Chapter 7: Properties of Turbulent Free Shear Flow (Chap. 11 Bernard)
Part 2: Turbulent Wake: Circular Cylinder
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Self-Preserving Far Wake

Figure 11.2 Circular cylinder wake at R, = 2200; smoke wire at (a) x/d = 1and (b
Reprinted with permission of Cambridge University Press.

Near wake: organized Karman vortices.

Far wake: disorganized

frequencies.

)x/d =160, [3].

large-scale vortices/broad-band and no dominant

For far downstream wake flow, conditions for similarity solution of mean velocity
achieved — diffrerences between mean velocity profiles at different x locations

attributable to change in scale, not in functional form.

AUF@) (D)

—uv = (AU)?’g(m) (2)

U=U, -

Where:

is a similarity variableand AU(x) = U

BC1: U(x,0) = Upyin (x) = Upyin
U(x,0) = U, — AUF(0)
=U, ( mm(x))f(o)
f0)=1
BC2: dU(x,0)/dy =0

d 0)d
Zé ng(o) f( ) n
f(O)
(%) AU
—AUF'(0) —= =-—=f 0)=0
f (0)=0

Unin(x). Velocity defect obeys similarity

law, which by the definition of AU, f(0) = 1, while symmetry implies that f'(0) =

0. Anti-symmetry in RS implies that g(0) = 0.




Idea is to use momentum equation:

OO0+ 5 PO - 0)] + 57 =0

to explore nature of similarity solutions.

Integrating mean continuity equation (0U/dx + dV /dy = 0) :

V= yaﬁd 4

Since V = 0 at centerline y = 0.

Differentiating Eq. (1) with respect to x gives

oU  _dAU AUalf dn dl
ox 7 dx dn dl dx
1
oU v emdl
ox dx f l dx ()

Differentiating Eq. (1) with respect to y yields:

oU aU 0 df d
_ — e_Auﬂz_AU_f_n
ay Ay oy dn dy
7| |1

oU AU

(3)



Differentiating Eq. (2) with respect to y gives:

duv g(n) dgdn
 — 2 2
3y (AU)* —— = —(AU) dn dy
i
ouv _ AU? e

Substituting Eq. (5) into (4) and converting the y integration into 1 integration
gives

_ ' daU 7 dl
V:_f —f =+ BUf'T ]ldn dy = ldy
0

—ldA—Uj fdn — AU—jfndn

dAU

dl
—ld—G(n) AU——H() (8)

Using Egs. (5), (6), (7) and (8) and dividing by AU?/I, Eq. (3) becomes:

AU AU
—a'f + Bnf’ +a—[ f'6+ =B - [=fH+nff1=g" (9)

Where:
Ul dAU 10
(AU)? dx (10)
And
. U, dl 1
B = AU dx D

Represent dimensionless parameters.
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Eq. (9) shows that sufficient condition for a similarity solution to exist is that ™ and

p™ # f(x).

In far wake
AU

— >0 as x > oo
e

Such that Eqg. (9) simplifies to:
—a' f+pnf =g

Taking the ratio of Egs. (10) and (11) gives:

AU
« _ AU
— = = n = constant
B L

1

Assuming the rate of growth of [(x) and the rate of decay of AU(x) are equal, then
their ratio is constant. Consequently,

AU, L,
AU

InAU =nlnl+C=Inl"+C
AU =CI™ (12)
Substituting Eq. (12) into (11), gives

_Ugdl U, dl
 AUdx Clhdx

*

pe, _dl
o, x = (13




Integrating Eq. (13) yields:

B*C _pn
TR e g
1-n)—x—x) =1""

[(x) =a™(x—xy)™ (14)

Where x, = virtual origin and

Substituting Eq. (14) into (12) gives

AU(x) = Ca™ 1(x —x,)™ 1 (15)

a=((1-n)p*C/U,

Recall definition of total mean flux of momentum per unit length in spanwise

direction:

M = pj U(U - U,)dy = constant # f(x)

M = —pUZ6 = —body drag, which induces wake

Where:

6 = Oogl Ud 16
- g(i-5)e o

Represents the momentum thickness, in analogy to boundary layer theory, and it

is constant in wake flow.




Substituting U = U, — AUf(n) into Eq. (16) gives:

0=foo Ue_AUf(n)<1_Ue_AUf(n)>dy

Ue Ue
*® AU AU
9_j (1_ f(n))(X 14 f(n)) dy
o U U, -
ldn
U A f(n)
=U_ ( fMldn
Dividing by [:
0 AU f°° i dn—2U [ 254
(=T _Oofn Ny mdn
v 0f k
U_e_) ar wake
Therefore,
IAU Vel tant # f(x)
=~ — _—— — constan X
I f)dn

~ [AU # f(x) and equal to a constant in the far wake, as previously assumed, i.e.,
assumption n = constant.

Substituting Eqgs. (14) and (15) for [AU gives:
L(X)AU(x) = a™(x —xg)™ Ca™ Y(x —xo)™ 1 = f(x) (17)
ie.,m+m—1=0->m=1/2, such that:
1(x) = a'?(x — x,)Y? (18)

AU(x) = Ca=?(x —x,)"Y%2  (19)



Circular cylinder reaches self-similarity about 80-90 diameters downstream for
mean variables and larger distance for turbulence variables.

