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 Chapter 6: Turbulent Transport and its Modeling 

Part 3: Homogeneous Shear Flow 

(1) Pope 5.4.5; also recall discussion Chapter 4 Part 7, shear-stress spectrum) 

In homogeneous turbulence1 𝑢(𝑥, 𝑡) and 𝑝′(𝑥, 𝑡) are statistically homogeneous and 

𝑈𝑖,𝑗  must be uniform, although it may be 𝑓(𝑡) (Pope Ex. 5.41).  In homogeneous 

shear flow 𝑆 = 𝑈𝑖,𝑗 = constant, which can be realized in wind tunnel experiments 

by using screens controlling the inflow velocity profile. 

 

 

Moin and Chan:  homogeneous shear flow DNS (left) and EFD setup (right). 

 
1 Homogeneous turbulence: the time-averaged properties of the flow are uniform and 

independent of position → invariant under translation, i.e., shift in the origin of the coordinate 

system. For example, whereas 𝑢2, 𝑣2, 𝑤2 may differ from each other, each must be constant 

throughout the system, i.e., the time-averaged gradients of the fluctuating components, i.e., 
𝜕

𝜕𝑥𝑗
𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑛𝑔 𝑡𝑒𝑟𝑚𝑠 = 0 

. 

𝑈 = 𝑓(𝑦) 

𝑉 = 𝑊 = 0 

𝑆 =
𝜕𝑈

𝜕𝑦
= constant 

Appendix A.2 
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At x/h = 0, the RS are nearly uniform normal to the flow direction, which persists 

downstream.  However, they show increasing values in the axial direction, which 

can be removed using a refence frame moving with the mean velocity 𝑈 such that 

the turbulence is approximately homogeneous, as per Fig. 5.31. 

 

 
 

An important conclusion is that after the initial development time the flow 

becomes self-similar when statistics are normalized by 𝑆 and 𝑘, as shown in Table 

below. 

 

Despite axial variation, in frame 

of reference moving at 𝑈𝑐, 

 𝑢𝑖𝑢𝑗 ≈ {
const   𝑖𝑓 𝑖 = 𝑗
0          𝑖𝑓 𝑖 ≠ 𝑗

 

 

 

Correlation coefficient  

𝜌𝑢𝑣 =
< 𝑢𝑣 >

[< 𝑢 >< 𝑣 >1/2
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Between 𝑥/ℎ = 7.5 and 11, 𝑘(𝑡) increases by 65%, yet normalized Reynolds 

stresses nearly constant.  

𝜏 = 𝑘/𝜀 = turbulent time scale nearly constant such that 
𝑆𝑘

𝜀
~ constant. 

 𝐿11 increases by 30%, but when normalized nearly constant. 

 

The TKE equation for homogeneous shear flow is (Pope Ex. 5.40): 

 
𝑑𝑘

𝑑𝑡
= 𝑃 − 𝜀 

 

Such that (𝜏 = 𝑘/𝜀) 
𝜏

𝑘

𝑑𝑘

𝑑𝑡
=
𝑃

𝜀
− 1 

 

Which has solution: 

 

𝑘(𝑡) = 𝑘(0) exp [
𝑡

𝜏
(
𝑃

𝜀
− 1)] 

 

Since 𝑃/𝜀 ≈ 1.7 and S ≈ constant, 𝑘(𝑡) grows exponentially in time and both 𝜀 

and 𝐿 = 𝑘3/2/𝜀 = 𝑘1/2/𝜏 also grow exponentially.   

 

Recall for grid turbulence (Chapter 5 Part 2) P = 0, and 𝑘(𝑡) and 𝜀(𝑡) decay with 

time with decay exponents −𝑛 and −(𝑛 + 1), respectively, with n between 1.15 

and 1.45; and 𝐿 = 𝑘3/2/𝜀 grows in time with exponent (1-n/2) due faster decay 

smaller/faster motions. 

 

 

 

 

 

 

 



4 
 

(2) Bernard 6.6 

 

Idealized flow such that 𝑆 = 𝑑𝑈/𝑑𝑦 > 0 =constant superimposed on 

homogeneous/isotropic turbulence.   

