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Chapter 8: Channel and Pipe Flow (Chap. 7 Bernard) 

Channel, pipe, and BL flows similar due to wall boundaries, especially near wall, 

however some differences due to differences in their outer flows. 

Pipe curvature effects are not discernable.  

Channel flow experiments are difficult due requirement large span with 2D mean 

flow vs. DNS which can use periodic boundary conditions.  Whereas pipe flow is 

amendable to both.   

BL amendable both experiments and DNS and better for experimental study of 

coherent structures and transition to fully turbulent flow. 

 

Pat 1: Channel flow 

Flow between two parallel plates, with constant 𝑃𝑥: Poiseuille flow. 

 

For fully developed laminar flow: 

𝑈(𝑦) = −
1

2𝜇

𝜕𝑃

𝜕𝑥
𝑦(2ℎ − 𝑦) 

 

This solution holds for 𝑅𝑒 = ℎ𝑈𝑚/𝜈 < 1000, where: 

 

𝑈𝑚 =
1

2ℎ
∫ 𝑈(𝑦)𝑑𝑦
2ℎ

0

= mean bulk velocity 
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For turbulent flow 𝑈 = (𝑈(𝑦), 0,0) and 𝑢 = (𝑢, 𝑣, 𝑤). 

 

Periodic BCs in 𝑥, 𝑧 assuming large enough domain such that, e.g., 𝑓(𝑟) → 0 for 

large 𝑟. 

 

Channel flow simulations characterized using:  

 

𝑅𝜏 =
𝑈𝜏ℎ

𝜈
=

ℎ

(𝜈/𝑈𝜏)
 

 

Based on the friction velocity 

𝑈𝜏 = √
𝜏𝑤
𝜌

 

Where: 

𝜏𝑤 = 𝜇
𝑑𝑈

𝑑𝑦
(0) 

 

Is the wall shear stress.  

 

For large 𝑅𝜏 clear separation inner and outer flow. 

 

𝑅𝑒 3300 125000 
𝑅𝜏 180 5186 

DNS (year) 1987 2015 

 

 

ℎ = length scale channel 

𝜈

𝑈𝜏
= viscous length scale = size flow 

features near wall viscous region 
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Reynolds Stress and Force Balance  

For fully developed mean flow, momentum equations become: 

 

0 = −
𝜕𝑃

𝜕𝑥
+
𝑑

𝑑𝑦
(𝜇
𝑑𝑈

𝑑𝑦
− 𝜌𝑢𝑣) = −

𝜕𝑃

𝜕𝑥
+  
𝑑𝜏

𝑑𝑦
   (1) 

𝜏 =  𝜇
𝑑𝑈

𝑑𝑦
− 𝜌𝑢𝑣 = Total mean shear stress 

0 = −
𝜕𝑃

𝜕𝑦
− 𝜌

𝑑𝑣2

𝑑𝑦
     (2) 

0 = 0 

Note that 𝑈, 𝑢2, 𝑣2, 𝑤2, 𝑢𝑣 = 𝑓(𝑦).  

 

Taking an 𝑥 derivative of Eqs. (1) and (2) shows that  

 
𝜕𝑃

𝜕𝑥
≠ 𝑓(𝑥, 𝑦) = constant  (i.e., 𝑃𝑥𝑥 = 𝑃𝑦𝑥 = 𝑃𝑥𝑦 = 0) 

 

Integration of Eq. (2) across the channel from 0 to y: 

 

𝑃(𝑥, 𝑦) = 𝑃(𝑥, 0) − 𝜌𝑣2(𝑦) 

 

Since 𝑣2(0) = 0, showing that 𝑃(𝑥, 𝑦) is minimum where 𝑣2(𝑦) is maximum, 

which differs from laminar flow where the pressure is constant across the flow. 

 

Also, since 
𝜕𝑃

𝜕𝑥
= constant, 

 

𝑃(𝑥, 𝑦) − 𝑃(𝑥 + 𝐿, 𝑦) ≠ 𝑓(𝑦) 

𝑥 −direction 

𝑦 −direction 

𝑧 −direction 
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Integration of Eq. (1) over the area 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑦 ≤ 2ℎ yields force balance: 

 

∫ ∫ 0
2ℎ

0

𝑑𝑥𝑑𝑦 = ∫ ∫ [−
𝜕𝑃

𝜕𝑥
+
𝑑

𝑑𝑦
(𝜇
𝑑𝑈

𝑑𝑦
− 𝜌𝑢𝑣)]

2ℎ

0

𝑑𝑥𝑑𝑦
𝐿

0

𝐿

0

 

 

∆𝑃2ℎ − 𝜏𝑤2𝐿 = 0     (3𝑎) 

 

Where: 

∆𝑃 = −𝐿
𝜕𝑃

𝜕𝑥
= 𝑃(𝑥, 0) − 𝑃(𝑥 + 𝐿, 0) 

 

Is the pressure drop between 𝑥 locations.  Note that in deriving Eq. (3) the channel 

centerline asymmetry condition was used: 

 

𝑑𝑈

𝑑𝑦
(0) = −

𝑑𝑈

𝑑𝑦
(2ℎ) 

 

Eq. (3) shows that pressure force is balanced by 𝜏𝑤 force.  For turbulent flow, 

channel center high momentum fluid is better able to penetrate wall region vs. 

laminar flow resulting in steeper velocity gradient near the wall. 
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Differentiating the velocity profile of fully developed laminar flow [𝑈(𝑦) =

−
1

2𝜇

𝜕𝑃

𝜕𝑥
𝑦(2ℎ − 𝑦)] and substituting 𝜏𝑤 = 𝜇

𝑑𝑈

𝑑𝑦
(0) gives: 

