn=1, 2, 3, 4
I |
XZ
2.5 3
A
2.01
1.51
>
1.01
0.51
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2
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EXERCISE
7.19  Show that, according to the mixing-length hypothesis, very close to
the wall (y* < 1) the Reynolds shear stress is

uv
—(—u?)- ~ ()% (7.146)
Show that the van Driest specification (Eq. (7.145)) yields
(uv) K \2
e (Z?) yH. (7.147)

Contrast this result to the correct dependence of (uv) on y (for very
small y), Eq. (7.63).

According to the mixing length hypothesis, as shown in Equation (7.87)
of text, the eddy viscosity is,

2

' = %

(1)

d(U) ‘
dy |’

where {,, is the mixing length, (U/) the time-averaged streamwise velocity.
and y the wallnormal coordinate. It follows then that the Reynolds stress,
—(uv), is approximated as,

d{U) /2

() =vr=pt = £,

The expression d{l/)/dy can be rewritten as,
diU)y  d{U)u, b,

(2)

d(U) ' d(U)

dy | dy

dy — dy u.é,
~d((U) fur) uy
- d(y/s,) b,
dutu,
oyt s,
—1. 4 ﬁ
0y v
In the foregoing equation, u, is the friction velocity and 4§, is the viscous
lengthscale. Also, du™/dy" = 1 for y* < 1 in the viscous sublayer; see
Equation (7.40) of text. With the expression for d{l/})/dy in Equation (3),
Equation (2) normalized by the square of wu, can be reexpressed as,

—(wv) 5 |ui|uil
u? My u?
2 Ur _m (o4

_ 2
T tm 1,12 T 52 T E 'm) '
v
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In Equation (4), £}

T

= {,,/d, is the mix-length in viscous scales. And the
shear stress would be positive with the assumption of attached flow.

The second part of the question is based on the van Driest approximation,
where

ln = Ky" [1 —exp(—y* /AT)]. (5)
Using the result from Equation (4),

(€1)% =K (y")*[1 — 2exp(—y* /A") + exp(—2y" /AY)]. (6)

Recall the Taylor series expansion for e” as,

- :]'.f:a :1?3 :1?4 5

Therefore, Equation (6) can be rewritten as,

2 2 9 yt L[yt 2 gt \3
y' 1 /2y™\*° v\ _
+(1‘2F+5(F) ol () )| ®

Simplifying the above expression,

(@) () ()

Neglecting higher order terms, the desired form of the solution is,

(f,*,fzﬁy'f(y ) | (10)

G

“rn

)? = Ky’

o

Ai
Finally,
—(uv) K2 )
= (¥ +32 t 1. 11
1.[,3 E J'u.) [:A‘)Zty ) ( :I

The correct expression for the near-wall Reynolds shear stress is, accord-
ing to Equation (7.63),

(uwv) = (bicg)y® + Oy"),

where b; and 3 are constants. Evidently, the form of the near-wall Reynolds

stresses deduced based on boundary conditions suggests an asymptotic be-

havior similar to a third order polynomial, which differs from the polynomial

derived based on the van Driest approximation. It seems that the van Driest

function for mixing length is not exactly correct for y* < 1.
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Fig. 7.27. Mean velocity profiles in wall units. Circles, boundary-layer experiments of

Klgebanoﬁ (1954), Reg = 8,000; dashed line, boundary-.layer DNS of Spalart (1988),

Rey = 1,410; dot—dashed line, channel flow DNS of Kim et al. (1987), Re = 13,750;

solid line, van Driest’s law of the wall, Egs. (7.144)—(7.145).

Using the mixing length hypothesis for a boundary layer with zero pressure gradient
such that 90U /dy > 0:

W) _ 00, 2U_  oU z(a_U)Z
_Vay+vtay_vay+lm 3y (1)

17/ ., 00
where —uv = v; ™ and v, =I5, 3y

(1)  Derive the law of the wall in the sub layer assuming v, g = 0.

