Chapter 6: Turbulent Transport and its Modeling

Part 3: Homogeneous Shear Flow
(1) Pope 5.4.5; also recall discussion Chapter 4 Part 7, shear-stress spectrum)

In homogeneous turbulence! u(x, t) and p’(x, t) are statistically homogeneous and
T] must be uniform, although it may be f(t) (Pope Ex. 5.41). In homogeneous
shear flow § = U_U = constant, which can be realized in wind tunnel experiments

by using screens controlling the inflow velocity profile.
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Fig. 5.30. A sketch of the mean velocity profile in homogeneous shear flow
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Moin and Chan: homogeneous shear flow DNS (left) and EFD setup (right). | Appendix A.2

! Homogeneous turbulence: the time-averaged properties of the flow are uniform and
independent of position — invariant under translation, i.e., shift in the origin of the coordinate
system. For example, whereas ﬁ, ﬁ,ﬁ may differ from each other, each must be constant
throughout the system, i.e., the time-averaged gradients of the fluctuating components, i.e.,

0
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At x/h = 0, the RS are nearly uniform normal to the flow direction, which persists
downstream. However, they show increasing values in the axial direction, which

can be removed using a refence frame moving with the mean velocity U such that
the turbulence is approximately homogeneous, as per Fig. 5.31.
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Fig. 5.31. Reynolds stresses against axial distance in the homogeneous-shear-flow
experiment of Tavoularis and Corrsin (1981): O, (u?); O, (22); A, (w?).

An important conclusion is that after the initial development time the flow
becomes self-similar when statistics are normalized by S and k, as shown in Table

below.

Table 5.4. Statistics in homogeneous turbulent shear flow from the experiments

of Tavoularis and Corrsin (1981) and the DNS of Rogers and Moin (1987)

Tavoularis and Corrsin

Rogers and Moin

x/h=15 x/h=11.0 St =8.0
(u®) [k 1.04 1.07 1.06
(v?) /k 0.37 0.37 0.32
(w?) /k 0.58 0.56 0.62
—(uv) /k 0.28 0.28 0.33
— P 0.45 0.45 0.57
Sk/e 6.5 6.1 43
Ple 1.8 1.7 1.4
L S/k? 4.0 4.0 3.7
Ly /(k%%/e) 0.62 0.66 0.86

Correlation coefficient
<uv >

P =T s< v >172




Between x/h = 7.5 and 11, k(t) increases by 65%, yet normalized Reynolds
stresses nearly constant.

: Sk
T = k /e = turbulent time scale nearly constant such that — ~ constant.

L4 increases by 30%, but when normalized nearly constant.

The TKE equation for homogeneous shear flow is (Pope Ex. 5.40):

dk _p

dt ¢
Such that (t = k/¢)

Tdk _ P

kdt €

Which has solution:

k(t) = k(0) exp E (g - 1)]

Since P/¢ = 1.7 and St = constant, k(t) grows exponentially in time and both ¢
and L = k3/% /e = k'/2 /7 also grow exponentially.

Recall for grid turbulence (Chapter 5 Part 2) P = 0, and k(t) and &(t) decay with
time with decay exponents —n and —(n + 1), respectively, with n between 1.15
and 1.45; and L = k3/2 /¢ grows in time with exponent (1-n/2) due faster decay
smaller/faster motions.



(2) Bernard 6.6

Idealized flow such that S =dU/dy > 0 =constant superimposed on

homogeneous/isotropic turbulence.

k equation in homogeneous shear flow:

dk p
dat ¢
Where the production term
b _dU
= —Uuv &

is positive, since uv < 0 associated with S > 0.

€ equation in homogeneous shear flow:

de
E=$+¥+E—n

—

For homogeneous isotropic turbulence

P
Pl +P? = —(&fj +&;)S = —2&S = 26 —

For homogeneous shear flow

uv
—7 ~ constant =~ 0.3

Such that:

&
P!+ P? =C. P~

Same as isotropic decay due
homogeneous/isotropic
turbulence assumption.

See Appendix A.4




For P2 and Y, same expressions as isotropic turbulence:

1.2 g2
PY-7, =S,§R%?—G*?

