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Chapter 6: Turbulent Transport and its Modeling 

Part 2:  Lagrangian Analysis of Turbulent Transport 

Gradient transport law requires mixing length (𝑙) ≪ region over which mean 

velocity can be assumed linear. For turbulent transport, 𝑙 determined by eddy 

size/action ≫ molecular mean free path as per molecular viscosity which is relevant 

viscous shear stress tensor. 

 

Figure shows linear approximation mean velocity profile is only valid for very small 

distances.  

However, concept that turbulent mixing in which fluid particles carry momentum 

from initial to final points over a mixing time to cause net momentum transport 

may have some validity.  
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To analyze the validity of  

𝜎12
𝑇 = −𝜌𝑢𝑣 = 𝜇𝑇

𝜕𝑈

𝜕𝑦
 

using 𝑈 = 𝑈 + 𝑢 nomenclature, the turbulent motions that cause 𝑢 and 𝑣 to be 

correlated are explored using DNS data for channel flow. 

 

 

Consider set of particles arriving at 𝑎 at time 𝑡, which originated at 𝑏 following 

various paths 𝑋(𝑠) such that 𝑋(𝑡) = 𝑎  and 𝑋(𝑡 − 𝜏) = 𝑏 where 𝑋(𝑠) and 𝑏 are a 

random ensemble of realizations. 𝜏 > 0 = motion at earlier times than 𝑡.  Note that 

𝑠 = time such that 𝑠 <  𝑡 = motion prior arrival at 𝑎 and 𝑠 >  𝑡 =  future time. 

 
𝑑𝑋(𝑠)

𝑑𝑠
= 𝑈(𝑋(𝑠), 𝑠) = 〈𝑈〉(𝑋(𝑠), 𝑠) + 𝑢(𝑋(𝑠), 𝑠)     (1) 

 

 

At time 𝑡: 

𝑈𝑎 = 〈𝑈𝑎〉 + 𝑢𝑎     (2) 

At time 𝑡 − 𝜏: 

𝑈𝑏 = 〈𝑈𝑏〉 + 𝑢𝑏     (3) 

 

 

Lagrangian Eulerian Reynolds decomposition using 

ensemble average where both 

terms are random since 𝑋(𝑠) 

is random. 
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Integration of Eq. (1) between 𝑡 − 𝜏 and 𝑡 gives: 

∫ 𝑑𝑋(𝑠)
𝑡

𝑡−𝜏

= ∫ 𝑈(𝑋(𝑠), 𝑠)𝑑𝑠
𝑡

𝑡−𝜏

 

𝑎 − 𝑏 = 𝐿 = ∫ 𝑈(𝑋(𝑠), 𝑠)𝑑𝑠
𝑡

𝑡−𝜏

 

Where 𝐿 represents the change in (time average) particle position from 𝑏 to 𝑎 in 

time 𝜏. 

 

Eq. (2) minus Eq. (3) gives: 

 

𝑢𝑎 = 𝑢𝑏 + (〈𝑈𝑏〉 − 〈𝑈𝑎〉)⏟        
1

+ (𝑈𝑎 − 𝑈𝑏)⏟      
2

    (4) 

 

Where 〈𝑈𝑏〉 represents the ensemble average = sum of all 𝑏 velocities divided by 

number of 𝑏 particles; and similarly, for 〈𝑈𝑎〉. 

 

Eq. (4) expresses 𝑢𝑎 in terms of value at earlier time 𝑢𝑏 plus factors that led to its 

change. 

 

1) Change in local mean (ensemble average) velocity field between b and a. 

2) Change in instantaneous velocity due to acceleration or deceleration caused 

by pressure or viscous forces = difference in instantaneous values of 

velocities. 

 

Thus, even for 𝑈𝑏 = 𝑈𝑎, i.e., non-accelerating flow 𝑢𝑎 ≠ 𝑢𝑏 due to changes in local 

mean velocity. 

  

Multiply Eq. (4) by 𝑣𝑎 and time average yields 

 

𝑢𝑎𝑣𝑎 = 𝑢𝑏𝑣𝑎⏟
1

+ 𝑣𝑎(〈𝑈𝑏〉 − 〈𝑈𝑎〉)⏟          
2

+ 𝑣𝑎(𝑈𝑎 − 𝑈𝑏)⏟        
3

     (5) 

Note for statistically stationary flow (at the same point) time average = ensemble 

average, i.e., 〈𝑈𝑎〉 = 𝑈𝑎. 

Scalar version of Eqs. (2) 

and (3) for x-component 

s = time 
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In Eq. (5) 𝑢𝑎𝑣𝑎 represents the Reynolds stress 𝜎12
𝑇 , such that 𝑢𝑎𝑣𝑎 is time averaged 

between 𝑡 −  𝜏 and 𝑡. 