 

𝑘 equation in homogeneous shear flow: 

 
𝑑𝑘

𝑑𝑡
= 𝑃 − 𝜀 

 

Where the production term 

𝑃 = −𝑢𝑣
𝑑𝑈

𝑑𝑦
 

 

is positive, since 𝑢𝑣 < 0 associated with 𝑆 > 0. 

𝜀 equation in homogeneous shear flow: 

 
𝑑𝜀

𝑑𝑡
= 𝑃𝜀

1 + 𝑃𝜀
2 + 𝑃𝜀

4 − 𝛶𝜀⏟     

 

For homogeneous isotropic turbulence 

 

𝑃𝜀
1 + 𝑃𝜀

2 = −(𝜀𝑖𝑗
𝑐 + 𝜀𝑖𝑗)𝑆 = −2𝜀𝑆 = 2𝜀

𝑃

𝑢𝑣
 

 

For homogeneous shear flow 

 

−
𝑢𝑣

𝑘
≈ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≈ 0.3 

 

Such that: 

 

𝑃𝜀
1 + 𝑃𝜀

2 = 𝐶𝜀1𝑃
𝜀

𝑘
 

Same as isotropic decay due 

homogeneous/isotropic 

turbulence assumption. 

See Appendix A.4 
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For 𝑃𝜀
4 and 𝛶𝜀  same expressions as isotropic turbulence: 

 

𝑃𝜀
4 − 𝛶𝜀 = 𝑆𝑘

∗𝑅𝑇

1
2
𝜀2

𝑘
− 𝐺∗

𝜀2

𝑘
 

 

And for the palenstrophy, assuming vortex stretching not preempted by 

dissipation, it is assumed that: 

 

𝐺∗ = (𝑆𝑘
∗ − 𝐶𝜀3)√𝑅𝑇 + 𝐶𝜀2 

 

Where 𝐶𝜀3 = 0 produces standard model for RANS, as per Chapter 5 Part 2 pg. 

19.  Therefore, the 𝜀 equation becomes: 

 

𝑑𝜀

𝑑𝑡
= 𝐶𝜀1𝑃

𝜀

𝑘
+ 𝐶𝜀3𝑅𝑇

1
2
𝜀2

𝑘
− 𝐶𝜀2

𝜀2

𝑘
 

 

And it needs to be solved in conjunction with 

 
𝑑𝑘

𝑑𝑡
= 𝑃 − 𝜀 

 

Once a model is introduced for  

𝑃 = −𝑢𝑣
𝑑𝑈

𝑑𝑦
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EFD and DNS show exponential growth 𝐾 and 𝜀, but 𝑆𝑡 < 30; and following 

asymptotic relationships: 
𝑆𝑘

𝜀
≈ 6     (1) 

𝑃

𝜀
≈ 1.8     (2) 

 

although in some cases LES statistics still not converged at 𝑆𝑡 = 30. 

 

Using 𝑡∗ = 𝑆𝑡 and 𝑘∗(𝑆𝑡) = 𝑘(𝑡)/𝑘(0), the equation for 𝑘 becomes 

 
𝑑𝑘∗

𝑑𝑡∗
=
𝜀

𝑆𝑘
(
𝑃

𝜀
− 1)𝑘∗     (3) 

 

And for 𝑆𝑡 < 30, substituting Eqs. (1) and (2), the solution to Eq. (3) becomes 

 

𝑘∗(𝑡∗) = 𝑒0.13𝑡
∗
 

 

With similar analysis 𝜀 equation, with 𝐶𝜀3 = 0, (i.e., neglecting vortex stretching 

term) results in an exponential growth for 𝜀∗(𝑡∗). 

 
Appendix A.1, Prob. 6.2 Bernard 
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Long time EFD and simulations not achievable. Two hypotheses put forward: 

 

1) 𝑃 = 𝜀 such that 𝑘 and 𝜀 asymptote to constant values (Townsend 1956) 

 

2) 𝑘 and 𝜀 continue exponential growth, which is not physical as unlimited 

growth 𝑘 unrealistic → only pertains to ideal case. 

 

To solve 𝑘 and 𝜀 equations for long time growth 𝑢𝑣 model needed.  