 

𝑑𝑈

𝑑𝑦
= −

1

2𝜇

𝜕𝑃

𝜕𝑥
(2ℎ − 2𝑦) = −

1

𝜇

𝜕𝑃

𝜕𝑥
(ℎ − 𝑦) 

= −
1

𝜇

𝜕𝑃

𝜕𝑥
ℎ (1 −

𝑦

ℎ
) 

 

𝑑𝑈

𝑑𝑦
(0) = −

1

𝜇

𝜕𝑃

𝜕𝑥
ℎ =

𝜏𝑤
𝜇
→ −

𝜕𝑃

𝜕𝑥
=
𝜏𝑤
ℎ

 

𝜏𝑤 = −ℎ
𝜕𝑃

𝜕𝑥
 

 

 𝜇
𝑑𝑈

𝑑𝑦
= −ℎ

𝜕𝑃

𝜕𝑥
(1 −

𝑦

ℎ
) = 𝜏𝑤 (1 −

𝑦

ℎ
) 

 

i.e., the shear stress 𝜏12= 𝜇
𝑑𝑈

𝑑𝑦
 is linear across the channel: momentum flux (shear 

stress) across channel from the centerline towards walls due to −𝑃𝑥. 

 

 

𝜇𝑈𝑦𝑦 = 𝜏𝑦 = 𝑃𝑥 

𝜏 = 𝜇𝑈𝑦  
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For turbulent flow: 

−𝐿
𝜕𝑃

𝜕𝑥
2ℎ − 2𝜏𝑤𝐿 = 0    (3b) 

−
𝜕𝑃

𝜕𝑥
=
𝜏𝑤
ℎ
 = constant   (4) 

 

Substituting Eq. (4) into Eq. (1) and integrating from 0 to 𝑦, gives: 

 

 

0 = ∫ [
𝜏𝑤
ℎ
+
𝑑

𝑑𝑦
(𝜇
𝑑𝑈

𝑑𝑦
− 𝜌𝑢𝑣)] 𝑑𝑦

𝑦

0

 

0 =
𝜏𝑤
ℎ
𝑦 + [𝜇

𝑑𝑈

𝑑𝑦
− 𝜌𝑢𝑣]

0

𝑦

 

0 =
𝜏𝑤
ℎ
𝑦 − 𝜏𝑤 +  𝜇

𝑑𝑈

𝑑𝑦
− 𝜌𝑢𝑣 

𝜇
𝑑𝑈

𝑑𝑦
− 𝜌𝑢𝑣 = 𝜏𝑤 (1 −

𝑦

ℎ
)     (5) 

 

 

i.e., same as laminar flow, with the addition of −𝜌𝑢𝑣. i.e., the sum of viscous and 

turbulent stress varies linearly across the channel. 
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Eq. (5) can be scaled using the friction velocity, such that: 

𝜈
𝑑𝑈

𝑑𝑦
− 𝑢𝑣 = 𝑈𝜏

2 (1 −
𝑦

ℎ
) 

𝜈
𝑑𝑈

+

𝑑𝑦
−
𝑢𝑣

𝑈𝜏
= 𝑈𝜏 (1 −

𝑦

ℎ
) 

𝜈
𝑑𝑈

+

𝑑𝑦+
𝑈𝜏
𝜈
−
𝑢𝑣

𝑈𝜏
= 𝑈𝜏 (1 −

𝑦

ℎ
) 

𝑑𝑈
+

𝑑𝑦+
− 𝑢𝑣

+
= 1 −

𝑦

ℎ
= 1 −

𝑦+𝜈𝑈𝜏
𝑈𝜏𝜈𝑅𝜏

 

𝑑𝑈
+

𝑑𝑦+
− 𝑢𝑣

+
= 1 −

𝑦+

𝑅𝜏
= 𝜏

+
= total scaled mean shear stress (of course also linear) 

Where: 

𝑈
+
=
𝑈

𝑈𝜏
         𝑢𝑣

+
=
𝑢𝑣

𝑈𝜏
2
         𝑦+ =

𝑈𝜏𝑦

𝜈
 

 

The mean viscous (molecular) momentum transport/flux is confined to a thin layer 

near the wall. The drop in molecular momentum transport/flux is compensated by 

the turbulent momentum transport/flux, which is asymmetric across the channel.  

The peak in −𝑢𝑣
+

 is at 𝑦+ ≈ 53 after which it has a nearly linear variation to zero 

at the channel centerline where the mean shear is zero. 

𝑅𝜏 =
𝑈𝜏ℎ

𝜈
 

1 −
𝑦+

𝑅𝜏
 

𝑑𝑈
+

𝑑𝑦+
 

−𝑢𝑣
+

 

Max at 𝑦+~50 
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Eq. (1) scaling:  

0 =
𝜏𝑤
ℎ
+
𝑑

𝑑𝑦
(𝜇
𝑑𝑈

𝑑𝑦
− 𝜌𝑢𝑣) 

0 =
𝜌𝑈𝜏

2

ℎ
+
𝑑

𝑑𝑦
(𝜇
𝑑𝑈

𝑑𝑦
− 𝜌𝑢𝑣) 

0 =
𝑈𝜏
2

ℎ
+

𝑑

𝑑𝑦+
𝑈𝜏
𝜈
(𝜈

𝑑𝑈

𝑑𝑦+
𝑈𝜏
𝜈
− 𝑢𝑣) 

0 =
𝜈𝑈𝜏
ℎ
+

𝑑

𝑑𝑦+
(𝑈𝜏

𝑑𝑈

𝑑𝑦+
− 𝑢𝑣) 

0 =
𝜈𝑈𝜏
ℎ
+ 𝑈𝜏

𝑑

𝑑𝑦+
(
𝑑𝑈

𝑑𝑦+
−
𝑢𝑣

𝑈𝜏
) 

0 =
𝜈

ℎ𝑈𝜏
+

𝑑

𝑑𝑦+
(
1

𝑈𝜏

𝑑𝑈

𝑑𝑦+
−
𝑢𝑣

𝑈𝜏
2
) 

0 =
1

𝑅𝜏
+

𝑑

𝑑𝑦+
(
𝑑𝑈

+

𝑑𝑦+
− 𝑢𝑣

+
) 

0 = (1) pressure force + (2) viscous force – (3) turbulence force 

 

Pressure force (1) Is constant across channel and balanced by (3) for y+ ≥ 

approximately 70. 

