Chapter 7: Properties of Turbulent Free Shear Flow (Chap. 11 Bernard)

Part 3: Turbulent Jet

Jet in crossflow

Figure 1.4 Transition to turbulence in a jet. Courtesy of J.-L. Balint and L. Ong.

Round jet w = 0, i.e., without swirl.
Herein, plane jets are considered.

Near nozzle exit mixing layers due to AU as potential core shrinks, and flow
becomes fully developed, transitions to turbulence, and becomes self-similar at
x/d = 50 such that:

U— 1
Z=fm O

Where 11 = y/1(x) and AU = U 4, (%), and both n and AU are f(x). U reaches
self-similarity before u;u;.

Introducing a stream function Y (x, y) defined as

v = [AUF(n)

Where:

FFm=fm @)
and the coefficient [AU is chosen for dimensional consistency, i.e., $ has
dimensions m?/s.



By the definition of E:

From Eq. (3):

U = AUF' (5)

From Eq. (4):
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Recall BL streamwise mean momentum equation:

And

—uv = (AU)?g(n)

Which differs from wake scaling where AU = U, — U,,in(x), whereas for jet flow

AU = ﬁmax ().




Substitution of Egs. (5), (6), and uv into mean momentum equation gives:
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Multiply by [/AU?:
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Where:
dl o
dx = ( )
[ d(AU)

Self-similarity can only be achieved if @ and 8 are not f(x), i.e., either constant or

f(n). One way to achieve similarity is to assume they are constant



Integration of Egs. (8) and (9) gives:

[(x) =alx—x,) (10)
AU(x) =C(x —xo)™ (11)

m = [f/a is a constant which needs to be determined, x, represents the virtual
origin and C is a constant.

Integration of

OO0+ 5o PO - 0)] + 57 =0

showed that:

0

d (- —
- _OOU(U —U,)dy =0 (12)

Changing the integration variable to 7, using Eq. (5) and the fact that U, = 0 for a
jet with no co-flow:

dfooﬁzld _4 lAUzjooF’zd —0
dx )_,, T=dx o m)=

And substituting Eqgs. (10) and (11) for [ and AU?:

d (00]
—<Ca(x — xo)“sz F’zdn> =0

dx o

Which shows that 1 + 2m = 0 (i.e., m = —1/2) for [AU? # f(x).



Substituting this value for m into Eq. (11) gives:

AU = C(x — xy) /2

i.e., [ grows linearly and AU decreases as x ~1/2,

The Reynolds number:

. IAU  a(x —xy) X C(x —x0) 2  aCx —x,
e = = =
% % %

increases with distance by ,/x — x, such that the thin layer assumptions are
increasingly well justified.

To obtain the similarity form of the mean velocity field, a model is needed for g’ to
be related to F. Recall the gradient law and combine with uv = —(AU)?g(n):

au AU

V=g = —ve—F" = =(AU)*g()

- 12 R -
gm) =R;'F"  (13) v

Differentiating Eq. (13) gives:
g'm=R7F" (14

Recall

u



Substituting this relation and Eq. (14) into (7) yields:

a I2 144 r - rr
—E(F —FF")— aFF" = R{'F
a 12 12 -1
E(F +FF")+R7'F" =0 (15)

For Eq. (15) to have a similarity solution, it must be that R; is constant, which

implies that v; « \/x — x,.

Boundary conditions for Eq. (15) are given by:

F(0) = 0 - y = 0 symmetry line is a streamling, i.e.,
W(0) = IAUF(n = 0) = aC./x — x, F(0) = constant =0
U0 _Una(x0) _,

F'(0) =

AU(x,0) T, ..(x,0)

Lim F'(n) = Osince U(x,n) = 0asn — o
7”—)00

Lim F""(n) = 0 since ﬁy(x,r)) —0asn - o
7”—)00

Integrating Eq. (15) twice and applying BCs gives

4
F? + CZT(F, — 1) =0 Appendix A.1
t

Which represents an example of a Riccati equation.

The solution is given by:

F(n) =

2 v aR;
\/a_Rttanh< > n) (16)
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https://en.wikipedia.org/wiki/Riccati_equation

Taking a derivative of Eq. (16) and using Eq. (5) gives

R

F'(n) = % = [1 — tanh? (Tn>]

U=AU [1 — tanh? (—“C;Rtn>] (17)

For simplicity, assume a = 4/R;, Eq. (17) becomes:

U = AU(1 —tanh?n) (18)

Where:

YR, y
l

77=4(x—xo)=

Eq. (18), in combination with AU = C(x — x,)~'/? shows that:

U= C(x—xy)"Y?2(1 —tanh?n) = f(R,, C)

And C can be expressed in terms of the momentum flux, M:

3MR,
16p

szj Uzldn—>C=

Appendix A.2




From EFD with R; = lﬁ—U = 25.7 and associated M and C values plots for ﬁ, AU and

t

[ can be generated. It can be observed from Eq. (18) thatwhenn = 1,i.e.,,y =1 =
a(x — x,), U= AU(1 —tanh?1) = 0.420AU.