 

𝑢𝑣 = −𝒯22𝑣
2S 

 

Where for isotropic turbulence 𝑣2 = 2𝑘/3. 

 

Assume 𝒯22 ∝ eddy turnover time 𝑘/𝜀, same as 𝑘 − 𝜀 model approach: 𝒯22 =
3

2
𝐶𝜇

𝑘

𝜀
 

 

Such that the set of equations becomes: 

 

𝑑𝑘

𝑑𝑡
= 𝐶𝜇

𝑘2

𝜀
𝑆2 − 𝜀 

𝑑𝜀

𝑑𝑡
= 𝐶𝜀1𝐶𝜇𝑘𝑆

2 + 𝐶𝜀3𝑅𝑇

1
2
𝜀2

𝑘
− 𝐶𝜀2

𝜀2

𝑘
 

 

And solution to these equations can be used to illustrate physics of homogeneous 

shear flow at long times. 

 

𝐶𝜀1 = 1.44 homogeneous shear flow (value used k- turbulence model). 

𝐶𝜀2 = 1.92, n = 1.09 EFD grid turbulence decay rate (value used k- turbulence 

model) A.4. 

𝐶𝜇 = 0.09 equilibrium free shear flows (value used k- turbulence model). 

𝐶𝜀3 = 0 → no vortex stretching. 

𝐶𝜀3 = 0.1 → used to investigate vortex stretching in homogeneous shear flow. 

𝑅𝑇 =
𝑘2

𝜈𝜀
 =
√𝑘𝑘3/2/𝜀

𝜈
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Fig. 6.15 shows EFD solutions for short time (𝑆𝑡 < 10), trends look similar. 

 

Fig. 6.16 shows long time solutions (𝑆𝑡 < 60): 

- 𝐶𝜀3 = 0 → exponential growth 

- 𝐶𝜀3 ≠ 0 → growth plateaus and 𝑃 = 𝜀 equilibrium achieved, as predicted 

by Townsend. 



9 
 

Asymptotic values for 𝑘 and 𝜀 are found by setting 𝑑𝑘/𝑑𝑡 = 𝑑𝜀/𝑑𝑡 = 0, resulting 

in: 

𝑘∞ =
√𝐶𝜇(𝐶𝜀2 − 𝐶𝜀1)

2

𝐶𝜀3
2

 𝜈𝑆 

𝜀∞ =
𝐶𝜇(𝐶𝜀2 − 𝐶𝜀1)

2

𝐶𝜀3
2

 𝜈𝑆2 

 

The magnitude of the asymptotic values increases with the inverse square of 𝐶𝜀3, 

which highlights importance of vortex stretching as an additional source of 

dissipation. 

 

𝐶𝜀3 ≠ 0 likely most realistic physics, i.e., vortex stretching maintains independent 

physical process, as per issues discussed previously regarding the high Re 

equilibrium solution for self-similar flows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A.3 
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(3) The Spectral view of the energy cascade (Pope 6.6) 

 

For large Re, energy-containing and dissipative motions have clear separation of 

scales 𝐿/𝜂~𝑅𝑒3/4 ≫ 1 (L = 𝑘3/2/𝜀 = 𝑙0 ≈ 2𝐿11) and bulk of TKE is contained in 

motions of length scale 𝑙, where 6𝐿11 > 𝑙 >
1

6
𝐿11 =

1

12
𝑙0 = 𝑙𝐸𝐼, with characteristic 

velocity 𝑘1/2.  

 

Since 6𝐿11~ℒ large-scale motions anisotropic and 𝑓(geometry). Timescale 𝜏 =

𝐿/𝑘1/2 is large compared to mean-flow time scale ℒ/𝑈 and 𝑓(flow history), i.e., 

smaller eddies turn over at a higher rate than the larger eddies. 

 

∴ energy-containing motions do not have universal form arising from statistical 

equilibrium. 

 

Anisotropy and production of turbulence confined to energy-containing motions 

and viscous dissipation is negligible. 