Near wall y+ ≤ approximately 70, complex physics wherein (3) transports 

momentum from outer channel towards wall (gain), which is counterbalanced by 

viscous diffusion (2) again towards the wall (loss). 

𝑈𝜏 = √
𝜏𝑤
𝜌

 

𝑦+ =
𝑈𝜏𝑦

𝜈
 

𝑑

𝑑𝑦
=

𝑑

𝑑𝑦+
𝑈𝜏
𝜈

 

𝑅𝜏 =
𝑈𝜏ℎ

𝜈
 

𝑈
+
=
𝑈

𝑈𝜏
 

Pressure force 

Turbulence force 

Viscous force 

Viscous force << Turbulence force 𝑦+ > 70 
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Mean Flow Similarity: Flow field regions. 

1) Viscous sublayer: 𝑓(𝜇) 

2) Channel center = outer/core region ≠  𝑓(𝜇) 

3) Overlap layer = intermediate region, requires high Re for separation of 1) 

and 2). 

Between 1) and 3) = buffer layer where turbulence is maximum: 5 ≤ 𝑦+ ≤ 30, as 

per later discussion. 

 

Viscous sublayer (see Appendix A.1 for Taylor Series for 𝑢𝑖 and 〈𝑢𝑖𝑢𝑗〉 near y = 0) 

Viscosity is essential for flow near solid boundaries. Evaluating Eq. (1) at 𝑦 = 0 and 

using Eq. (4) gives: 

0 =
𝜏𝑤

ℎ
+ 𝜇

𝑑2𝑈

𝑑𝑦2
(0) − 𝜌

𝑑𝑢𝑣(0)

𝑑𝑦
=
𝜇

ℎ

𝑑𝑈

𝑑𝑦
(0) + 𝜇

𝑑2𝑈

𝑑𝑦2
(0) 

𝑑2𝑈

𝑑𝑦2
(0) = −

1

ℎ

𝑑𝑈

𝑑𝑦
(0)     (6) 

Where the fact that  

𝑑𝑢𝑣(0)

𝑑𝑦
= 0 

Follows from the identity: 

𝜕𝑢𝑣

𝜕𝑦
=
𝜕𝑢

𝜕𝑦
𝑣 + 𝑢

𝜕𝑣

𝜕𝑦
 

 

Differentiating Eq. (1) with respect to 𝑦: 

 

𝑑3𝑈

𝑑𝑦3
(0) = 0     (7) 

 

 

0 = −
𝜕𝑃

𝜕𝑥
+
𝑑

𝑑𝑦
(𝜇
𝑑𝑈

𝑑𝑦
− 𝜌𝑢𝑣)    (1) 
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Since  

𝜕2𝑢𝑣

𝜕𝑦2
(0) = 0 

𝜕2𝑢𝑣

𝜕𝑦2
=
𝜕

𝜕𝑦
(
𝜕𝑢

𝜕𝑦
𝑣 + 𝑢

𝜕𝑣

𝜕𝑦
) = 2

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦
+ 𝑢

𝜕2𝑣

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑦2
𝑣 

= −2
𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕2𝑣

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑦2
𝑣 = 0 𝑎𝑡 𝑦 = 0 

 

Using continuity 𝑣𝑦 = −𝑢𝑥  and 𝑤𝑧 = 0. 

Taylor series expansion for 𝑈(𝑦) near y = 0: 

 

𝑈(𝑦) = ∑
𝑦𝑛

𝑛!

𝑑𝑛𝑈

𝑑𝑦𝑛
(0)

∞

𝑛=0

     (8) 

 

Substituting Eqs. (6) and (7) into (8) gives 

 

𝑈(𝑦) = ℎ
𝑑𝑈

𝑑𝑦
(0)

𝑦

ℎ
+ ℎ2  

𝑑2𝑈

𝑑𝑦2
(0)

𝑦2

2ℎ2
+ 𝑂 (

𝑦

ℎ
)
4

 

𝑈(𝑦) ≈ ℎ
𝑑𝑈

𝑑𝑦
(0)

𝑦

ℎ
− ℎ

𝑑𝑈

𝑑𝑦
(0) 

𝑦2

2ℎ2
 

𝑈(𝑦) ≈ ℎ
𝑑𝑈

𝑑𝑦
(0) (

𝑦

ℎ
−
𝑦2

2ℎ2
)     (9) 

 

Scaling Eq. (9) with 𝑈𝜏, yields 

𝑈
+
(𝑦+) = 𝑦+ −

(𝑦+)2

2𝑅𝜏
+⋯ 

Which shows 𝑈 = 𝑓(𝑦, 𝜏𝑤, 𝜌, 𝜈) ; from dimensional analysis 𝑈
+
=

𝑈

𝑈𝜏
= 𝑓(𝑦+); for 

small 𝑦+ using Taylor Series  𝑈
+
(𝑦+) = 𝑦+ ≠ 𝑓(𝑅𝑒), i.e., compete similarity; and 

lastly from EFD and DNS valid for 𝑦+ < 5. 