And for the palenstrophy, assuming vortex stretching not preempted by

dissipation, it is assumed that:
G* = (S; — Cey)\/Rr + C,

Where (¢, = 0 produces standard model for RANS, as per Chapter 5 Part 2 pg.

19. Therefore, the € equation becomes:

de € 5 € g2
E = CelPE + C53RT7 - CSZ?

And it needs to be solved in conjunction with

dk _p
dt ¢
Once a model is introduced for
b __dU
= —uv &



12

10 +

K/K (0)

0 5 10 15 20 25 30
St

Figure 6.14 Measured K/K(0) in homogeneous shear flow for St < 30 from [15]. Reprinted with
permission of Cambridge University Press.

EFD and DNS show exponential growth K and &, but St < 30; and following
asymptotic relationships:

Sk6 "
—~6 (D

~18 (2)

m | g

although in some cases LES statistics still not converged at St = 30.

Using t* = St and k*(St) = k(t)/k(0), the equation for k becomes

dk* £ (P

sl ) ©

€
And for St < 30, substituting Eqs. (1) and (2), the solution to Eq. (3) becomes

k*(t*) — eO.l3t*

With similar analysis € equation, with C,, = 0, (i.e., neglecting vortex stretching
term) results in an exponential growth for £*(t*).

Appendix A.1, Prob. 6.2 Bernard




Long time EFD and simulations not achievable. Two hypotheses put forward:
1) P = & such that k and € asymptote to constant values (Townsend 1956)

2) k and € continue exponential growth, which is not physical as unlimited
growth k unrealistic = only pertains to ideal case.

To solve k and € equations for long time growth uv model needed.

uv = —ITZZES
Where for isotropic turbulence v2 = 2k /3.

Assume T, o« eddy turnover time k /&, same as k — € model approach: 75, =

3 k
C. -
2 Hg

Such that the set of equations becomes: o k2 ~ \/Fk3/2/e
i 12 T ye — v
—=(C, —S52 —
de H ¢ ¢
de " 5 € g?
T Ce, Cu kS + CS3RT? - C, T

And solution to these equations can be used to illustrate physics of homogeneous
shear flow at long times.
Ce, = 1.44 homogeneous shear flow (value used k-¢ turbulence model).

Ce, = 1.92, n =1.09 EFD grid turbulence decay rate (value used k-¢ turbulence
model) A.4.

C, = 0.09 equilibrium free shear flows (value used k-¢ turbulence model).
Ce, = 0 = no vortex stretching.

Ce, = 0.1 — used to investigate vortex stretching in homogeneous shear flow.
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Figure 6.15 Computed solution for K /K(0) (left) and ¢/¢(0) (right) in homogeneous shear flow: —,
with vortex stretching; ——, without vortex stretching; o, LES calculation [17].

Fig. 6.15 shows EFD solutions for short time (St < 10), trends look similar.
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Figure 6.16 Computed solutions for K /K(0) (left) and ¢/¢(0) (right) in homogeneous shear flow: —,

with vortex stretching; ——, without vortex stretching.

Fig. 6.16 shows long time solutions (St < 60):

- (¢, = 0 — exponential growth
Ce, # 0 - growth plateaus and P = ¢ equilibrium achieved, as predicted

by Townsend.



Asymptotic values for k and € are found by setting dk/dt = de/dt = 0, resulting
in:

_V C#(CSZ B C51)2
o = c2 vS
3

Appendix A.3

CM (sz B 631)2
CZ,

Eop = vS?

The magnitude of the asymptotic values increases with the inverse square of C,_,

which highlights importance of vortex stretching as an additional source of
dissipation.

Ce, # 0 likely most realistic physics, i.e., vortex stretching maintains independent

physical process, as per issues discussed previously regarding the high Re
equilibrium solution for self-similar flows.



(3) The Spectral view of the energy cascade (Pope 6.6)

For large Re, energy-containing and dissipative motions have clear separation of

scales L/n~Re3/* > 1 (L =k3/?/e =1, =~ 2L,,) and bulk of TKE is contained in

, 1 1 . -
motions of length scale [, where 6L, > [ > gL11 =5 lo = lg;, with characteristic

velocity k1/2.

