Chapter 6: Turbulent Transport and its Modeling

Part 4: Vorticity Transport
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Where ¢;;; = alternating tensor equal to 1 when indices are even permutation of
(123), -1 for odd permutation and 0 if any two of the indices are equal.

Note that §;; and g;j are the only isotropic 2" and 3™ order tensors and there is
no iotropic 1% order tensor.

Eijk = Ejki and & = &;j, i-e., unchanged by moving indices two places right or
left. Whereas movement one place changes sign: €;;, = —¢&;.

Also note relation between §;; and €;y,:
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In the rotational form RANS equation, (uiuj)j is replaced by the vorticity flux

U;w; = rate at which wj is transported in the it" direction by u;. P = % + k can be

solved similarly as p and since k = 0 on boundaries, forces and moments readily
obtained.

Appendix A.2 provides scaling laws for the fluctuaing vorticity and its derivatives.



Assume unidirectional channel flow where Q = (U,0,0) and Q = (0,0, ;) such
that:
oP  d*U __ ___
0= —a+vd—yz+vw3 —ww, (1)

Taylor derived gradient transport law:

With vL, = Tzzﬁ, same as momentum gradient transport since v; independent
from the quantity being transported.

Substituting Eq. (2) into (1) gives:

0=—3—i+(v+7‘22?)

d2U dU
dy?

Note that ww, = 0 for unidirectional channel flow and for gradient transport since
0, =0.

Compare with similar equation using (uiuj)j gradient transport model

This shows that in the vorticity transport v; is not differentiated; however, there
- . . . . . an .
are difficulties near boundaries since the vorticity flux and = have opposite signs

close to the wall, as shown by DNS and Fig. below, which results in unacceptable
negative eddy viscosity.
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Fig. 6.17  Wall-normal vorticity flux in channel flow. —, i ; — —, d$2/dy.,

As per turbulent momentum transport, but including possibility of 3D flow:
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Starting from instantaneous vorticity equation
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Integrating in time betweent — 7 and t:
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|Vortex stretching| Viscous effects
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Define flux correlation as uf* a)] as was done for velocity (u,v,) and using Eq. (3):
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Where it is assumed that 7 is large enough that mixing condition u* Jb 0is

satisfied.

Term 1 can be developed similarly as what was done for ®, in momentum
transport.

Taylor series for .(2_}’:
— d.()a

b _
Q=07 — L~ O

Substituting Eq. (5) in Term 1 gives:

— an ¢
b _ y y j
u? (.Q] — _Q]?) ( Lk dxk ) —Lkuf d_xk (6)
Recall definition:

L, = f UR(K(S),S) ds = f (U_R(K(s),s) + uk()_((s),s)) ds (7)

-7
And substitute Eq. (7) into (6) to obtain:

a

uf () - 0f) = - ft i (Tt )l + i (X (), 5)ug ) ds Z%

Where the first term is 0 under the assumption that 7 is large enough.
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Therefore, term 1 becomes:
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For term 2, substituting mean and fluctuating quantities for £2;, and a_x] gives:
k
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‘ an/ J aauj n a U] a ]
=jt_ru- ka—xk+uia—xk(s).(2k+ui s)a—xk+uiw a—)Ck(s)ds

The first term is neglected as nonlinear in the mean flow; and the third and last
term are neglected as considered higher order.

Therefore, term 2 becomes:

ft 20,(5) Y () —jt 9% (a5
t_Tui k S axk S S = t__[ui axk S S k

Term 3 is omitted for simplicity.



Equation 4 is equivalent to:

t d a t a
ufwd = —J U, (s)ut ds—— +J ud — (s)ds.()k (8)
J t—1 dx Xk t—1 0x Xk
|vortex stretching term|

To obtain a more useful form of Eq. (8), it is necessary to introduce the Lagrangian
integral scales 7;, 5 and Q4p, via

t

0
L@ = | w@OuEEds adTy = [ Tgpwdr ©)

t—1

o 0
uaa B(r) —f g (s)ds and Qup, = j_oouag%f(r)dr (10)

Such that Eqg. (8) becomes:

uawﬁ —JakUaUp 7 a + Qaﬂkua a k ( )




Vorticity transport in Channel Flow

Consider now unidirectional shear flows with mean velocity U(y) and .(2_3 =
—dﬁ/dy is the only non-zero mean vorticity component. With these assumptions
five vorticity flux components are identically zero. The zero vorticity flux
components are:

UW] = VW) = W3 = UW, = Vw, =0 Appendix A.1

The remaining correlations in Eq. (8) are non-zero and are given by:

ou —

Ww; = Q313w a_-Qs

avﬂ_

Ww; = Q323w 9773
vws = —T5v W"‘ Q233”£ﬂs
_dn, ow —
Uwz = _Tnuvw + Q133u503

Where additional Lagrangian integral scales are defined according to Egs. (9) and
(10).

ww; and ww, do not originate in gradient physics and would be predicted to be
zero if vortex stretching was neglected.

Using DNS best fit data as shown in figures uses 7,5 = 4.8, 713 = 12.3, Q335 =
5.5, Q;-23 - 95, Qf-33 - 163, and Q;—l?) == 095.