11 
 

Intermediate layer 

 

For 𝑦+ ≥ 50 → 
𝑑𝑈

+

𝑑𝑦+
≪ 𝑢𝑣

+
 such that: 

𝑑𝑈
+

𝑑𝑦+
− 𝑢𝑣

+
= 1 −

𝑦+

𝑅𝜏
 

𝑢𝑣
+
≈ −1 

|𝑢𝑣| ≈
𝜏𝑤
𝜌
    (9) 

 

Therefore, 𝑈 ≠ 𝑓(𝜈), i.e., 𝑈 = 𝑓(𝑦, 𝜏𝑤, 𝜌, ) or similarly  
𝑑𝑈

𝑑𝑦
= 𝑓(𝑦, 𝜏𝑤, 𝜌, ) such that: 

 
𝑦

𝑈𝜏

𝑑𝑈

𝑑𝑦
= constant.    (10) 

 

And assuming in the intermediate layer 𝑦
𝑑𝑈

𝑑𝑦
≈ constant.  Introducing a 

dimensionless constant of proportionality 𝑘 = 0.41, known as the Von Karman 

constant, Eq. (10) becomes 

 

𝑑𝑈

𝑑𝑦
=
𝑈𝜏
𝑘𝑦
     (11) 

 

 

 

For large 𝑅𝜏 
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Expressing Eq. (11) in wall units and integrating gives 

1

𝑈𝜏

𝑑𝑈

𝑑𝑦
=
1

𝑘𝑦
 

𝑑𝑈
+

𝑑𝑦+
𝑈𝜏
𝜈
=

𝑈𝜏
𝑘𝑦+𝜈

 

𝑑𝑈
+

𝑑𝑦+
=

1

𝑘𝑦+
 (fundamental property (1) log-law region) 

∫
𝑑𝑈

+

𝑑𝑦+
𝑑𝑦+ = ∫

1

𝑘𝑦+
𝑑𝑦+ 

𝑈
+
(𝑦+) =

1

𝑘
log 𝑦+ + 𝐵     (12) 

Where 𝐵 ≈ 5.2 is a constant, which is determined by experiments. 

 

  

 

More precise determination of whether a log law is present can be obtained by 

examination of  

𝛽 = 𝑦+
𝑑𝑈

+

𝑑𝑦+
=
1

𝑘
 

Which will be constant, and equal to 1/𝑘, in log-law regions if they exist. 

𝑘 = 0.41 

𝐵 = 5.2 
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𝛽 constant only for 𝑅𝜏 = 5186 → intermediate layer developed only for  𝑅𝜏 >

2200. 

 

Buffer layer: Merges smoothly with the viscosity-dominated sub-layer and 

turbulence-dominated log-layer in the region 5< y+ ≤ 30. Unified Inner layer: There 

are several ways to obtain composite of sub-/buffer and log-layers.   

 

Evaluating <uv> near the wall (Appendix A.1) shows that: 

 

< 𝑢𝑣 > ~ 𝑦3     𝑦 → 0 

 

Several expressions which satisfy this requirement have been derived and are 

commonly used in turbulent-flow analysis, e.g., Spalding (Appendix A.2) using the 

following assumptions: 

1. Passes through 𝑦+= 0 at 𝑈
+

=0. 

2. Is tangent at this point to 𝑦+=  𝑈
+

 

3. Is asymptotic at large 𝑦+ to 𝑈
+
(𝑦+) = 2.5 log 𝑦+ + 5.5 

4. Fits the experimental points at intermediate 𝑦+ values 

 

1/0.41=2.44 
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𝑈
+
= 𝑦+ − 𝑒−𝜅𝐵 [𝑒𝜅𝑈

+

− 1 − 𝜅𝑈
+
−
(𝜅𝑈

+
)
2

2
−
(𝜅𝑈

+
)
3

6
]       

Fig. 6-11 shows a comparison of this equation with experimental data obtained 

very close to the wall.  The agreement is excellent.  It should be recognized that 

obtaining data this close to the wall is very difficult. 
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Velocity moments 

Effect of Re negligible in core region of the channel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑈 is linear up to 𝑦+ = 5, so  

Near wall, for larger 𝑅𝜏, more rapid 

changes in correlations and shifted 

closer to the wall. 

𝑣2 damped near wall.  

𝑣2 and 𝑤2 somewhat isotropic in core 

region, but not 𝑢2. 

 

 

 

 

𝑢2𝑚𝑎𝑥 @ 𝑦
+~15.5 

Buffer layer: steep 𝑈𝑦 and max 𝑢𝑖𝑢𝑗 

For 𝑦+ < 2.5 results seem independent 

of 𝑅𝑒. However, for 𝑅𝜏 = 5186: 

𝑑𝑢𝑟𝑚𝑠
+

𝑑𝑦+
(0) = 0.5 

𝑑2𝑢𝑟𝑚𝑠
+

𝑑𝑦+2
(0) = −0.038 

𝑅𝜏 = 1000: 

𝑑𝑢𝑟𝑚𝑠
+

𝑑𝑦+
(0) = 0.47 

𝑑2𝑢𝑟𝑚𝑠
+

𝑑𝑦+2
(0) = −0.032 

i.e., persistent Reynolds number effect. 