 

Initial steps energy cascade, energy removed by inviscid processes (Production) and 

transferred to smaller scales 𝑙 < 𝑙𝐸𝐼 at rate 𝒯𝐸𝐼~
𝑢0
3

𝑙0
 which scales with 𝑢𝑟𝑚𝑠

3 /𝐿 =

𝑘3/2/𝐿.  𝒯𝐸𝐼  is not universal ∴ non-dimensional ratio 𝒯𝐸𝐼/(𝑘
3/2/𝐿) is not universal. 

 

Energy spectrum balance for homogeneous shear flow (Hinze Chapter 4):2 

 
𝜕

𝜕𝑡
𝐸(𝜅, 𝑡)    =    𝑃𝑘(𝜅, 𝑡)    −

𝜕

𝜕𝑘
𝑇𝑘(𝜅, 𝑡)     − 2𝜈𝜅

2𝐸(𝜅, 𝑡)     (1) 

 

 

 

𝑃𝑘 = product of the mean velocity gradient 𝜕𝑈𝑖/𝜕𝑥𝑗  and anisotropic part of the 

spectrum tensor. 

 

 
2 Can be compared with Chapter 5 Part 3 ℛ𝑖𝑗  equation for homogeneous turbulent flow, whereas 

Eq. (1) is for homogeneous shear flow. 

Rate of change 

energy spectrum 

Production 

due to shear 

Spectral 

transfer 

Dissipation 
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𝑃𝑘 = ℰ(𝜅, 𝑡)
𝑑𝑈

𝑑𝑦
= 2𝜋𝜅2 [2ℰ12 − 𝜅1

𝜕ℰ𝑖,𝑖  

𝜕𝜅2
] 

 

𝑃(𝜅𝑎,𝜅𝑏) = ∫ 𝑃𝑘

𝜅𝑏

𝜅𝑎

𝑑𝜅 

 

Represent contribution to the production from wave number range (𝜅𝑎, 𝜅𝑏). 

 

𝑃 = 𝑃(0,∞) ≈ 𝑃(0,𝜅𝐸𝐼) 

 

i.e.,  

 
𝑃(𝜅𝐸𝐼,∞)

𝑃
≪ 1 

 

Most of the anisotropy contained in energy-containing range. 

 

𝑇𝑘(𝜅, 𝑡) represents the spectral energy transfer rate, i.e., net rate at which energy 

is transferred from modes of lower wave number than 𝜅 to those with wave 

numbers higher than 𝜅. 

 

Rate of gain of energy in (𝜅𝑎, 𝜅𝑏) due to spectral transfer is: 

 

∫ −
𝜕

𝜕𝑘
𝑇𝑘(𝜅, 𝑡)

𝜅𝑏

𝜅𝑎

𝑑𝜅 = 𝑇𝑘(𝜅𝑎) − 𝑇𝑘(𝜅𝑏) 

 

Since for 𝑇𝑘(𝜅𝑎 = 0) = 𝑇𝑘(𝜅𝑏 = ∞) = 0, this term makes no contribution to the 

balance of TKE. 

𝑇𝑘 = 𝑇𝑘
1 + 𝑇𝑘

2 

 

 

 

 

Interaction triads 

of wave numbers  

𝜅+ 𝜅′ + 𝜅′′ = 0 

Kinematic effect of 

mean velocity 

gradients has on the 

spectrum. 

Hinze 4-47, 4-46,  

4-45, 4-37, and 4-30 
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1) For 𝜅 < 𝜅𝐸𝐼 in energy-containing range all terms significant except for 

dissipation. Assuming 𝑘(0,𝜅𝐸𝐼) ≈ 𝑘, 𝜀(0,𝜅𝐸𝐼) ≈ 0 and 𝑃(0,𝜅𝐸𝐼) ≈ 𝑃, integration 

of Eq. (1) over the energy-containing range gives 

 
𝑑𝑘

𝑑𝑡
≈ 𝑃 − 𝑇𝐸𝐼     (2) 

 
Where 𝑇𝐸𝐼 = 𝑇𝑘(𝜅𝐸𝐼).  Energy is generated by P and transferred to 𝑇𝐸𝐼. 
 