Thus, including the first-order vortex stretching model, the essentials of turbulent
vorticity flux can be accounted for. Gradient terms capture most of the transport
away from the wall, while the stretching terms account for non-gradient transport
for vw; and uws;.
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Figure 6.17 Vaw,: e, DNS results; —, prediction from Eq. (6.62). From [21]. Copyright ©Springer
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Figure 6.18 Uw,: », DNS results; —, prediction from Eq. (6.63). From [21]. Copyright ©Springer-Verlag.

Figure 6.19 wa,: e, DNS results; —, prediction from Eq. (6.60). From [21]. Copyright ©Springer-Verlag.
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Figure 6.20 Wa,: », DNS results; —, prediction from Eq. (6.61). From [21]. Copyright ©Springer-Verlag.
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Appendix A
A.l

Uw] = VW) = W3 = UW, = Vw, =0

Consider uw;:

_ 00, 00, ouy —

Uy —
uw; = =0 U — + Q111U =— 2 — Tu Uy —+ Q12U — (2
1 11U 16x1 111 16x1 1~ J12Ug Zaxz 112 19x, 2

It can be immediately recognized that all the terms, except for the last one, are
identically zero, since 2, = {2, = 0in a channel flow.

The last term

Can be rewritten as

B 1ouf —
uw; = Q113 E_ax ;=0 (14)
3

This expression shows that also the last term needs to be zero in order to satisfy
the requirement of symmetry with respect to reflections in the x — y plane.

Similarly, for vw, and wws, the only term containing .(2_3 is:

—_ auZ —_— au% —_
VW, = Qp3U; _ax 23 = Q723 _ax ;=0 (24)
3 3

ou; — ous —
Ww3z = (333U3 6_x3!23 = (333 6_x303 =0 (34)

The remaining two vorticity fluxes are uw, and vw;.



Recall vorticity components definition:

Substituting them into Egs. (1A), (2A), (3A):

Uuw; = uw, —uv, =0 - uw, = uv,

Vw, = vu, —vw, = 0 - vu, = vw,

Wwsz = wu, —wu, =0 - wry, = wu,,

And using several identities appropriate to channel flow gives:

UW, = UV, = —VU, = —UW, = WU, = WU, = —uw, (44)

And the equality of the first and last terms in this relation implies that each of the
correlations are zero.

For uw, and vw; the only term containing .(2_3 is:

_ ou, — I
UW; = Q123U W-Qs = Quy UV, 23 =0
3

__ ouy — L
VW, = Qz13U; _ax 3 = Q13vu,Ml3 =0
3

And they are both zero according to the equalities shows in Eq. (4A).
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A.2

3.4

The Governing Equation for the Magnitude of Vorticity
Fluctuations (or Turbulent Enstrophy)

Just like the equations for the kinetic energy, we can derive equations for Q;Q; and
wj] by substituting w; = Qi+wjand y; = U; + i, into (2.66), and then averag-
ing. For the mean squared vorticity fluctuations (or turbulent enstrophy) wjw/, we
obtain

a—t (-Z-wiw,) + U_,E (iwiw,- = —ltj'wl’a - E (Euj’-w;wi
D

Production Transport by turbulence

e S Fas 1 0w’ 0w,
+ ol + WSy + Qjwis; +v (—w‘fw; - v
Ly dxjdx; \ 2 9x; dx;
Stretching b; Stretching b, 7 < A
strain ﬂuctugatigns mean str%iny Viscous transport Viscous dissipation
(3.29)

Note that the production term appears with the opposite sign in the mean vorticity
equation, as was the case for kinetic energy. As mentioned in Section 2.6, differenti-
ation amplifies small scales, Thus, we expect that spatial derivatives of fluctuating
velocities in general, and w; in particular, are dominated by the small scales of
turbulence, whereas the derivatives of mean flow quantities are determined by large
scales. Hence, different terms in the equation above have widely different orders of
magnitude at high Reynolds numbers,

On the right-hand side of (3.24), the third term is dominant because it involves
the product of three velocity derivatives taken at fine scales, whereas the other non-
viscous terms contain at most two, Of the viscous terms, the second is a product of
two second derivatives of velocity and is dominant. Retaining the dominant terms
yields

8 [1— 0 (15— —  3al3al
5 (Ea):w:) -+ Uja_);; (Ew;w;) ~ wisz;-]- - va—XIE (3.25)

In homogeneous stationary turbulence, the left-hand side of (3.25) is zero, yielding

V) ~ 1 1
wj)sy; N v—axj ———3xj s (3.26)

The right-hand side of (3.26) is positive, suggesting that the stretching term is
positive in the mean. That is, stretching dominates compression on average. (Refer
to Figure 5.12 for an illustration of the spatial distribution of vorticity.) Note also
that, unlike the equation for @_; in homogeneous stationary turbulence, where the
production term — which involves the mean flow - is dominant, the equation for m
in homogeneous stationary turbulence is not dominated by the mean.
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Fig. 512 Vorticity isosurfaces from direct numerical simulation of homogeneous
isotropic turbulence (40963 grid with a Taylor microscale Re;, = 675). The image on the
rightis a 16 x zoomed-in view of the image on the left. In the figure legend, L = / is the
integral length scale, (Image credit: Ishihara, Gotoh and Kaneda (2007), adapted from
figures 2(a) and 3(d))
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