𝑢2 

𝑤2 

𝑣2 

 

 

𝑢2 

𝑤2 

𝑣2 
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𝑈
+

 is linear up to 𝑦+ = 5, so consider a Taylor series expansion of 𝑢𝑟𝑚𝑠
+ = √𝑢2 

near 𝑦 = 0: 

𝑢𝑟𝑚𝑠
+ = 𝑢𝑟𝑚𝑠

+ (0)⏟    
no-slip

+
𝑑𝑢𝑟𝑚𝑠

+

𝑑𝑦+
(0)𝑦+ +

1

2

𝑑2𝑢𝑟𝑚𝑠
+

𝑑𝑦+2
(0)𝑦+

2
+ 𝑂((𝑦+)3)     (13) 

The distance from the boundary over which 𝑢𝑟𝑚𝑠
+  can be modeled as linear can be 

analyzed considering the ratio 𝑢𝑟𝑚𝑠
+ /𝑈

+
. 

Recall scaling of 𝑈
+
(𝑦+) resulted in the equation: 

 

𝑈
+
(𝑦+) =

𝑈(𝑦)

𝑈𝜏
= 𝑦+ −

(𝑦+)2

2𝑅𝜏
+ 𝑂((𝑦+)4) 

𝑈
+
(𝑦+) ≈ 𝑦+ (1 −

𝑦+

2𝑅𝜏
)     (14) 

 

Dividing Eq. (13) by 𝑈
+

and combining with Eq. (14) gives: 

𝑢𝑟𝑚𝑠
+

𝑈
+ =

𝑑𝑢𝑟𝑚𝑠
+

𝑑𝑦+
(0)

𝑦+

𝑈
+ +

1

2

𝑑2𝑢𝑟𝑚𝑠
+

𝑑𝑦+2
(0)

𝑦+
2

𝑈
+ + 𝑂(

(𝑦+)3

𝑈
+ ) 

𝑢𝑟𝑚𝑠
+

𝑈
+ =

𝑑𝑢𝑟𝑚𝑠
+

𝑑𝑦+
(0)

𝑦+

𝑦+ (1 −
𝑦+

2𝑅𝜏
)
+
1

2

𝑑2𝑢𝑟𝑚𝑠
+

𝑑𝑦+2
(0)

𝑦+
2

𝑦+ (1 −
𝑦+

2𝑅𝜏
)
+ 𝑂((𝑦+)2) 

Define 𝑦+
′
= 𝑦+/2𝑅𝜏  

𝑢𝑟𝑚𝑠
+

𝑈
+ =

𝑑𝑢𝑟𝑚𝑠
+

𝑑𝑦+
(0)

𝑦+

𝑦+(1 − 𝑦+′)
+
1

2

𝑑2𝑢𝑟𝑚𝑠
+

𝑑𝑦+2
(0)

𝑦+
2

𝑦+(1 − 𝑦+′)
+ 𝑂((𝑦+)2) 

and use binomial theorem such that: 

1

(1 − 𝑦+′)
≈ 1 + 𝑦+

′
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Therefore,  

𝑢𝑟𝑚𝑠
+

𝑈
+ =

𝑑𝑢𝑟𝑚𝑠
+

𝑑𝑦+
(0) (1 +

𝑦+

2𝑅𝜏
) +

1

2

𝑑2𝑢𝑟𝑚𝑠
+

𝑑𝑦+2
(0)𝑦+ (1 +

𝑦+

2𝑅𝜏
) + 𝑂((𝑦+)2) 

𝑢𝑟𝑚𝑠
+

𝑈
+ =

𝑑𝑢𝑟𝑚𝑠
+

𝑑𝑦+
(0) + 𝑦+ (

1

2𝑅𝜏

𝑑𝑢𝑟𝑚𝑠
+

𝑑𝑦+
(0) +

1

2

𝑑2𝑢𝑟𝑚𝑠
+

𝑑𝑦+2
(0)) + 𝑂((𝑦+)2) 

It follows that near the wall (see derivative relations pg. 15): 

𝑢𝑟𝑚𝑠
+

𝑈
+ = 0.5 + 𝑦+ (

0.25

𝑅𝜏
− 0.019) +⋯    (*) 

i.e., linearity maintained until 𝑦+ ≈ 2. 

Similarly, spanwise rms fluctuations are given in the form: 
 

𝑤𝑟𝑚𝑠
+ = 𝑤𝑟𝑚𝑠

+ (0)⏟    
no-slip

+
𝑑𝑤𝑟𝑚𝑠

+

𝑑𝑦+
(0)𝑦+ +

1

2

𝑑2𝑤𝑟𝑚𝑠
+

𝑑𝑦+2
(0)𝑦+

2
+ 𝑂((𝑦+)3) 

 

And computations show that at the wall the approximate expression is: 
 

𝑤𝑟𝑚𝑠
+ = 0.25𝑦+ +⋯    (**) 

 

Using continuity, it can be shown that: 
 

𝑑𝑣𝑟𝑚𝑠
+

𝑑𝑦+
= 0 

 

Such that, near the wall 
 

𝑣𝑟𝑚𝑠
+ =

1

2

𝑑2𝑣𝑟𝑚𝑠
+

𝑑𝑦+2
(0)𝑦+

2
+ 𝑂((𝑦+)3) 

 

Computations show that near the wall the approximate expression is: 
 

𝑣𝑟𝑚𝑠
+ = 0.006𝑦+

2
+ 𝑂((𝑦+)3)    (***) 

 

(*), (**), and (***) useful near-wall anisotropic turbulence modeling. 
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TKE budget 

Simplification of TKE equation obtained in Chapter 3 for channel flow yields: 

 

0 = −𝑢𝑣
𝑑𝑈

𝑑𝑦⏟  
1

− 𝜀⏟
2

−
1

𝜌
𝑝𝑣𝑦̅̅ ̅̅ ̅

⏟  
3

+ 𝜈
𝑑2𝑘

𝑑𝑦2⏟  
4

−
1

2

𝑑𝑣𝑢𝑗
2

𝑑𝑦⏟  
5

 

 

 

1) Production 

2) Dissipation 

3) Pressure work/transport 

4) Viscous diffusion/transport 

5) Turbulent transport = 
1

2
〈𝑣𝑢 ∙ 𝑢〉𝑦 

 

For 𝑦+ > 30 up to 𝑦/2ℎ = 1, 𝑃 ≈  𝜀.    (2) 

𝑃𝑚𝑎𝑥 @ 𝑦+ = 12 (near 𝑘 peak), 𝑃/ 𝜀~1.8  

𝜀𝑚𝑎𝑥 @ 𝑦+ = 0, i.e., at the wall and has local plateau near 𝑃𝑚𝑎𝑥. 