(2)  Derive the overlap layer log law assuming vg =0and I}, = ky*. I} =

bin _

3, L,u;/ v (6, =v/u, = viscous length scale and u, = ./t,,/p in the friction
velocity.
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(3)  Derive an approximate sub + buffer layer formula assuming
Y= a2yt + (1 + a?2y*?)Y2 when &5, = v/u, = viscous length scale and
u, = ,/t,,/p in the friction velocity and Ti = 1; compare withu* = 5Iny* — 3.05.

T
A* =26 and Spalding y* = u* + e *8[e? -1 —z—2%/2 —2z3/6]. z =Kkutand
B = 5.3 formulas valid in the sub, buffer, and log layers

(4)  Compare the results with van Driest [} = ky™* [1 — exp (_y+)]

Approach: nondimensionalize % equation (1) using y* = yu,/v and u*=U/u,
+
and solve resulting quadratic equation for % , Which can then be integrated

according to (1) — (4) specifications for v, v and [;},; and compared with the Spalding
formula. Note that ¢y = 0.3,k = 0.41,B = 5.3

t out dut\’
= + (I}
A ay*

> (alternate form solution quadratic equation)

Results

out 2T /Ty

OY* 14[144(t/TW) 2]

In the inner layer the ratio Ti ~ 1 so that the law of the wall is obtained in terms of

w

the mixing length:

y+ 2dy+
W= WO jo 1+ [1+ 4L+2]1/2 Y
(1)
out

1 ay_"' — u+ = y+.
(2)

— (ev)2 (2 out _ 1
1 (Ky ) (ay+) oyt  kyt
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u+
K

3)

1+41%2 =1 + 4[adyt + (1 + agy+2)1/2]2

1
In(y*)+ B

=1+4a5y™?(1+ ajy*?)

=1+ 4ajy*? + 4alyt*

Lt ny+L= J“L
o 2+42a5y*t? ), 1+ agyt?
dA 1
A=ady?t i = az  dyt = a_gdA
jy+ dy* 1 J“(ZJW dA
- _—
o l+4agy*? ail)y, 1+A2
1 (%" dA 1
— =—1t -1 A oY
” oc(z,jo 1+ A2 a(z)[an @I,
sut =—=tan ! (agy?)
@
(4)
— v+ 2dy™
Van Driest:  u* = [ — 7
1+[1+4K2y+2{1—e(_3’ /At ]
Spalding: yt=ut+e*Ble? —1—2z—-2%2/2—-2%3/6],z=kKku"*

The latter is purely algebraic, but implicit in u*,

numerically, e.g., Runge-Kutta. Both provide

coefficient
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while the former may be integrated
good fits to the data; however, the
Van Driest is more flexible as it may be made to fit other conditions such as pressure
gradient, blowing/suction, roughness, etc. by changing the value of the damping



. —u+=y+

+ &

S ——u+=(1/k)*In(y+) +B
——u+=(1/a"2)*atan(a’?2 * y+)
——van Driest
——Spalding

i TR rore
0.1 100

Expanded y+ range up to 10* and added other data set including experiment result
(Klebanoff. 1954)

30
L -
_ -
I/"/ -
0
— U=yt
p= u+=(1/k)*In(y+) +B
u+=(1/a"2)*atan(a”2 * y+)
van Driest
Spalding
1.000 10,000

Mean velocity profiles in wall units. Circles, boundary-layer experiments of
Klebanofl (1954), Res = 8,000; dashed line, boundary-layer DNS of Spalart (1988),
Rey = 1,410; dot-dashed line, channel flow DNS of Kim et al. (1987), Re = 13,750:
solid line, van Driest’s law of the wall, Egs. (7.144)—(7.145).
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Fig. 7.17. Profiles of Reynolds stresses and kinetic energy normalized by the friction
velocity in the viscous wall region of turbulent channel flow: DNS data of Kim et al.
(1987). Re = 13,750.
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Fig. 7.14. Reynolds stresses and kinetic energy normalized by the friction velocity
against y* from DNS of channel flow at Re = 13,750 (Kim et al. 1987).
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A Single Formula for the
“Law of the Wall”

D. B. SPALDING!

Summary

It is shown that experimental velocity distributions may be
well fitted, in the laminar sublayer, the transition region, and
the turbulent core, by the formula:

¥+t = ut 4 0.1108{e0 4" — 1 — 0.4u+ — (0.4u*)2/2!