Since 6L;;~L large-scale motions anisotropic and f(geometry). Timescale T =

L/k/? is large compared to mean-flow time scale £/U and f(flow history), i.e.,
smaller eddies turn over at a higher rate than the larger eddies.

-~ energy-containing motions do not have universal form arising from statistical
equilibrium.

Anisotropy and production of turbulence confined to energy-containing motions
and viscous dissipation is negligible.

Initial steps energy cascade, energy removed by inviscid processes (Production) and
3

transferred to smaller scales [ < lg; at rate 7}51~? which scales with u3,,. /L =
0

k3/2 /L. Ty is not universal . non-dimensional ratio Tx; /(k3/? /L) is not universal.

Energy spectrum balance for homogeneous shear flow (Hinze Chapter 4):?

0 d 2
EE(K' t) = Pk(K, t) __Tk(Kr t) — 2VK E(Kr t) (1)

dk
Rate of change Production Spectral Dissipation
energy spectrum due to shear transfer

P, = product of the mean velocity gradient aﬁi/ax,- and anisotropic part of the
spectrum tensor.

2 Can be compared with Chapter 5 Part 3 R;jequation for homogeneous turbulent flow, whereas
Eqg. (1) is for homogeneous shear flow.
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681-,1-
0K,

Hinze 4-47, 4-46,

dU X
Pk = E(K, t)d_ = 2K [2812 — Kq
y 4-45, 4-37, and 4-30

Kb
P(Ka:Kb) = J Pk dx
Ka

Represent contribution to the production from wave number range (k,, kp).

P = P(o,00) = P(oxg)

P
(KEI'OO)
—K1
P

Most of the anisotropy contained in energy-containing range.
T, (k, t) represents the spectral energy transfer rate, i.e., net rate at which energy
is transferred from modes of lower wave number than k to those with wave

numbers higher than k.

Rate of gain of energy in (k,, k},) due to spectral transfer is:
Kp a
| = STt 0 i = Tio) = i)
Ka

Since for Ty, (k, = 0) = T}, (k;, = o) = 0, this term makes no contribution to the

balance of TKE.
Tk7Tkl + T? \

Kinematic effect of
mean velocity
gradients has on the
K+K +K'=0 spectrum.

Interaction triads
of wave numbers

11
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Fig. 6.28. For homogeneous turbulence at very high Reynolds number, sketches of (a)
the energy and dissipation spectra, (b) the contributions to the balance equation for
E(x,t) (Eq. (6.284)), and (c) the spectral energy-transfer rate.

1) For k < Kg; in energy-containing range all terms significant except for
dissipation. Assuming kg . = K, €0z = 0 and P,y = P, integration

of Eg. (1) over the energy-containing range gives

dk
E ~P—-Tg (2)

Where Tg; = Ty (kg;). Energy is generated by P and transferred to Tg;.

2) Intheinertial subrange, kz; < kK < Kp;, and spectral transfer only significant
process so that integration of Eq. (1) from kg; to kp; gives:

0=Tg —Tp (3)

Where Tp; = Ty (kp;). Energy cascades without change in the inertial
subrange.

12



3) In the dissipation range k > K, integration of Eq. (1) from kp; to oo gives:
0~=Tp—e (4)
Energy dissipates such that Tp; = €.

Egs. (2), (3) and (4) highlight the essential characteristics of the energy cascade and
adding them together gives:

Dissipation ¢ Production P

()
Transfer of energy to
successively smaller scales

- -

1 | I ] |

n £p IEy £y L

Dissipation Inertial subrange Energy-containing
range range

Fig. 6.2. A schematic diagram of the energy cascade at very high Reynolds number.
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The cascade timescale

Flow of energy in inertial subrange is analogous to incompressible continuity
equation

AV = A1,
Through a variable area stream tube.