Turbulent transport (5) is important near the wall: negative for 8 < 𝑦+ < 30 and 

positive for 𝑦+ < 8, which suggests much of the peak of the RS near 𝑦+ = 10 is 

transported towards the wall. 

At wall: 

𝜀 = 𝜈
𝑑2𝑘

𝑑𝑦2
 

i.e., dissipation equals molecular diffusion. 

Most complex physics is in buffer layer 5 < 𝑦+ < 30.  

 

 

1) 

3) 

5) 

2) 
4) 
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Location of 𝑃𝑚𝑎𝑥 can be estimated by rewriting the production term as: 

−𝑢𝑣
+ 𝑑𝑈

+

𝑑𝑦+
= (1 −

𝑦+

𝑅𝜏
−
𝑑𝑈

+

𝑑𝑦+
)
𝑑𝑈

+

𝑑𝑦+
    (15) 

𝑃𝑚𝑎𝑥 is located where 𝑑/𝑑𝑦+ of Eq. (15) equals zero: 

𝑑

𝑑𝑦+
[(1 −

𝑦+

𝑅𝜏
−
𝑑𝑈

+

𝑑𝑦+
)
𝑑𝑈

+

𝑑𝑦+
] = 0 

(−
1

𝑅𝜏
−
𝑑2𝑈

+

𝑑𝑦+2
)
𝑑𝑈

+

𝑑𝑦+
+ (1 −

𝑦+

𝑅𝜏
−
𝑑𝑈

+

𝑑𝑦+
)
𝑑2𝑈

+

𝑑𝑦+2
= 0 

−
1

𝑅𝜏

𝑑𝑈
+

𝑑𝑦+
+ (1 −

𝑦+

𝑅𝜏
− 2

𝑑𝑈
+

𝑑𝑦+
)
𝑑2𝑈

+

𝑑𝑦+2
= 0 

(1 − 2
𝑑𝑈

+

𝑑𝑦+
)
𝑑2𝑈

+

𝑑𝑦+2
= 0 

Where terms 𝑂(𝑅𝜏
−1) are dropped. 

Since 
𝑑2𝑈

+

𝑑𝑦+
2 ≠ 0 in the region of 𝑃𝑚𝑎𝑥, then 

𝑑𝑈
+

𝑑𝑦+
=
1

2
= −𝑢𝑣

+
    (16) 

 

Point where Eq. (16) is satisfied is visible in Fig. 7.3 at 𝑦+ ≈ 12. 

 

 

 

 

 

 

𝑑𝑈
+

𝑑𝑦+
− 𝑢𝑣

+
= 1 −

𝑦+

𝑅𝜏
 

If 𝑦+ ≪ 𝑅𝜏 → 

𝑑𝑈
+

𝑑𝑦+
− 𝑢𝑣

+
= 1 



21 
 

𝜺 budget 

𝐷𝜀

𝐷𝑡
= 𝑃𝜀

1 + 𝑃𝜀
2 + 𝑃𝜀

3 + 𝑃𝜀
4 +𝛱𝜀

+ 𝑇𝜀 + 𝐷𝜀 − 𝛶𝜀  

𝑃𝜀 = production 

𝛶𝜀 = dissipation of dissipation 

𝛱𝜀 + 𝑇𝜀 + 𝐷𝜀 = redistribution 

 

Like homogeneous shear flow 

for large 𝑦+(away from wall) 

𝑃𝜀
4~ − 𝛶𝜀 

 

 

 

For 𝑦+ ≤ 25, 𝑃𝜀
1 and 𝑃𝜀

2 larger compared to 𝑃𝜀
3 and 𝛱𝜀 + 𝑇𝜀. 

Near wall −𝛶𝜀 has minimum and at the wall −𝛶𝜀 = 𝐷𝜀. 

 

Evident 𝜀 behavior near the wall complex and challenge for modeling. 

 

Reynolds Stress Budget (derived from RS transport equation) 

𝑢2:  0 = −2𝑢𝑣
𝑑𝑈

𝑑𝑦
− 𝜀11 −

𝑑𝑢2𝑣

𝑑𝑦
+ 𝛱11 + 𝜈

𝑑2𝑢2

𝑑𝑦2
 

𝑣2:  0 = −𝜀22 −
𝑑𝑣3

𝑑𝑦
+ 𝛱22 + 𝜈

𝑑2𝑣2

𝑑𝑦2
−
2

𝜌

𝑑𝑝𝑣

𝑑𝑦
 

𝑤2:  0 = −𝜀33 −
𝑑𝑤2𝑣

𝑑𝑦
+ 𝛱33 + 𝜈

𝑑2𝑤2

𝑑𝑦2
 

Where: 

𝜀𝑖𝑗 = 2𝜈
𝜕𝑢𝑖
𝜕𝑥𝑘

𝜕𝑢𝑗
𝜕𝑥𝑘

    𝛱𝑖𝑗 =
1

𝜌
𝑝 (
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖
) =

1

𝜌
𝑝2𝛴𝑖𝑗  

𝛱𝑖𝑗= pressure strain correlation 

𝑃𝜀
4 

𝛶𝜀  

𝛴𝑖𝑗 = turbulent 

rate of strain = 
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 

𝑃𝜀
1 

𝑃𝜀
2 
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𝑢2 connected mean flow via 

production term. 