2) In the inertial subrange, 𝜅𝐸𝐼 < 𝜅 < 𝜅𝐷𝐼, and spectral transfer only significant 
process so that integration of Eq. (1) from 𝜅𝐸𝐼 to 𝜅𝐷𝐼  gives: 
 

0 ≈ 𝑇𝐸𝐼 − 𝑇𝐷𝐼      (3) 
 
Where 𝑇𝐷𝐼 = 𝑇𝑘(𝜅𝐷𝐼).  Energy cascades without change in the inertial 
subrange. 
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3) In the dissipation range 𝜅 > 𝜅𝐷𝐼, integration of Eq. (1) from 𝜅𝐷𝐼  to ∞ gives: 

 
0 ≈ 𝑇𝐷𝐼 − 𝜀     (4) 

 
 Energy dissipates such that 𝑇𝐷𝐼 = 𝜀. 
 
Eqs. (2), (3) and (4) highlight the essential characteristics of the energy cascade and 
adding them together gives: 
 

𝑑𝑘

𝑑𝑡
= 𝑃 − 𝜀 
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The cascade timescale 
 
Flow of energy in inertial subrange is analogous to incompressible continuity 
equation  
 

𝐴1𝑉1 = 𝐴2𝑉2 
 
Through a variable area stream tube. 
 

𝑇𝐸𝐼 =
𝑢0
3

𝑙0
= [

𝑚2

𝑠3
] = [

𝑚2

𝑠2
/𝑠] = rate of change of energy, analogue to 𝑄 = 𝐴𝑉 = 

flowrate = constant and 𝐴 analogue to 𝐸(𝜅) = energy per wave number = 

m2/s2/1/m = [
𝑚3

𝑠2
]. So, the speed (in units of wave number per time [1/𝑚𝑠]) at 

which energy travels through the cascade is: 
 

�̇�(𝜅) =
𝑇𝐸𝐼
𝐸(𝜅)

=
𝜀

𝐶𝜅−5/3𝜀2/3
=
𝜅5/3𝜀1/3

𝐶
 

 
And it can be noted that this speed increases rapidly with increasing 𝜅. 
 
It follows from the solution of (with speed in units of wave number per unit time): 

 
𝑑𝜅

𝑑𝑡
= �̇� 

Integrated from 𝜅𝑎 to 𝜅𝑏 

 

∫
𝐶

𝜅5/3𝜀1/3
𝑑𝜅 = 𝑡(𝜅𝑎,𝜅𝑏)

𝜅𝑏

𝜅𝑎 

 

 

Thus, the time needed for the energy to flow from 𝜅𝑎 to 𝜅𝑏 is: 

 

𝑡(𝜅𝑎,𝜅𝑏) =
3

2
𝐶𝜀−1/3(𝜅𝑎

−2/3
− 𝜅𝑏

−2/3
)  
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And substituting for 𝜀−1/3: 
 

 𝜀−1/3 =
1

(
𝑢3

𝐿 )
1/3

=
𝐿1/3

𝑢
=
𝐿

𝑢
𝐿−2/3 = 𝜏𝐿−2/3 

𝑡(𝜅𝑎,𝜅𝑏) = 𝜏
3

2
𝐶((𝜅𝑎𝐿)

−2/3 − (𝜅𝑏𝐿)
−2/3)      (5) 

 

Using the relations 
 

𝜅𝐸𝐼 =
2𝜋

𝑙𝐸𝐼
, 𝑙𝐸𝐼 =

1

6
𝐿11,

𝐿11
𝐿
≈ 0.4 

 

Into Eq. (5) gives 

𝑡(𝜅𝐸𝐼,∞) = 𝜏
3

2
𝐶 ((𝜅𝐸𝐼𝐿)

−
2
3 − (∞𝐿)−

2
3) 

= 𝜏
3

2
𝐶(𝜅𝐸𝐼𝐿)

−2/3       

≈ 𝜏
3

2
𝐶 (
2𝜋

𝑙𝐸𝐼

𝐿11
0.4
)
−
2
3
 

≈ 𝜏
3

2
𝐶 (
12𝜋

𝐿11

𝐿11
0.4
)
−
2
3

 

≈ 𝜏
3

2
𝐶 (
12𝜋

0.4
)
−
2
3

 

≈ 0.0725𝜏𝐶 
 

Substituting C~1.5 = Kolmogorov universal constant 

𝑡(𝜅𝐸𝐼,∞) ≈ 0.109𝜏 

𝑡(𝜅𝐸𝐼,∞) ≈
1

10
𝜏 =

1

10

𝑘

𝜀
 

 

i.e., lifetime of energy from 𝑡𝐸𝐼 → ∞ = 1/10 total lifetime, i.e., 90% of the energy 

lifetime 
𝑘

𝜀
 is in the energy containing range. 

