Chapter 7: Properties of Turbulent Free Shear Flow (Chap. 11 Bernard)
Part 1: Introduction

In many instances flows evolve without solid boundaries: wakes, jets, and mixing

layers.
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Figure 11.1 Basic characteristics of the mean flow
in (a) wakes, (b) jets, and (c) mixing layers.
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Wake flow: mean velocity deficit due to body gradually recovers.

Jet flow: high speed fluid at speed greater than surrounding expands into larger
domain.

Mixing layer: mean velocity monotonically falls from high to low free stream over

lateral distance that increases with downstream distance.

Thin Flow Approximation
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U = velocity scale

[ = length scale in crossflow direction (y) and to satisfy thin flow approximation:
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For wake flow:
Uu=1U, ﬁmm

Where U, represents the velocity of the external flow.



For jet flow:
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For both wakes/jets, length scale [ = distance from the location of U,;;;,/Upnax t0 @
point within a fixed percentage of free stream velocity.

For mixing layers:

U=U,—U,

And the length scale [ is taken as 1/2 the distance between where mean velocity
within fixed percentage outer flow.

In all cases, [(x) grows with x, but [(x)/x « 1. For wakes [(x)/x = 0 as x — oo,
whereas for jets and mixing layers lim [(x)/x = 0.06, which is small enough that
X—00

the thin flow approximation is valid. When the rate of spreading of the shear layer
is small, the flow is approximately parallel.

Recall equation for steady mean momentum in crossflow direction (Chapter 3):
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Integrating across the thin shear layer gives:

— 9 _ 0 in free shear flows,
P — P o

—4+p2=-_ (1) but # 0 in BL flows, except
P P flat plate BL.

Where P, = pressure outer flow. Differentiating Eq. (1) with respect to x gives
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Recall equation for steady mean momentum in streamwise direction (Chapter 3):
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And substituting Eq. (2) into (3) yields:
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Dominant terms are like BL theory:
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Eqg. (4) represents the basis for subsequent analyses of thin free shear flows.



For wakes and jets:

U-U ou =0 (5
(U - e)(g+@)— (5)

And since U, = constant,

ﬁaUe+VaUe—o 6
0x dy (6)

Adding Eq. (4) and (5) and subtracting Eqg. (6) gives
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U—U,anduv — 0 for |y| = . Thus, Eq, (7) can be integrated across the flow:
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Thus, total mean flux of momentum per unit length in spanwise direction is:
M = pf ﬁ(ﬁ — Ue)dy = constant # f(x)

For wake M = momentum deficit due to body drag

For jet M = initial value exiting nozzle pUjZA or h per unit width, neglecting losses
developing region.
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