 

For small 𝜏, 𝑢𝑏𝑣𝑎 converges to 𝑢𝑎𝑣𝑎, whereas for large 𝜏, 𝑢𝑏𝑣𝑎 goes to zero, which 

gives an upper limit to the mixing time.  

 

Term 2 is referred to as displacement transport term = ΦD = 𝑣𝑎(〈𝑈𝑏〉 − 〈𝑈𝑎〉) and 

represents momentum transport due to eddy mixing over time interval for which 

𝑢𝑎𝑣𝑎 is correlated. If locally, the mean velocity is linear this term will yield gradient 

diffusion/eddy-viscosity model, as will be shown later using its Taylor series 

representation. 

 

 

 

Note ΦD < 0 since for 𝑣𝑎 < 0, 〈𝑈𝑏〉 − 〈𝑈𝑎〉 > 0 and for 𝑣𝑎 > 0, 〈𝑈𝑏〉 − 〈𝑈𝑎〉 < 0. 

 

Term 3 is referred as ΦA and is absent in the molecular model (and gradient model) 

since molecules are assumed to retain their momentum over the mixing time. 

 

 

In this figure 

〈𝑈〉 = 〈𝑈𝑎〉 

〈𝑈𝑏〉 

〈𝑈〉 

〈𝑈𝑏〉 

〈𝑈𝑏〉 − 〈𝑈〉 < 0 

〈𝑈𝑏〉 − 〈𝑈〉 > 0 
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Channel Flow DNS  

 

For all 𝜏+ values, the sum of 𝑢𝑏𝑣𝑎, ΦA and ΦD must equal 𝑢𝑎𝑣𝑎, but magnitude 

of each term varies with 𝜏+. 

𝑢𝑏𝑣𝑎 goes to zero for large 𝜏+ =
𝜏𝑈𝜏

𝑦
, whereas for 𝜏+ = 0,  𝑢𝑎𝑣𝑎 = 𝑢𝑏𝑣𝑎. 

ΦA trend for short-term (𝜏+ < 100) strongly depends on 𝑦+ (not shown), although 

ΦA(𝜏
+ = 0) = 0. For large 𝜏+, independent of 𝑦+, and its value tends to 𝑢𝑎𝑣𝑎. 

ΦA = 𝑣𝑎(𝑈𝑎 − 𝑈𝑏) = 𝑣𝑎(〈𝑈𝑎〉 + 𝑢𝑎) − 𝑣𝑎(〈𝑈𝑏〉 + 𝑢𝑏) 

=   𝑣𝑎〈𝑈𝑎〉    +    𝑣𝑎𝑢𝑎    −    𝑣𝑎〈𝑈𝑏〉    −    𝑣𝑎𝑢𝑏 

 

 

 

ΦD decreases towards a minimum value close in value to 𝑢𝑎𝑣𝑎 before rising back 

towards zero. For large 𝜏+, ΦD → 0 

ΦD = 𝑣𝑎(〈𝑈𝑏〉 − 〈𝑈𝑎〉) =    𝑣𝑎〈𝑈𝑏〉    −    𝑣𝑎〈𝑈𝑎〉 = 𝑣𝑎〈𝑈𝑏〉 

𝑓〈𝑔〉 = 0 

Goes to 0 

as 𝜏+ → ∞ 

Goes to 0 

as 𝜏+ → ∞ 
 = 0 for all 𝜏+ 

No correlation between 𝑎 and 

𝑏 as their distance increases 

= 0 for 

all 𝜏+ 

Goes to 0 

as 𝜏+ → ∞ 

 

𝑢𝑏𝑣𝑎 

 

ΦD 

|ΦD| = max 

ΦA 

 

𝑢𝑏𝑣𝑎 = 0 

 

𝑦+ =
𝑦𝑈𝜏

𝜈
 = 54.8 

𝑈𝜏 = [𝜈
𝑑𝑈

𝑑𝑦
(0)]

1/2

=√
𝜏𝑤

𝜌
 

𝑈𝜏 = friction velocity 

𝜏+ =
𝜏𝑈𝜏
𝑦

 
𝑢𝑎𝑣𝑎 

 

𝐸𝑞. (5) = 𝑓(𝜏) =
1

𝜏
∫ 𝑣𝑎(𝐸𝑞. 4)𝑑𝑡
𝑡

𝑡−𝜏

 

 

At 𝜏+ = 0, 𝑎 ≡ 𝑏, 

i.e., 

𝑣𝑎〈𝑈𝑏〉 = 𝑣𝑎〈𝑈𝑎〉 = 0 

~45 
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ΦD minimum same order of magnitude as 𝑢𝑎𝑣𝑎 at time 𝜏𝐷 = mixing time as reflects 

most closely idea of gradient hypothesis.  