 



16 
 

Spectral energy-transfer models  

 

For 𝜅 > 𝜅𝐸𝐼 ,  

0 = −
𝑑

𝑑𝜅
𝑇𝑘(𝜅) − 2𝜈𝜅

2𝐸(𝜅)     (6) 

 

From 1940-1970 many models for 𝑇𝑘(𝜅) to obtain 𝐸(𝜅) using Eq. (6) → most of 

these models are non-local due to interaction of wave number triads in energy 

transfer. 

 

Simplest local model Pao (1965): 

 

�̇� ≡
𝑇𝑘(𝜅)

𝐸(𝜅)
= 𝑓(𝜀, 𝜅) 

Using dimensional analysis 

 

𝑇𝑘(𝜅) = �̇�𝐸(𝜅) = 𝐸(𝜅)𝛼
−1𝜀1/3𝜅5/3 

 

Where 𝛼 = constant. 

 

Substituting this expression into Eq. (6) and integrating gives (Pope Ex. 6.36) 

 

𝐸(𝜅) = 𝐶𝜀2/3𝜅−5/3 exp[−
3

2
𝐶(𝜅𝜂)4/3] 

 

i.e., Pao energy spectrum for the dissipation range. 
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Appendix A 

A.1 

𝑡∗ = 𝑆𝑡 

𝑘∗(𝑡∗) = 𝑘 (
𝑡∗

𝑆
) 

Similarly 

𝜀∗(𝑡∗) = 𝜀 (
𝑡∗

𝑆
) 

 

Evolution equation for 𝜀: 

 

𝑑𝜀

𝑑𝑡
= 𝐶𝜀1𝑃

𝜀

𝑘
+ 𝐶𝜀3𝑅𝑇

1
2
𝜀2

𝑘
− 𝐶𝜀2

𝜀2

𝑘
 

 

Written in non-dimensional form and assuming 𝐶𝜀3 = 0: 

𝑆
𝑑𝜀∗

𝑑𝑡∗
= 𝐶𝜀1𝑃

𝜀∗

𝑘∗
− 𝐶𝜀2

(𝜀∗)2

𝑘∗
     (1𝐴) 

Using  

 
𝑆𝑘

𝜀
≈ 6 

And  
𝑃

𝜀
≈ 1.8 

 

Eq. (1A) becomes: 

𝑑𝜀∗

𝑑𝑡∗
= (𝐶𝜀1 (

𝑃

𝜀∗
𝜀∗

𝑆𝑘∗
) − 𝐶𝜀2 (

𝜀∗

𝑆𝑘∗
)) 𝜀∗ 

 

And substituting 𝐶𝜀1 = 1.45 and 𝐶𝜀2 = 1.9: 

 
𝑑𝜀∗

𝑑𝑡∗
= (𝐶𝜀1

1.8

6
−
𝐶𝜀2
6
) 𝜀∗ = 0.1183𝜀∗ → 𝜀∗ = 𝑒0.1183𝑡

∗
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A.2 
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A.3 

𝑑𝑘

𝑑𝑡
= 𝐶𝜇

𝑘2

𝜀
𝑆2 − 𝜀 = 0 

𝑑𝜀

𝑑𝑡
= 𝐶𝜀1𝐶𝜇𝑘𝑆

2 + 𝐶𝜀3𝑅𝑇

1
2
𝜀2

𝑘
− 𝐶𝜀2

𝜀2

𝑘
= 0 

 

From the 𝑘 equation: 

𝜀 =  𝐶𝜇   
𝑘2

𝜀
𝑆2 

𝜀2  =  𝐶𝜇  𝑘
2𝑆2 

𝜀 =  √𝐶𝜇  𝑘𝑆 

From the 𝜀 equation: 