3 2 2
Lo — [m—] = [m—/s] = rate of change of energy, analogue to Q = AV =

Iy s3 52
flowrate = constant and A analogue to E(k) = energy per wave number =

Ty =

3
m?/s?/1/m = [T—Z] So, the speed (in units of wave number per time [1/ms]) at
which energy travels through the cascade is:

Tg; € K3/3g1/3

k() = E(x) T CikSBg2E T ¢

And it can be noted that this speed increases rapidly with increasing k.
It follows from the solution of (with speed in units of wave number per unit time):

dx

P

Integrated from K, to K},

J X g
——=dk =1t
. K5/3g1/3 (Ka,Xp)

Thus, the time needed for the energy to flow from K, to K, is:

3 - -2/3 -2/3
ki) = 5 C&7 30" = 1,7)

14



And substituting for e~1/3;

1/3
e~1/3 = 1 L — £L_2/3 — 71-2/3

(u3)1/3 T u
L

3
t(rca,lcb) = TEC((KaL)_Z/g - (KbL)_2/3) (5)

Using the relations

21 1 Ly,

Kgr = E' lgr = 6L11' T ~ 0.4

Into Eq. (5) gives
3 _2 _2
gy = T C (k)75 = (e0L)3)

3
= TE C(KEIL)_2/3
2

3 21 L
~ T—C( 11)

(127‘[ L11>
2\, 04
2

3 c (127‘[ 3
=1 0.4)
~ 0.07257C

Substituting C~1.5 = Kolmogorov universal constant

~ 0.1097
1 1k

t o) = = ——
Gesr) ¥ 707 T 10

t(KEIJOO)

i.e., lifetime of energy from t;; = oo = 1/10 total lifetime, i.e., 90% of the energy

Y -
lifetime Zisin the energy containing range.

15



Spectral energy-transfer models

For k > Ky,

_ . d 2
0——ETk(K)—2wc E(k) (6)

From 1940-1970 many models for Tj (k) to obtain E(k) using Eq. (6) = most of
these models are non-local due to interaction of wave number triads in energy
transfer.

Simplest local model Pao (1965):

s Ty () _
k = E(K') —f(S,K')

Using dimensional analysis
Ty, (k) = kE (k) = E()a~1el/3k>/3
Where a = constant.

Substituting this expression into Eq. (6) and integrating gives (Pope Ex. 6.36)

3
E(x) = Ce?/3y75/3 exp[—EC(kn)“/:"]

i.e., Pao energy spectrum for the dissipation range.

16



Appendix A
A.l

Similarly

Evolution equation for ¢:

de 2 € g2
T = (; Pk+Cg3RTk CSZ?
Written in non-dimensional form and assuming C,, = 0:
* * *\ 2
s e pl_c ¥ a4
g~ el e (14
Using
Sk
—~6
€
And
P
—= 1.8
€
Eqg. (1A) becomes:
de* c (P s*) c (3*)
de-  \ o \evsk) T e \ske) )¢
And substituting C,, = 1.45and C,, = 1.9:
de* 1.8 C
- = (Cgl?—%)e =0.1183¢" - &* = 011838

t* =St

*

=43

*

cwr=e(5)

17



A.2

3.7 The Reynolds Stress Equations

Jl’
arxj

ing. In addition, we saw earlier in this chapter that the evolution equations for the mean and turbulent kinetic energies

5 —
The mean flow equations (2.25) contain the gradients of the Reynolds stresses, .)—u 11, which require closure model-
X

(Equations (3.8) and (3.15), respectively) include the Reynolds stresses, which enter as part of the TKE production

term. So far, we have used an eddy viscosity model to account for the effect of the Reynolds stresses on the mean flow.
We now derive the actual governing equations for the Reynolds stresses to get further insights into how all the compo-

nents of the Reynolds stresses are produced, transported, and dissipated.

The evolution equation for the fluctuating velocity, i}, can be obtained by subtracting the mean momentum equations

(3.1) from the Navier—Stokes equations for the total momentum:

du; ot U+ Uit = v
u; l( u; H - - —
3’ k k k dx;

Summing the product of ll; and the above evolution equation for u; with the product of u: and the evolution equation

for 1/}, and then taking the appropriate mean, gives us the evolution equation for the Reynolds stresses:

&

s Yy Fd
dujtl; duljuy —aU; dutliu
+ U, = —u'.u;‘,— - tr’-llk— -—
at Xy X 7K 3xy axy
. e (3.32)
1| ,ap ap , % , 9%,
—— | Fu— |+ |y +u
P ax; 1 ax; X0 ¥ 930X
The velocity—pressure gradient term can be written as
§ — o 9 — 0§ — g —
—p'u; —p—+—pu—p—= —pi +—pu—7p
ax; LAY aX; dx;