 

 

𝑢𝑣 < 0 = transport 𝑢 towards wall 

Shows 𝑢𝑣 =  𝑣𝑢 ≈ ΦD= 𝑣𝑎〈𝑈𝑏〉 and Term 1 + Term 3 only small effect at time 𝜏𝐷. 

The form of ΦD= 𝑣𝑎〈𝑈𝑏〉 suggests the nature of the u and v correlations, which 

produce 𝑢𝑣. 

 

Conclusion: 

For averaging  0 ≤ 𝜏+ ≤ 𝜏𝐷:  ΦD ≈ 𝑢𝑎𝑣𝑎 and ΦA + 𝑢𝑏𝑣𝑎 relatively small 

Whereas for averaging  0 ≤ 𝜏+ ≤  ∞:  ΦA = 𝑢𝑎𝑣𝑎 and ΦD = 0. 

Since 𝜏 represents the time/spatial difference between 𝑎 and 𝑏, and for 𝜏=𝜏𝐷 ΦD ≈

𝑢𝑣, 𝜏𝐷 therefore defines the mixing time and can be used to provide a model for 

𝑢𝑣, which is related to mean flow gradient transport. 

 

 

 

Lower half of channel 

0 < 𝑦+ < 1000 

Time averaging from 

t-𝜏𝐷 to t.  Showing 

that gradient model 

works for this flow 

and conditions. 

𝑢𝑣 

𝑢𝑎𝑣𝑎  

 ΦD  - - - 

ΦA + 𝑢𝑏𝑣𝑎 
𝐸𝑞. (5) = 𝑓(𝜏𝑑)

=
1

𝜏𝑑
∫ 𝑣𝑎(𝐸𝑞. 4)𝑑𝑡
𝑡

𝑡−𝜏𝑑
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Transport Producing Motions 

 

 

 

N paths that lead to 𝑢𝑎𝑣𝑎 < 0, i.e., 𝑢𝑎 and 𝑣𝑎 opposite sign must take precedence 

than events same sign. 

(a) Ranks from most + to most –  

(b)      partial sums ∑𝑢𝑖𝑣𝑖, a point is reached (𝑁0) where sign change from + to −       

∴ 𝑛 > 𝑁0 responsible 𝑢𝑣 < 0 since other contributions cancel out between 

+ and −.  Fraction (𝑁 − 𝑁0)/𝑁 reveals useful information on how 𝑢𝑣 is 

created. 

 

1: The cumulative sum 

starts to decrease 

because the additional 

contributions to 𝑢𝑣 

have negative sign. 

 

2: The cumulative sum 

becomes negative, 

showing that around 

21% of the 

contributions are 

responsible for the 

negative sign of 𝑢𝑣. 

1 2 
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𝑢𝑎𝑣𝑎 = 𝑢𝑏𝑣𝑎⏟
1

+ 𝑣𝑎(〈𝑈𝑏〉 − 〈𝑈𝑎〉)⏟          
2

+ 𝑣𝑎(𝑈𝑎 − 𝑈𝑏)⏟        
3

     (5) 

 

𝑢𝑎𝑣𝑎 and terms 1,2 and 3 for (𝑁 − 𝑁0)/𝑁 fraction of events for time interval from 

𝑡 – 𝜏𝐷 to 𝑡. For large portion of the channel 𝑢𝑎𝑣𝑎 and ΦD follow same trend. 

Fraction is generally 20% and rises to 30% at 𝑦+ = 30. Towards the center of the 

channel, i.e., large 𝑦 +, all the terms go to 0 due to + and – cancellation, as it would 

be expected in a symmetric flow.  

 

 

 

 

 

 

Plot for each term 

composing 𝑢𝑎𝑣𝑎  of the 

fraction of events (%) at each 

𝑦+ position whose 

contribution is not canceled 

by events with the opposite 

sign. Shows the contributions 

of  𝑢𝑏𝑣𝑎 and 𝑣𝑎(𝑈𝑎 − 𝑈𝑏) 

are linked to relatively rare 

events ≈1% 
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Events that make significant contributions to 𝑢𝑣 → vortical eddies with streamwise 

orientation. 

Sweep event: high speed flow towards wall, dominant contribution in buffer layer. 

Ejection event: low speed flow ejected outward, occurs outside buffer layer. 