Using control volume analysis, a relationship between 8 and drag (D) can be
established (Betz Method):

D = pU? “U 1—1 dy = pUZ6
e _OoUe Ue y p e

Now that relations for [(x) and AU (x) are established, it is possible to find the
mean velocity field U, by determining f () via

~a'f+B'nf =g (20)
once a model for g(n) = —uv/(AU)? is proposed.

Traditional approach — eddy viscosity model with v, = constant.

U ,
V= Vg T —(AU)* g(m) (21)

Recall

And substituting into Eq. (21) gives

AU
ve—f"=—=(AU)* g(n)

[
I —f—, (22)

g = Ve = R,


https://user.engineering.uiowa.edu/~me_160/Examples%20for%20class/Betz%20Method.pdf

Where:

AU

P =
V¢

Is a constant Reynolds number; since [AU = constant.

Substituting Eq. (22) into (20) gives

k k ! f”
—a'f B = (23)
t
Moreover, recall
1 1 "
= = - = —
m 1—n n
And
Of* B* *
n=—-p"=—-a
B*
Consequently, Eq. (23) can be rewritten as
. : f"
—a*(f +nf) =——%

R;

f' =R (f+nf)=0 (24)
Rewriting Eq. (24) as

d 4
f”_Rta*d_n(nf):O f""lf _dn(nf)

And integrating with respect to n gives:

af ) _
%_Rt“ mf)=C



Where C = 0,duetoBCf'(0) =0

af
— =R,a*nd
f t@ nan

Integrating again with respect ton

772
Inf = Rea” —+C

2
np

f) = Ce® 7R

Where C = 1, due to BC f(0) = 1.

Substituting the definitions of ™ = (AU;;Z U;A—XU and R; = lﬁ—U combined with Egs.
t
(18) and (19) gives:
() = U,1? dAU n?
f) = exp\ o= 2
¢  Uea(x—x3) n?
= —_—— M — R
exp 2 T (s — T, (x =25)"377 -
_Uea -
fa) =e #"

a only effects scaling of distances — can be chosen arbitrarily = a = d, such that:

2

_Rgn
f)=e ¢
Is a Gaussian function where:
Uepd Upd
Rd = 5 &, t —
Vt Rg

And



Experimental measurements of

U _T

e—U
T—f(n)

In the far wake of a circular cylinder at several cross sections are shown in Fig.

11.3.
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Figure 11.3 Comparison of the self-similar turbulent wake velocity profile of a cylinder with physical
experiments at R, = 1360: ,x/d = 500; +,x/d = 650; 0,x/d = 800; X, x/d = 950; —, Eq. (11.44). Data
from [9]. Reproduced from the Australian Journal of Scientific Research (Vol. A2, 1949), with permission
of CSIRO Publishing.

n < 0.3 good fit using R; = 61.04.

Outer part discrepancies due to using v; = constant and intermittency. Including
an intermittency factor y(n) shows better agreement.
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Integrating

Using

Gives

Such that

U.0

ZAU=OO+=C
o f(m) dn

Rgn

fn)=e *

R, U0
C= |— = 2.204U,.6
T 2

AU(x)_22049 d
U, 77 d |x—x,

Introducing the drag coefficient

And recalling that

It is found that:

Such that:

AU (x) _ 2.204c¢p d
u, 2 X — Xg
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Appendix A
A.l

0 — J — a__
Z0T-0)]+ 5 FT-v)]+5T=0 a4)

Recall

U=U,— AUf(m) (24)

_ dAU dl
V= ZWG(U) - AUaH(U) (34)
—uv = (AU)*’g(n) (44)
o AU?
E (54)

Differentiating Eq. (2A) with respect to x:

a(ﬁ U,) = 0 v lE (6a
dx ¢/ fdx fldx (64)

Differentiating Eq. (2A) with respect to y:
0 (U-U,)= e a
5y U-U)===f" (4

Expanding the derivatives in Eq. (1A) yields:

oU — — 0 v — —_0 - 0 __
a(U—Ue)+Ua(U—Ue)+E(U—Ue)+V@(U—Ue)+@uv=0 (84)

13



Substituting Egs. (3A), (5A), (6A) and (7A) into (8A) gives:

ou — — dAU n dl
3 000+ 0 (~r o aur ] )+—( Ue)
2

(1448, —AUd—H() —— —ﬂ 0 (94
6t —au T Hm) | (-5 f) - T—g' =0 (94

Using continuity:
ou oV ou _ av
—+—=0-
dx Jdy ax ay

Such that Eq. (9A) simplifies to:

dAU n dl AU AU? AUZ
—Uf—+UAUf ———AUf 2 G+ ——f = H) ———

l
=0 (1OA)

Using Eq. (2A), U can be substituted by U, — AUf (1) such that Eq. (10A)
becomes:

dAU dl dAU
(=Ue + AU)f ——+ (U, AUf)AUf Tae ~AUf ——Gm)

AU? _ dl AU?
+—f g H) ———g =0 (114)

Dividing Eq. (11A) by AU? /I gives

~Uelf dAU f2LdAU  Uenf' di CdlIf'dAU

AUZ dx AU dx T AU dx Tax ~ AU dx
=g’ (124)

G + f' —H(n)
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Defining

_ Ul dau o
C = de 13
And
ol d
p AU dx ( )

Eqg. (12A) becomes:

—Off+a—f2+377f ﬁ ffn—a—fG(n)H? fH(n)—

AU
S Bf (17 = f160) - = (ff n=f'Hm) =g’
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