𝐶𝜀1𝐶𝜇𝑘𝑆
2 + 𝐶𝜀3𝑅𝑇

1
2
𝜀2

𝑘
− 𝐶𝜀2

𝜀2

𝑘
= 0 

Where: 

𝑅𝑇 =
𝑘2

𝜈𝜀
 

Such that: 

𝐶𝜀1𝐶𝜇𝑘𝑆
2 + 𝐶𝜀3

𝑘

√𝜈𝜀

𝜀2

𝑘
− 𝐶𝜀2

𝜀2

𝑘
= 0 

𝐶𝜀1𝐶𝜇𝑘𝑆
2 + 𝐶𝜀3

𝜀3/2

√𝜈
− 𝐶𝜀2

𝜀2

𝑘
= 0 

 

Substitute 𝜀 =  √𝐶𝜇  𝑘𝑆: 

𝐶𝜀1𝐶𝜇𝑘𝑆
2 + 𝐶𝜀3

𝐶𝜇
3/4
  𝑘3/2 𝑆3/2

√𝜈
− 𝐶𝜀2

𝐶𝜇  𝑘
2𝑆2

𝑘
= 0 
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(𝐶𝜀1 − 𝐶𝜀2)𝐶𝜇𝑘𝑆
2 + 𝐶𝜀3

𝐶𝜇
3/4
  𝑘3/2 𝑆3/2

√𝜈
= 0 

𝐶𝜀3
𝐶𝜇
3/4
  𝑘3/2 𝑆3/2

√𝜈
= (−𝐶𝜀1 + 𝐶𝜀2)𝐶𝜇𝑘𝑆

2 

𝑘1/2 =
(−𝐶𝜀1 + 𝐶𝜀2)𝐶𝜇𝑆

2√𝜈

𝐶𝜇
3/4
  𝐶𝜀3 𝑆

3/2
=
(−𝐶𝜀1 + 𝐶𝜀2)𝐶𝜇

1/4
𝑆1/2√𝜈

  𝐶𝜀3  
 

𝑘 =
(𝐶𝜀2 − 𝐶𝜀1)

2
√𝐶𝜇

  𝐶𝜀3
2  

𝑆𝜈 

And  

𝜀 =  √𝐶𝜇𝑘𝑆 =
(𝐶𝜀2 − 𝐶𝜀1)

2
𝐶𝜇

  𝐶𝜀3
2  

𝑆2𝜈 
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A.4 

Implications for Turbulence Modeling  

Part 1 Eq. (1) and (2a,b): 

𝑑𝑘

𝑑𝑡
= −𝜀 

𝑑𝜀

𝑑𝑡
= 𝛲𝜀

4 − 𝛶𝜀 = 𝜈𝛲𝜁
4 − 𝜈𝛶𝜁  = (𝑆𝑘

∗𝑅𝑇

1

2 − 𝐺∗)
𝜀2

𝑘
 

For general applications, it is assumed that, 

𝑆𝑘
∗𝑅𝑇

1
2 − 𝐺∗ = −𝐶𝜀2     (20) 

 

Where 𝐶𝜀2 is constant. This leads to the model, 

𝑃𝜀
4 − 𝛶𝜀 = (𝑆𝑘

∗𝑅𝑇

1
2 − 𝐺∗)

𝜀2

𝑘
= −𝐶𝜀2

𝜀2

𝑘
 

 

Which yields an equation identical to Eq. (19), i.e., high RE equilibrium, except that 

the constant on the RHS is −𝐶𝜀2. 

𝑑𝜀

𝑑𝑡
= −𝐶𝜀2

𝜀2

𝑘
 

Further insight provided by fact that for high Re we have shown that: 

𝐺∗~√𝑅𝑇 

which is consistent with and justifies/explains Eq. (20), i.e., cancels the vortex 

stretching term.  Recall again for isotropic turbulence, 

𝑑𝜀

𝑑𝑡
= 𝑆𝑘

∗𝑅𝑇
1/2 𝜀

2

𝑘
− 𝐺∗

𝜀2

𝑘
 

      = (𝑆𝑘
∗𝑅𝑇

1/2
− 𝐺∗)