The first two terms on the right-hand side are pressure-diffusion terms, while the last term is called the pressure-strain
correlation, which plays an important role in the exchange of energy between turbulence intensities (see Sections 3.7.1

and 3.7.2). The viscous term can be written as

/ !
B a“i Buj 92 11,11,
dxy dxg 0X4 00X}
: . - : 4 . e B ey
Finally, using the continuity equation, the convection term can be written as Uy, _)—uiu A )—u u; [ . These re-
[LRVE : oXf :

arrangements of the velocity—pressure gradient, convection, and viscous terms render further simplification of the

Reynolds stress equations in homogeneous flows, which will be taken up next.

18



3.7.1 Homogeneous Shear Flow and Pressure-Strain Correlations

In spatially homogeneous turbulent flows, the spatial derivatives of all turbulence statistics are zero, and the Reynolds

stress equations become

—aU; —ay; 9. ou . o
—u’u’ wal, — — — il — + P (o e ) D Wi} 7 (3.33)
at 0Xk Bxk p \dx; 9x; dXi 0Xk

For homogeneous shear flow (Section 2.2.3),{J] = Sx», while Us = Us = 0. This yields the following Reynolds stress

equations:

5 3/ s+ P pou | | (3.34)
—u 2 = —uju; —y—L_1 .
at 172 P 3.\‘1 3.\;‘ axy.

7 5 [) E)u, (‘)u, (’)u,
_"_’- 2= i

ar 2 paxy 8\/\ axy

(3.35)

33 ! 0l duly .
—ul/2 = ik SN e R (3.36)

at p 0x3 X Oxp
5. P (o B du|
iy == S+ = ——+—=] =v— : (3.37)
= p \dxy dx) dxy OXp

Note that the equation for “'13 has a production term —u'] ', S, but the equations for “;3 and “'3 do not have production
terms. Since the viscous terms are negative definite, 52 and 11"3 can only be maintained through the pressure-strain

terms. In addition,

p au, p au, oy _ ,8;1;. _
dx ax;
For 3,2 “7 and ;2 u 2 not to decay, I’ and [J - uy must be positive, implying that ,,f‘)'i ~ () Since only the ? equation
ax2 ax;3 ax)

d
has a production term, ,y i must be the conduit for energy transfer from 32 ”]- to “j w2 and 2 u} Finally, note that
x|

“,l “’2 < ( has a “production” term (_“7 S) that is negative definite.
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The pressure-strain terms are crucial in the intercomponent transfer of energy and the transport of Reynolds
stresses, and will have to be carefully treated in turbulence closure models for the Reynolds stresses. They maintain

an intricate balance that is critical to maintaining turbulence.

For example, if insufficient energy is transferred through the pressure—strain term to “" to overcome viscous dissipa-

tion in its governing equ’ltlon, then “_] 72 would decay. This, in turn, reduces productlon in the i/ i u, equation, which di-

1
minishes production of 112 “1 , eventually leading to the complete decay of turbulent fluctuations. This balance between the

turbulence intensities is illustrated in Figure 3.6.

Fig. 3.6 Schematic illustrating the intercomponent transter of TKE through the Reynolds shear stress in a homogeneous

shear flow.
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A3

dk k?
=(,—S2-¢e=0

dt ~ * ¢
1.2 2

de 5 3 £
E = CEICMkS + C£3RT? - Csz ?