Mixing time = time over which coherent vortices exert influence over motions of 

fluid particles.  
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Gradient Transport  

If gradient transport is valid, it should be due to ΦD under further hypothesis that 

change in local mean velocity along particle paths is linear such that a Taylor series 

can be used: 

𝑏 = 𝑎 − 𝐿 

〈𝑈𝑏〉 = 〈𝑈𝑎−𝐿〉 

〈𝑈𝑏〉 = 𝑈𝑎 − 𝐿2
𝑑𝑈

𝑑𝑦
+⋯ 

ΦD = 𝜈𝑎(〈𝑈𝑏〉 − 𝑈𝑎) = 𝜈𝑎 (𝑈𝑎 − 𝐿2
𝑑𝑈

𝑑𝑦
− 𝑈𝑎 +⋯) = −𝜈𝑎𝐿2

𝑑𝑈

𝑑𝑦
+⋯ 

which shows ΦD equivalent gradient transport model; thus, 

−ΦD ≈ 𝜈𝑎𝐿2
𝜕𝑈

𝜕𝑦
≈ −𝑢𝑣 

Thus 𝜐𝑇 related 𝜈𝑎𝐿2(𝜏); however, in this form depends on mixing time 𝜏; since, 

𝜈𝑎𝐿2 = ∫ 𝜈𝑎𝑣𝑏(𝑋(𝑠), 𝑠)
𝑡

𝑡−𝜏

𝑑𝑠 = 𝜈𝑎𝜈𝑏(𝜏) 

Which can be overcome by defining Lagrangian auto-correlation function: 

𝑓𝜈𝜈(𝜏) =
𝜈𝑎𝜈𝑏(𝜏)

𝜈𝑎
2

 

similarly to what was done for the temporal autocorrelation function 𝑅𝐸(𝜏), the 

Lagrangian integral scale is defined by 

𝜈𝑎
2𝒯22 = ∫ 𝑓𝜈𝜈(𝜏)𝑑𝜏

0

−∞

 

And 𝑓𝜈𝜈(𝜏) = 0 for |𝜏| large, such that: 

∫ 𝜈𝑎𝜈𝑏(𝜏)
0

−∞

𝑑𝜏 = 𝜈𝑎
2𝒯22 = 𝜈𝑡    (6) 

Shows gradient transport due to correlation between 𝜈𝑎 and 𝜈𝑏 = transverse 

velocity all fluid particles arriving a from 𝑡 − 𝜏 based on Lagrangian integral scale 𝒯22. 

𝐿 = ∫ 𝑈(𝑋(𝑠), 𝑠)𝑑𝑠
𝑡

𝑡−𝜏

 

𝐿2(𝜏) = ∫ 𝑣𝑏(𝑋(𝑠), 𝑠)𝑑𝑠
𝑡

𝑡−𝜏

 

𝑉̅ = 0 as are 
𝑑𝑈

𝑑𝑥 
 = 
𝑑𝑈

𝑑𝑧
 = 0 

 

𝒯22 like 

temporal Taylor 

macro scale t 

has units of t 
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If gradient transport were physically accurate then 𝜈𝑡 in Eq. (6) should approximate 

the eddy viscosity model 

𝜈𝑡 = −
𝑢𝑣

𝑑𝑈/𝑑𝑦
 = physical 𝜈𝑡 vs. 𝜈𝑎

2𝒯22 

 

Same discrepancies for 𝑦+ > 500 where physical 𝜈𝑡 = constant and modeled 

decreases; and near wall where physical < modeled. Note 𝜈𝑡 > 0 over whole 

domain as per 𝑑𝑈/𝑑𝑦, except center channel where both equal 0; and vice versa 

for upper channel where 𝑑𝑈/𝑑𝑦 < 0 and 𝑢𝑣 > 0. 

 

Obvious differences gradient transport vs actual 𝑢𝑣. 

Large differences near wall, whereas smaller in outer part ∴ more suitable central 

part despite 𝜈𝑡 differences shown above. 

Near wall where gradient 𝑈 

largest and particles travel 

much greater distances than 

linear approximation 



12 
 

 

 

 

However, not satisfied for rough wall as 𝜈𝑡 shows unphysical behavior; and 

numerical methods unstable for 𝜈𝑡 < 0. 

𝜈𝑡 = −
𝑢𝑣

𝑑𝑈/𝑑𝑦
 

Rough wall larger shear stress and 𝑢𝑣; therefore 𝑈 max closer rough wall and 
𝑑𝑈

𝑑𝑦
=

0 closer rough wall; and since 𝑢𝑣 linear its zero crossing closer smooth wall, which 

creates zone in middle channel with 𝜈𝑡 < 0.  In fact, at 
𝑑𝑈

𝑑𝑦
= 0, 𝜈𝑡 = ∞, i.e., 

unphysical. 

Rough 

side 

𝜈𝑡 = ±∞ 

𝑈 max closer 

rough wall 

𝑑𝑈

𝑑𝑦
= 0  

Smooth 

side 

Larger 𝑢𝑣 

Zero crossing  𝑢𝑣 

closer smooth wall 

𝜈𝑡 = 0 

Negative 

𝜈𝑡 region 