𝜀2

𝑘
 

Compare high Re 

equilibrium solution 

𝑑𝜀

𝑑𝑡
= −2

𝜀2

𝑘
     (19) 

 

𝑅𝑇∞
∗ = (

𝐺0
∗ − 2

𝑆𝑘0
∗ )

2

   (7) 
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                             = [𝑆𝑘
∗𝑅𝑇

1/2
− (𝑆𝑘

∗𝑅𝑇
1/2
+ 𝐶𝜀2)]

𝜀2

𝑘
 = −𝐶𝜀2

𝜀2

𝑘
 

 

i.e., coefficient −𝐶𝜀2 chosen to cancel vortex stretching term, which is the 

assumption in Eq. (20) is equivalent to imposing equilibrium structure on the 

turbulent decay process, which imposes a decay law of the form, 

𝑘~𝑡
−

1
𝐶𝜀2−1 

i.e., 𝐶𝜀2 sets the decay rate. e.g., for 𝐶𝜀2 =
11

6
(1.83), Saffman  𝑡−6/5 law 

recovered.  

Other values can be achieved via specification of 𝐶𝜀2. In all cases, without vortex 

stretching. If vortex stretching is included, then eventually 𝑡−1 decay law will 

develop.  

𝐶𝜀2 = 1.40, n=2.50:  Final decay low Re similarity.  No vortex stretching. 

𝐶𝜀2 = 1.50, n=2.00:  0th law turbulence 

𝐶𝜀2 = 1.70, n=1.43: Kolmogorov decay law 

𝐶𝜀2 = 1.83, n=1.20: Saffman decay law 

𝐶𝜀2 = 1.92, n = 1.09 EFD grid turbulence decay rate (value used k- turbulence 

model) A.4. 

𝐶𝜀2 = 2.00, n=1.00: Final decay high Re similarity. Vortex stretching ~ dissipation 

with slight edge towards dissipation. 
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High Re Equilibrium: fixed point solution 

For 𝐺0
∗ > 2 and 𝑅𝑇∞

∗ ≠ 0, 𝑅𝑇0  approaches 𝑅𝑇∞
∗ from above or below depending on 

whether 𝑅𝑇0  is < or > 𝑅𝑇∞
∗ . 

𝑑𝜀

𝑑𝑡
= 𝑆𝑘0

∗ 𝑅𝑇
1/2 𝜀2

𝑘
− 𝐺0

∗ 𝜀
2

𝑘
     (18) = (3b) 

But  

𝑆𝑘0
∗ =

(𝐺0
∗ − 2)

√𝑅𝑇∞
∗

 

Therefore, as 𝑅𝑇  approaches 𝑅𝑇∞
∗ : 

𝑑𝜀

𝑑𝑡
= (𝐺0

∗ − 2)
𝜀2

𝑘⏟      
− 𝐺0

∗
𝜀2

𝑘⏟  
 

 

 

And thus 

𝑑𝜀

𝑑𝑡
= −2

𝜀2

𝑘
     (19) 

According to Eq. (7), very large 𝑅𝑇∞
∗  requires large 𝐺0

∗, assuming EFD 𝑆𝑘0
∗  (≈ 0.3 ) 

values. 𝑅𝑇∞
∗ = 104 gives 𝐺0

∗ = 25, which gives near balance between vortex 

stretching and dissipation of 𝜀 terms in 
𝑑𝜀

𝑑𝑡
 equation which is an important result → 

if 𝐺0
∗ ≫ 2 ⇒ 𝐺0

∗ − 2 ≈ 𝐺0
∗; thus, vortex stretching ~ dissipation with slight edge 

towards dissipation resulting in Eq. (19) with net dissipation coefficient -2, i.e., for 
high Re equilibrium (fixed-point) decay has nearly equal contributions vortex 

stretching and dissipation such that dissipation rate (per unit 
𝜀2

𝑘
) assumes universal 

value, which is independent of 𝐺0
∗.  Note that vortex stretching only implicitly 

included in 
𝑑𝜀

𝑑𝑡
 equation. 

 

 

Vortex 

stretching 

Dissipation 

of 𝜀 

𝑅𝑇∞
∗ = (

𝐺0
∗ − 2

𝑆𝑘0
∗ )

2

   (7) 