— (0.4u*)3/3! — (0.4u*)4/41}
Omission of the (0.4u*)4 term gives an equally good fit. The
corresponding expressions for the ratio of turbulent shear stress

to total shear stress agree with the measurements of Laufer [8]2
quite closely.

Nomenclature
u = time-mean velocity of fluid in 2-direction
ut = wVp/r
2z = distance along the wall in the direction of flow
y = distance from the wall
yt =y \/ TP/ Kmolecular
€* = Wiotal/hmotecular

Hmolecular = absolute viscosity of fluid in laminar motion
Htotal = ratio of shear stress to gradient of time-mean
velocity
Mtucb = [ftotal — Hmolecular

p = density of fluid

¢ = density of fluid divided by density of fluid adjacent
to wall

7 = shear stress in fluid, assumed independent of ¥

Introduction

Purpose of note. Numerous formulas have been proposed to de-
seribe the universal turbulent velocity profile, called by Coles [1]
the “law of the wall.” The present note discloses a new formula
which is valid over the whole range of dimensionless distance y*.?
The new formula has a form which, on the one hand, permits
analytical determination of several important boundary-layer
parameters, and, on the other, may provide the vantage point
for a new look at the theory of the turbulent boundary layer.
These matters are only touched on briefly in the following.

The universal turbulent velocity profile. Prandtl’s [12] postulate,
that the velocity in the neighborhood of a wall should obey the
relation:

1 Professor of Heat Transfer, Department of Mechanical Engmeer—
ing, Imperial College of Sei and Tecl y, London, Engl

Manuseript received by AS\IE Applied Mechanics Division,
March 8, 1961.

2 Numbers in brackets indicate References at end of Note.

3 See Nomenclature at beginning of Note.
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ut = ut(y*) (1)

has been confirmed experimentally by Nikuradse [10], and subse-
quently by many other authors.
The experimental relation has been described analytically in

various ways, some of which are listed in Table 1. Tt will be
Table 1 Formulas for the "law of the wall'"®
Author Range of validity Formulas
Prandtl [11]? 02 y*< 115 ut = y*
Taylor [18]" 11.5 € y* ut =256Iny* + 55
0% yt<5 ut =yt
von Karman (7] {5 € y* <30 ut = 5Iny* — 3.05
30 £ yt ut = 25Inyt + 55
Reichardt [15] 0%yt ut = 25In (1 + 0.4y*)
+ 78{1 — ev'm

— (y+/11)e—o.zay’}
u*
0Z y+<26 =

0
Deissler (2] dy*
l + n2utyt(1 — e~y
= 0.124
20 € yt u“ = 278Iny* 4 3.8
”§
0< yt ut = f
0

van Driest [19] 2y+

1+ {1 4+ 0.64y**[1 — exp (—y*+/26)]12}'/
Z y*+ <275 wut = 14.54 tan h(0.0688y+)
52 yt ut =25Iny*t 4+ 55

T 0

Rannie [13) 7.
4 See also Hofmann [5], Reichardt [14],

Elrod [3], and Frank-Kamenetsky [21].

b These authors did not, at the dates in question, state the formulas
attributed to them in the table. However, they did introduce the
idea of a sharp division between a laminar sublayer and a fully turbu-
lent core; when compared with experimental data, this idea leads
directly to the formulas given.

Rotta [16], Miles [9],

noted that all the authors mentioned, except Reichardt [15] and
van Driest [19], have found it necessary to use at least two ex-
pressions, valid for different ranges of y ¥, in order to deseribe the
profile adequately.

The problem. A single formula, expressing the u*(y*) relation
over the whole range of the variables, is both more satisfying
aesthetically and more convenient practically than the two-point
formulas of Table 1. However, Reichardt’s formula is rather com-
plex in form, whereas van Driest’s involves a quadrature requiring
numerical evaluation. There is need for a simpler, easily evalu-
ated formula.

Such a formula would preferably fit the experimental data
closely, contain sufficient adjustable constants to permit modifi-
cation in the light of new experimental data, and have an analyti-
cal form permitting easy integration of the various functions of the
velocity distribution which arise in, for example, the theory of
heat transfer through a turbulent boundary layer.

