Chapter 6: Turbulent Transport and its Modeling

Part 1: Molecular Momentum Transport

pu;u; = turbulent momentum flux

puv = x momentum pu in y direction due to turbulent v, forV = (U + u,v,w)

Classical ideas for modeling turbulent transport were based on molecular
momentum transport for ideal (non-dense) gas: molecules far apart and inter-
molecular forces are weak. Molecules in free flight with brief collisions at which
time their direction and speed change.
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Figure 6.1 Molecular model of the viscosity of a gas.

Across plane separating the gas in two regions, the molecules do not attract or
repel each other (contrasting to liquids); therefore, the primary source of shear
stress is that due to microscopic transport of momentum due to random molecular
motions.



Newtonian fluid stress rate of strain relationship
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Which can be derived for an ideal gas using four facts from kinetic theory:

1) Molecules that cross the plane x, = constant begin their free flight on

average at distance i%l (I = mean free path) from the plane.

2) Mean free path f(d, n):

d = molecular diameter

| =1/(2rd?*n) n = number density of
molecules per unit volume

Since molecules have a distribution of speeds and they are moving relative to each
other, RHS = %RHS or if assume Maxwellian distribution of velocities RHS =
0.707-RHS.
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3) Flux of velocities across x,-plane per unit area = 2, where v = average

molecular speed (without regard direction).

4) Average molecular speed
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Shear stress x,-plane

x, force
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= net flux momentum across x, plane

x-momentum of one particle from above:
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x-momentum of one particle from below:
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Net flux = difference between the momentum of a particle from above minus a
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particle from below times the rate that the particles cross a unit area iz
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More complete theory includes inter molecular forces and better agreement T
dependence.

Viscous liquids need more advanced models considering intermolecular forces but
results in same 7;; = u(v; j + v;;) relationship.
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Modelling Turbulent Transport by Analogy to Molecular Transport

Newtonian fluids (incompressible flow) NS
&j =5 (Ui,j + ;)
U = isotropic viscosity

= _p5ij + 75 = property of the
fluid

O-ij = —pSij + Zﬂgij

vs. RANS
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In analogy the turbulent Reynolds stresses are modeled using the eddy viscosity
concept
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Anisotropic RS is modeled using isotropic eddy viscosity v; or yu; = pv;, which may
be contrasted with u definition for ideal gas; however, no reason to believe
turbulent motions are without directional biases that are not aligned with §;;.

Nonetheless eddy viscosity concept forms the basis of traditional RANS modeling,
which focuses on modeling of v;.



““AMPLE 4.8

“te out all the components of the stress tensor T in (x, y, z)-coordinates in terms of u = (1, v, w),
=2 1= derivatives.
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For example, consider 1D shear flows (free shear flows, channel/pipe, and BL) for
which most import RS is:

Large scale turbulent eddies are most important in transporting momentum across
the flow, which are mostly driven by inertia and pressure forces vs. viscosity.
Assume —puv due to turbulent eddies with transverse size [ and intensity
characterized by velocity scale u.
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The fluid velocity is: V(y) = (U + u, v, w) with Z_;] >0

If fluid particle retains its total velocity V from y toy + dy gives, U+u =
constant — If U increases, u decreases and vice versa.

x-momentum tends towards decreasing y

v>0 - u<o . .
as turbulence diffuses gradients and

v<0 -> u>0 — uv <0

au
decreases —
dy

X-momentum transport in y direction, i.e., across y = constant AA per unit area

M,, = [ piiV -n dA, where @i = (U + u)

M,,,

7 = p(U +uw)v = pUv + puv = puv

i.e., pu;u; = average flux of i-momentum in j-direction = pu;u; = average flux of j-
momentum in i-direction due to symmetry of the Reynolds stress tensor.
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Assume linear relationship and eddy viscosity:

Dimensional analysis

___szdﬁ_a du
uv = Cug o dy U &
i.e., Uy = turbulent velocity scale
vy = Clug | = turbulent length scale

v; has units m?/s same as

Which is consistent with ideal gas theory: u = lpﬂl
3 molecular viscosity.

The time scale for the large-scale turbulent eddy (turnover time):

l/ug
And the time scale for the mean flow:
— -1
dUu
dy

Since the turbulence produces the mean flow gradient, it can be assumed their
times scales are proportional:
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—uv = CI?




1) Prandtl mixing length theory. [ depends on the type of flow.
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FIGURE 12.20 Schematic drawing of an eddy of size Iy in a shear flow with mean velocity profile Li(y). A
velocity fluctuation, i or ©, that might be produced by this eddy must be of order I(dU/dy). Therefore, we expect
that the Reynolds shear stress will scale like ﬁ~f%c_fru,.*:{y]2.

[ «< larger scale eddies

Free shear-flow: [ = ¢§ where ¢ = f(mixing layer, jet, wake) and § = appropriate
width viscous flow

Wall flows (channel/pipe and BL): | = ky, i.e., eddy size « y near wall

= ¢ away from the wall, § = BL thickness
2) k — € model

u=+kandl = k3/2/e = length associated large eddy turnover time |/u

2
Uy = Cﬂp% — additional equations needed to model k and «.



Eddy viscosity concept is based on ideal gas molecular transport; thus, assumes:

1) Mixing occurs over well-defined mixing time.
2) Momentum preserved between collisions.
3) Linear velocity variation over the mixing length.
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Fig. 2.22 Ratio of eddy viscosity to kinematic viscosity
(turbulent Reynolds number, v/v) as a function of distance
from the wall, normalized by the channel half-height, in a
turbulent channel flow at several Reynolds numbers. The
symbols represent data obtained from experimental
measurements, while the different lines indicate estimates
from tweaking a parameter in an eddy viscosity model (see
(8.6)). (Data reproduced from Hussain and Reynolds (1975),
adapted from figure 16(a))

Note that the ratio increases with Re.