251 .
6 R U;d
eg =—
20 4 d v
sl | U; :Jet' exit
velocity
10F T d = jet width at
nozzle exit
5k 4
O 1 L 1 1

1 1 1 L
0 20 40 60 80 100 120 140 160 180
Xo = virtual origin

Figure 11.4 Centerline mean velocity and jet width development of a turbulent plane jet at
Re, =34 % 10*. Data from [13]. 0, 1/(AU)%; v, £ /d.

x_xO

AU = C(x = x0) M > AU = —

l/d = a(x —x,)/d

AU? linear for x/d > 45 and [ linear for x/d > 65. Linear growth confirms
similarity analysis.
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Figure 11.5 Mean streamwise velocity profiles of turbulent plane jetat Re, = 3.4 x 10° for Q.
x/d = 47; 0,65; 0, 85; v, 103; A\, 125; %, 155; and, —, Eq. (11.68). Data from [13].

Good agreement except near jet edge due to intermittency of turbulence and v; #
constant.
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Figure 11.6 Growth of ﬁ along the centerline of a turbulent plane jet at Re, = 3.4 x 10*. 0, data
from [13]; —, fit to the data.

Upms = \/(u2)|y:0 = linear for x/d > 45
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Figure 11.7 Velocity variances for turbulent plane jet at Re, = 3.4 x 10* and x/d = 101. Data from [13]
with fitted curves: x and —, u? /(AU)*; 0 and - - -, v /(AU)’; @ and ——, w2 /(AU)’.

Peak of u2 > 2v2 and = 2w?2.
Forn = 0.3, uiz/AU2 ~ 0, i.e., RS become negligible compared to Umax. This value
of 17 can be expressed as a function of [:

n= AR y = 0.3Ax = 0.3 x101d~2.51
Ax
Sincel/d~12.5at x/d = 101 in Fig. 11.4.

In this region, jet flow is irrotational and outside turbulent core of the jet.

For n <0.15(~1.3l from y =0) flow fully turbulent (only occasionally
irrotational).
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Figure 11.8 Reynolds shear stress distribution for turbulent plane jet at Re, = 3.4 x 10* and
x/d = 101; o, data from [13]; —, fit to data; ——, Eq. (11.70).

uv peaks at n~0.07 (0.61 fromy = 0) and is 0 at y = 0 due to symmetry of mean
flow.

= ()

3 ( T ) [
Obtained from Eq. (14).
(14)

=)

U
F'(n) = Nk [1 — tanh? (Tn

g'() = RYF™
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Appendix A
A.l

%(F’Z +FF")+R;IF" =0 (14)

F(0)=0 (24)
F'(0)=1 (34)
lim F'(n) =0 (44)

lim F"(n) =0 (54)
’)”—)OO

I2 124 d !
F'“+FF" =—(FF")
dan
Such that Eq. (1A) becomes:

«d (FF") = —R;'F""
2 dn -t

Integrating with respect to 7:

a
SFF'==R'F"+C  (64)

Application of BCs Eqg. (4A) and (5A) into (6A) gives:

0=—R;1F" () +C
€ = R7IF" (00) = 0

The term on the LHS can be rewritten as:

11



And Eg. (6A) becomes:

ad /1
(g2 = _p-1pn
2d (2F> Re™F

n

Integrating with respect to 7:

Applying BCs in Egs. (2A) and (3A) to Eq. (7A) gives:

F(0)? = —iF’(O) +£
aR; a

F2+i(F’—1) =0
aR;
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We start from the simplified form of the velocity profile:

U = AU (1 — tanh” 5) (18)
where the similarity variable is defined as:
y i Yy
= - ="
Ao —ag) 1

is a local length seale.

p— IJ I: - .'J.'|_|]
and ! 5

The velocity scale ALT 15 assumed to decay with downstream distance:
AN = Oz — )12
Substituting into Eq. (18):

U= Clx —z4)~ 17 {l — tanh® u:]

Chis shows that the velocity profile depends on both » and », and that ¢ acts
s an amplitude scaling factor,

To relate O to plysical quantities, we use the momentum fux A, which is

onserved:

o,
M =pf U7 dy

— e

Using the change of variable y = Iy = dy = Ldy:

e
M = ,.’Jf U dy
—o
Substitute the expression for U:

U =C(zr—a) Y31 —tanh®*n) = U= C% e —xg) Y1 — tanh® )?

Now the integral becomes:

L=
M = pf C¥a — o) "Y1 — tanh® )% - Ldy
—

_ 4ax — zq)
R,

= (- i jﬂx sechn diy
RoJ_o

= 4]
= o —ag) 7! f (1 — tanh® 5)%dy
—

Using the standard integral:
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fu 4
f sechy dny = 3

wie get:
Li
M=pC? — = =pC? —.
S R Ay
Solving for
o _ BMR, [sMR,

6o\ e
Final Result

U=Clz—z) 1 (1- tanh? )

MR,

C=,/
V

lGgp
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