Looked at mathematically, our problem is to establish a
formula which:

(i) passes through the point: y* = 0, u* = 0;
(i) is tangential at this point to: u* = y*;
(iil) is asymptotic at large y* to:*
=25ny* 4 5.5 (2)

(iv) fits the experimental points at intermediate y* values.

4 Here the most popular constants for the logarithmic velocity pro-
file have been accepted.

SEPTEMBER 1961 / 455
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BRIEF NOTES

The New "Law of the Wall"

The simplest y* (u™) relation. The previous efforts to find a single
formula fitting the foregoing specification »* has been sought ex-
plicitly in terms of y*. There is, however, no need to demand
this; a relation giving y* explicitly in terms of »* is just as good,
and indeed may even be better for some purposes.

Once this possibility is recognized, progress can be made

swiftly. We now seek a y*(u*) relation such that
near ut = 0:yt = ut 3
and at large ut:y* = 0.1108¢04" (4)

the latter equation being derived directly from equation (2).
The equation which immediately suggests itself is:

y+ = ut 4 0.1108(e¢" — 1 — 0.4u*) (5)

This satisfies requirements (3) and (4). Does it also fit the ex-
perimental data? This can be judged by reference to Iig. 1,
which contains the experimental data of Laufer [8]. Evidently,
equation (5) fits the data fairly well, but gives values of «* which
are approximately 10 per cent low when y* lies between 10 and
50. Tig. 1 also contains, as broken curves, the asymptotic ex-
pressions (2) and (3).

Improved y *(u™) relations. If we define a dimensionless “total”
(i.e., “molecular plus turbulent” viscosity) e* by

(6)
then the assumption that the shear stress is independent of dis-

tance from the wall, when combined with the definitions of u*
and y*, leads to the relation:

€' = fitotal/ fmoleoular

dyt
* = 7
€ du* ™
Equation (5) therefore implies the e*(u*) relation:
et =14 0.4 X 0.1108(e>4" — 1)
0.4ut)?
=1+ 0.04432 {0.41;*’ + ¢ 21; L } ©)

Now there are theorctical reasons (Reichardt, [15]; Hinze,
[4]) against a growth of e in the wall region with a power of y*
which is less than 3, if the shear stress varies along the wall, and
less than 4 if there is no such variation. Equation (8) satisfies
neither requirement.® However, it is easy to see what must be
done to the velocity distribution if either of these requirements is
to be satisfied: the distribution formula becomes, respectively:

y* = ut + 0.1108 Jerast — 1 — g4yt — QAN (O4u)?
2! 3
9
or
+)2
g+ = u* + 0.1108 {ew* —1 —0dut — (O%L
(04u*)s  (0.42t)4
al 4l 0

Curves corresponding to equations (9) and (10) are plotted in
Fig. 1. They fit the experimental data rather better than does
equation (5), but it is not possible to say which of the two gives
the more precise fit. Whether the (0.4z%)* term should be in-
cluded or not will therefore probably have to be decided on other
grounds.

§ Nor, incidentally, do the expressions of Reichardt and van Driest
which appear in Table 1.
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Fig. 1 Experimental data of Laufer [8] for velocity distribution near the
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Fig. 2 Experimental data of Laufer on turbulent-stress distribution near
the wall in turbulent pipe flow, compared with various analytical ex-
pressions

Laufer [8) has also made measurements of the ratio of the tur-
bulent shear stress divided by the total shear stress near the wall.
His measurements in a pipe flow, of Reynolds number 500,000,
are shown in Fig. 2 as a bold line; y* is the abscissa and the
viscosity ratio grurn/Mtotal is the ordinate. Also drawn in Fig. 2
are the corresponding relations deduced from equations (9) and
(10). These are, respectively:

Mturb
Mtotal

=1 / [1 + 1/0.04432 {eo-w* — 1 — 04u*

o] g

and

Hturb

Motal

= 1/[1 + 1/0.04432 {eﬂ-*u‘ — 1 — 04u*

(04ut)?  (04u*)?
T e Tl }] (100)

Transactions of the ASME
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Comparison of these relations with the experimental curves
shows that the former equation gives the better fit at low y*,
while the latter gives the better fit at high y*. However, it is
probable that both curves can be regarded as equally satisfactory
when experimental scatter is taken into account.