 

𝑣2 and 𝑤2 production via 𝛱22 and 

𝛱33. 

∑𝛱𝑖𝑖 = 0, thus 𝛱11 mostly < 0. 

Consequently, 𝑃 in 𝑢2 is transferred to 

𝑣2 and 𝑤2 via 𝛱𝑖𝑖. 

 

Near wall 𝛱33~𝛱11 + 𝛱22 

 

Near channel center: 

𝑢2: 𝑃~ 𝜀11 +𝛱11 

𝑣2 and 𝑤2: 𝜀~𝛱22 and 𝛱33, 

respectively 

 

Complex physics 𝑦+ < 40 

𝑢2: 𝜀~ν𝑢2𝑦𝑦 

𝑤2: 𝜀~ν𝑤2𝑦𝑦 

𝑣2: 𝑝𝑣
𝑦
~𝛱22 → 𝛱33 

𝑣2 and 𝑤2: 𝑝𝑣
𝑦
|
𝑣2 near wall

→ 𝛱33 

However, net effect 𝑝𝑣
𝑦

 and 𝛱22 small 

and mostly cancel. 

𝑤2: losses due to 𝜀 near wall balanced 

by ν𝑤2𝑦𝑦 

𝑃 

𝜀 

𝜀 

Pressure strain 

Pressure work 

Turbulent transport 

𝜀 

Pressure strain 
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Viscous and turbulent transport result in spatial redistribution.  

Consider now Reynolds 𝑢𝑣 balance: 

0 = −𝑣2
𝑑𝑈

𝑑𝑦⏟    
1

− 𝜀12⏟
2

+𝛱12⏟
3

−
𝑑𝑢𝑣2

𝑑𝑦⏟  
4

−
1

𝜌

𝑑𝑝𝑢

𝑑𝑦⏟  
5

+ 𝜈
𝑑2𝑢𝑣

𝑑𝑦2⏟    
6

 

1) Production 

2) Dissipation: small 

3) Pressure strain 

4)  Turbulent transport 

5) Pressure work 

6) Viscous diffusion: small 

 

4) and 5) cancel. 

 

𝑢𝑣 < 0 lower channel produced by 1) 

Mostly balance of 𝑃 and 𝛱12 → important to model it correctly.  

2) and 6) small → 𝑢𝑣 ≠ 𝑓(𝜈) 

3) and 5) nearly cancel near wall → can be combined for modeling. 

𝛱33 

𝛱22 

𝛱11 
𝛱11 + 𝛱22 +𝛱33 = 0 

Pressure strain 

𝑃 
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Enstrophy budget 

ζ = ω1
2 +ω2

2 +ω3
2 

ω1
2~ω2

2~ω3
2 away from wall. 

 

ω1
2(0) = 𝑤𝑦

2(0) 

ω2
2(0) = 0 

ω3
2(0) = 𝑢𝑦

2(0)  ≫ 𝑤𝑦
2(0) 

 

Also associated 𝛺3 = −𝑈𝑦 near wall Fig. 

7.3. 

Peak in ω1
2(0) due to spanwise motions 

near wall. 

 

Anisotropy 10 ≤ 𝑦+ ≤ 30: complex 

physics buffer layer 

 

𝜀

𝜈
=  ζ +

d2𝑣2

𝑑𝑦2
  

 

 

 

 

 

 

ω3
2 

ω1
2 

ω2
2 

Local max 
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Mixing Length and Law of the Wall 

 

Taylor Series near y = 0 shows < 𝑢𝑣 >  ~ 𝑦3, whereas mixing length theory for 

sublayer shows 
−<𝑢𝑣>

𝑢𝜏
 ~𝑙𝑚

+ 2 ~ 𝑦+
2
 (Pope Ex. 7.19).  Fundamental properties log 

law region (1)-(3) show in log-law region show 𝑙𝑚
+ = 𝜅𝑦+(Pope pg. 289). Thus, the 

mixing length needs damping to properly merge between the sub and log layers via 

the buffer layer.  One approach is Spalding, as already discussed another is Van 

Dreist, which leads to 
−<𝑢𝑣>

𝑢𝜏
 ~𝑦+

4
 (Pope Ex. 7.19). 
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Using the mixing length hypothesis for a boundary layer with zero pressure gradient 

such that 𝜕𝑈̅/𝜕𝑦 > 0: 

 

𝜏(𝑦)

𝜌
= 𝜈

𝜕𝑈

𝜕𝑦
+ 𝜈𝑡

𝜕𝑈

𝜕𝑦
= 𝜈

𝜕𝑈

𝜕𝑦
+ 𝑙𝑚

2 (
𝜕𝑈

𝜕𝑦
)
2

 (1) 

 

where −𝑢𝑣̅̅̅̅ = 𝜈𝑡
𝜕𝑈

𝜕𝑦
 and 𝜈𝑡 = 𝑙𝑚

2 𝜕𝑈

𝜕𝑦
 

 

(1) Derive the law of the wall in the sub layer assuming 𝜈𝑡
𝜕𝑈

𝜕𝑦
= 0. 