=0

From the k equation:

From the € equation:
1.2

C. C,kS? + C. R? ng—o
&1-U + &3 T?_ 52?_

Where:

Such that:

£3/2 £2
24 C,——=—C, —=
Ce, CukS? + ey —= = Ce,

Substitute £ = 1/C” kS:
, C:’/‘l‘ k3/2 53/2 CM kZSZ
CglCﬂkS + Cg3 N — C‘92 — =0
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3/4 1,3/2 ¢3/2
(Ce, = €, )CukS? + C. G K775 =0
1 2 3 \/;

C:/4 3/2 §3/2

ng W = (_631 + Cez)CﬂkSZ
e (FCe + Ce)GS™VY _ (=G, + G, )GV
le/‘* C., §3/2 C.,
2
— (ng - Csl) \/C—HSV

6’823
And

2
s = ’CHkS — (C&'z T Csl) C,,L 52y,
CZ
€3
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A.4
Implications for Turbulence Modeling

Part 1 Eg. (1) and (2a,b):

dk _
dt ~ °©
de — p4 Y‘ _ 4 Y- _ S* % G* g2
E—PS_S—qu_VC— kRT_ ?
For general applications, it is assumed that, Compare high Re
1 equilibrium solution
*p2 * __
SRz —G" = —C¢, (20) e 2 22 19
dt "k
Where C,, is constant. This leads to the model,
G; -2\’
4 * % * g2 e R _< (jg* > @
PS —YS= SkRT_G ?z_CSZ? ko

Which yields an equation identical to Eq. (19), i.e., high Re equilibrium, except that
the constant on the RHS is —Cy,,.

de c g2
dt %2k

Further insight provided by fact that for high Re we have shown that:
G*~ RT

which is consistent with and justifies/explains Eq. (20), i.e., cancels the vortex
stretching term. Recall again for isotropic turbulence,
2 2
de _ g pl2t _ e E
dt Tk k
2

= (seRy* - G)%

23



= [S;R;"/Z - (S;R;‘/Z + Csz)]i(_z = _Cszi{_z

i.e., coefficient —C,, chosen to cancel vortex stretching term, which is the

2
assumption in Eq. (20) is equivalent to imposing equilibrium structure on the

turbulent decay process, which imposes a decay law of the form,

__1
k~t Ce2™t

i.e., Cg, sets the decay rate. e.g., for C;, = 1?1 (1.83), Saffman t=%/> law
recovered.

Other values can be achieved via specification of C¢,. In all cases, without vortex

stretching. If vortex stretching is included, then eventually t~! decay law will
develop.

Ce, = 1.40, n=2.50: Final decay low Re similarity. No vortex stretching.
Ce, = 1.50,n=2.00: 0" law turbulence

Ce, = 1.70, n=1.43: Kolmogorov decay law

Ce, = 1.83, n=1.20: Saffman decay law

Ce, = 1.92, n =1.09 EFD grid turbulence decay rate (value used k-¢ turbulence
model) A.4.

Ce, = 2.00, n=1.00: Final decay high Re similarity. Vortex stretching ~ dissipation
with slight edge towards dissipation.

-1
11}
-12

g
-13
-14 *
15[ # A * B :
10° 10 Re 108 108

Figure 5.6 Measured power law exponents in decaying homogeneous turbulence from numerous
experiments [9]. Filled symbols represent traditional turbulence behind a grid of bars. Open symbols
are other turbulence sources. The symbols with x,*, and + are from three different probes used in
decaying turbulence behind a grid of bars for which the Reynolds number was changed only by
altering the viscosity of the working fluid. Used by permission of AIP.
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High Re Equilibrium: fixed point solution

For Gy > 2 and Ry, # 0, Ry approaches Ry,_from above or below depending on
whether Ry is < or > R;oo.

= S%#“i G:Z  (18)=(3b)

But

5,822 [ @y,

*
Sk,

Therefore, as Ry approaches Rr_:

de G —2) g2 G*ez
ac °° kK "k
Vortex Dissipation
stretching of ¢
And thus
de ) g2 (19)
dt "k

According to Eq. (7), very large Ry requires large Gg, assuming EFD S,’QO (= 0.3)
values. Ry = 10* gives G§ = 25, which gives near balance between vortex
stretching and dissipation of € terms in % equation which is an important result —
if Gog > 2 = Gy — 2 = Gy; thus, vortex stretching ~ dissipation with slight edge
towards dissipation resulting in Eq. (19) with net dissipation coefficient -2, i.e., for
high Re equilibrium (fixed-point) decay has nearly equal contributions vortex

2
stretching and dissipation such that dissipation rate (per unit %) assumes universal
value, which is independent of G,. Note that vortex stretching only implicitly
. . d :
included in d—i equation.
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