Also plotted in Fig. 2, as a broken steplike curve, is the g/
Hotal distribution which corresponds to the assumption of a sharp
boundary between a laminar sublayer and a fully turbulent outer
region. Clearly this gives a very poor representation of the
data.

Further possible improvements. Iiquation (10) fits the require-
ment that e increases with the fourth power of »*, and so of y*,
close to the wall. However, even if this is correct, there is no
reason why the first nonzero term of the expansion should happen
to be that which appears in the expansion of 0.1108¢%#". In
other words, it may be that further terms should appear inside
the braces of equations (9) and (10) which have the effect of only
partially canceling the corresponding terms in the exponential
expansion. Discussion of such further developments will be de-
ferred to a later publication.

Discussion

Practical use of the new formula. Fig. 1 shows that equations (9)
or (10) can be used to represent the “law of the wall”” within the
accuracy of the experimental data. Moreover, as just noted, the
general form of these equations is sufficiently flexible to accom-
modate any further modifications of constants which experiment
shows to be necessary. Of course, the constants 0.4 and 0.1108
must not be regarded as sacrosanct.

It should also be noted that the form of the equations is very
suitable for analytical work involving such expressions as Ju*
dy*; for this integral can be written as JSu*(dy*/du*)du*,
which can be evaluated in closed form, since dy*/du* is easily
obtained by differentiating the y *(w*) relation. The way is there-
fore open to the analytical derivation of drag laws, for example,
without the approximations which are usually introduced (e.g.,
“seventh-power”” profiles). These possibilities will be elaborated
elsewhere. (See, for example, Spalding [17].)

Theorefical implications. [quations (9) and (10) are presented
solely as useful interpolation formulas; they are not based on
any postulated mechanism of turbulent transport. Neverthe-
less, they provoke certain questions which it may be profitable
to investigate further. Some of these will now be listed.

(i) Does (10), for example, satisfly a differential equation in
which 2+ and y* appear only as differentials?

The answer is readily seen; it is:

doy+ dsy+
=04 (11
dut dut )
Similarly, equation (5) satisfies the differential equation:
dsy+ dayt
- =0, 12
dut dutt (12)

(ii) Such differential equations are reminiscent of those derived
by Prandtl [12] and von Karman [7] as starting points for the
logarithmic veloeity profile. Can a physical significance be at-
tached to these equations? Could they have been derived by
postulation of a physical model followed by dimensional analysis?

(iii) The von Karman differential equation is derived from the
consideration that the local “mixing length’’ must be related to
local values of (0u/dy), (0%u/dy?), and so forth. Is there any
reason why u should have been chosen as dependent and y as in-
dependent variable in this analysis, other than the irrelevant one
that we happen to perform experiments by fixing the position of
the Pitot tube first and then taking the reading? If not, a rela-
tion of the mixing length to (dy/omn), (92y/du?), and so on, is
equally valid.

Journal of Applied Mechanics
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(iv) When the density varies such that density ratio ¢ is a
known function of w*, is it reasonable to calculate the velocity
profile from a suitably modified version of (11)? This would
run:

doy+

dut
which can be evaluated by numerical quadrature without dif-
ficulty. This thought might lead to more® satisfactory theories of
friction and heat transfer in compressible boundary layers. If
equation (13) is not as suitable a starting point for analysis as
that, for example, of van Driest [20], what is the physical reason
for this?

It is not intended to suggest answers to these questions here.
They are put forward solely to provoke thought and eriticism.

5y, +
= 0dep(ut)- j:# (13)

Conclusions

(a) Formulas have been presented [equations (9) and (10)]
which represent adequately the experimental data for the uni-
versal turbulent velocity profile when the viscosity and density
of the fluid are uniform.

(b) The formulas are flexible enough to permit further adjust-
ment of constants in the light of new experimental data, and
simple enough in form to permit analytical integration in im-
portant cases of interest.