 

(2) Derive the overlap layer log law assuming 𝜈
𝜕𝑈

𝜕𝑦
= 0 and 𝑙𝑚

+ =  𝜅𝑦+.  𝑙𝑚
+ =

𝑙𝑚

𝛿𝑣
 = 𝑙𝑚𝑢𝜏/ 𝜈 (𝛿𝑣 = 𝜈/𝑢𝜏 = viscous length scale and 𝑢𝜏 = √𝜏𝑤/𝜌 in the friction 

velocity. 
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(3) Derive an approximate sub + buffer layer formula assuming  

𝑙𝑚
+ = 𝛼𝑜

2𝑦+ + (1 + 𝛼𝑜
2𝑦+2)1/2 when 𝛿𝑣 = 𝜈/𝑢𝜏 = viscous length scale and 

 𝑢𝜏 = √𝜏𝑤/𝜌 in the friction velocity and 
𝜏

𝜏𝑤
= 1; compare with 𝑢+ = 5𝑙𝑛𝑦+ − 3.05. 

 

(4) Compare the results with van Driest 𝑙𝑚
+ =  𝜅𝑦+ [1 − 𝑒𝑥𝑝 (

−𝑦+

𝐴+
)] 

𝐴+ = 26 𝑎nd Spalding 𝑦+ = 𝑢+ + 𝑒−𝜅𝐵[𝑒𝑧 − 1 − 𝑧 − 𝑧2/2 − 𝑧3/6].  𝑧 = 𝜅𝑢+and 

B = 5.3 formulas valid in the sub, buffer, and log layers 

 

Approach: nondimensionalize 
𝜏(𝑦)

𝜌
 equation (1) using 𝑦+ = 𝑦𝑢𝜏/ 𝜈 and 𝑢+= 𝑈̅/𝑢𝜏 

and solve resulting quadratic equation for 
𝜕𝑢+

𝜕𝑦+
 , which can then be integrated 

according to (1) – (4) specifications for 𝜈𝑡, 𝜈 and 𝑙𝑚
+ ; and compared with the Spalding 

formula.  Note that 𝛼0 = 0.3, 𝜅 = 0.41, 𝐵 = 5.3 

 

Results 

𝜏

𝜏𝑤
=
𝜕𝑢+

𝜕𝑦+
+ (𝑙𝑚

+
𝜕𝑢+

𝜕𝑦+
)

2

 

 
𝜕𝑢+

𝜕𝑦+
=

2𝜏/𝜏𝑤

1+[1+4(𝜏/𝜏𝑤)𝑙𝑚
+2]

1/2  (alternate form solution quadratic equation) 

 

In the inner layer the ratio 
𝜏

𝜏𝑤
≈ 1 so that the law of the wall is obtained in terms of 

the mixing length: 

 

𝑢+ = 𝑓𝑤(𝑦
+) = ∫

2𝑑𝑦+

1 + [1 + 4𝑙𝑚
+2]1/2

𝑑𝑦
𝑦+

0

 

(1) 

 

1 =
𝜕𝑢+

𝜕𝑦+
   →  𝑢+ = 𝑦+. 

 

(2) 

 

1 = (𝜅𝑦+)2 (
𝜕𝑢+

𝜕𝑦+
)
2

    →   
𝜕𝑢+

𝜕𝑦+
=

1

𝜅𝑦+
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𝑢+ =
1

𝜅
ln(𝑦+) + 𝐵 

(3) 

 

1+4 𝑙+2 = 1 + 4[𝛼0
2𝑦+ + (1 + 𝛼0

4𝑦+2)1/2]
2
= 1 + 4𝛼0

4𝑦+2(1 + 𝛼0
4𝑦+2) 

                                                                        = 1 + 4𝛼0
4𝑦+2 + 4𝛼0

8𝑦+4 

 

𝑢+ = 2∫
𝑑𝑦+

2 + 2𝛼0
4𝑦+2

= ∫
𝑑𝑦+

1 + 𝛼0
4𝑦+2

𝑦+

0

𝑦+

0

 

 

𝐴 = 𝛼0
2𝑦+       

𝑑𝐴

𝑑𝑦+
= 𝛼0

2        𝑑𝑦+ =
1

𝛼0
2 𝑑𝐴 

→   ∫
𝑑𝑦+

1 + 𝛼0
4𝑦+2

=
𝑦+

0

1

𝛼0
2∫

𝑑𝐴

1 + 𝐴2

𝛼0
2𝑦+

0

 

 

→    
1

𝛼0
2∫

𝑑𝐴

1 + 𝐴2

𝛼0
2𝑦+

0

=
1

𝛼0
2
[𝑡𝑎𝑛−1(𝐴)]0

𝛼0
2𝑦+

 

 

∴ 𝑢+ =
1

𝛼0
2 𝑡𝑎𝑛

−1(𝛼0
2𝑦+) 

(4) 

 

Van Driest:       𝑢+ = ∫
2𝑑𝑦+

1+[1+4𝜅2𝑦+2{1−𝑒(−𝑦
+/𝐴+)}

2
]
1/2

𝑦+

0
 

 

Spalding:          𝑦+ = 𝑢+ + 𝑒−𝜅𝐵[𝑒𝑍 − 1 − 𝑧 − 𝑧2/2 − 𝑧3/6], 𝑧 = 𝜅𝑢+ 

 

The latter is purely algebraic, but implicit in 𝑢+, while the former may be integrated 

numerically, e.g., Runge-Kutta.  Both provide good fits to the data; however, the 

Van Driest is more flexible as it may be made to fit other conditions such as pressure 

gradient, blowing/suction, roughness, etc. by changing the value of the damping 

coefficient  
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Expanded y+ range up to 104 and added other data set including experiment result 

(Klebanoff. 1954) 
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Appendix A.2 
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