(¢) The formulas represent y* explicitly in terms of u+ instead
of vice versa. It appears possible that other aspects of turbulent
boundary-layer analysis may be profitably re-examined with
velocity as the independent variable.
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On Classical Normal Modes of a
Damped Linear System

MORRIS MORDUCHOW!

It nas BEEN essentially shown by Rayleigh [1]% that if the
damping matrix of & linear vibrating system is a linear combina-
tion of the stiffness and inertia matrices, then the damped system
will have principal modes which are exactly the same as those of
the undamped system. Caughey [2] has recently developed more
general conditions for the existence of classical normal modes with
damping, including the above condition as a special case. In
both [1] and {2], the analysis is based oun the use of normal co-
ordinates. The purpose of this Note is to demonstrate Rayleigh’s
condition (equation (2) below) in a straightforward manner with-
out the use of normal co-ordinates and hence without asssuming
a knowledge of the theory associated with transformations to such
co-ordinates. This procedure, in addition to being instructive,
will also lead to explicit results for the damping factor and
natural frequency in any prineipal mode, and will be seen to
yield some interesting implications. Finally, the method of
analysis given here will be applied to a vibrating beam with
simultaneous internal and external damping.

Let a dynamical system be governed by the equations

pad{i) + lel{n} + (K){} =0 (1

where [m], [c], and (k] are square (inertia, damping, and stiffness,
respectively) matrices of order n. Moreover, suppose

[e] = a[m] + blk] (2)
where @ and b are any constants. To solve equations (1), let
{r} = {H}ert (3

where{H} isindependent of the time ¢, and p is a constant. Then,
if equation (2) holds, equation (1) redueces to

14 bp
([m) (Tﬂ T ap) ED{H} =0 (4)
Fquation (4) is seen to be the same as the equation for no damping
(e = b = 0), but with (1/p?) replaced by (1 4 bp)/(p* + ap).
Hence the characteristic normalized vectors {H } with damping
will be the same as those without the damping. Moreover, if in
the kth mode without damping p? = —aw,,? (where w,, denotes
the undamped natural frequency in the kth mode), then for the
kth mode with damping

L+ bp, 1
Atbpe )
P+ apy @y,?
Thus
Py = —dy £ 1w, (6a)
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where

a + w2 d, \7]/
i (2)]
Wio

Equations (6a, b) give the damping factor d; and the natural fre-
quency w, for any principal mode with damping when condition
(2) holds. In the latter case, in fact, a necessary and sufficient
condition for dynamic stability of the system is that

(6D)

a4 e >0 (7

for each undamped natural frequency w,,. [It is interesting to
note that (7) can be satisfied even in cases when either ¢ or b
(but not both) is negative. Equations (3) through (6b) are valid
whether [¢] is positive definite or not.]

Consider, finally, a beam subjected to an external damping
load f(z)0Y /ot and an internal damping load (g/ew)d/dKEIY")"
(cf., e.g., [3]) per unit length, where '=d/dz. Moreover, suppose
f(2) = ¢p(z), where c is a constant,3 and p(z) is the mass per unit
length of the beam. Let Y(z, f) = y(z)er*. Then the equation
for the free bending vibrations reduces to:

cp + p?

1+-%p
w

(BI(z)y")" + p(x) =0 (8)

Hence the principal mode shapes y(z) will be the same as without.
any damping, and the value of p in any mode will be such that

cp + p*
S —Wo! (9
1+—p
Wy,
where wy, is the undamped natural frequency in the kth mode-
Setting p = —d, + iw,, equation (9) implies
¢ ¢ Wt
d, = = + 2 T, (10a)
where
4ot + (2 — 4w w? 4 2eguwg oy + gt = 0 (10b)
To first powers of g,
o Wy,
W, = W — —— 11
k: e 4 wk¢7 ( )

where wy, = [w? — (¢/2)2)"/ = the natural frequency in the kth
mode for g = Q. In the case of internal damping only (¢ = 0),
equations (10e) and (10d) yield:

e =i g,
d = % [1 +0 - yﬂ)‘/*} = 4*2 1 — (1= )/
(12a)
= wko [1 1 21/1 ‘/2 12b
W, = V2 + 1 =g (12b)
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