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Chapter 5: Energy Decay in Isotropic Turbulence 

Part 6: Limitations, shortcomings, and refinements 
 

Scales of the turbulent motions provide a conceptual framework: energy cascade, 

vortex stretching, and Kolmogorov hypotheses.  Some issues still under 

investigation, which are of interest.  Conventional thinking is that these issues have 

limited impact for the study of practical turbulent flow applications since small 

scale motions 𝑙 < 𝑙𝐸𝐼 are thought to not directly influence the large-scale motion 

anisotropy and production of turbulence.  However, this may not in fact be strictly 

true and these issues also have important implications for turbulence modeling. 

 

The Reynolds number: 

An important limitation of the Kolmogorov hypotheses is that they apply only for 

high Re, but a criterion for “sufficiently” high Re is not provided. Laboratory flows 

𝑅𝑒~104 and 𝑅𝜆~150 show dissipative scales to be anisotropic.  Note IIHR towing 

tank and wave basin usually use 3 m model with 𝑅𝑒 ~ 5 × 106 (𝑅𝑒𝐿~2000) 

 

Experiments show that 𝐸(𝜅) ~ 𝜅−𝑝, but the Kolmogorov -5/3 (p = 1.7) spectrum is 

approached slowly as Re increases → 𝑝 =
5

3
− 8𝑅𝜆

−3/4, such that for 𝑅𝜆 = 200 →

𝑝 = 1.5.  Note 𝑅𝑒𝐿 =
3

20
𝑅𝜆
2 ≈ 𝑅𝜆

2 . 

 

 

𝑹𝒆𝑳~ 𝟏𝟎𝟒 𝟏𝟎𝟔 𝟏𝟎𝟖 
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DNS shows that energy transfer occurs not only from large to small 𝑙, but also from 

small to large 𝑙, with net transfer from the larger to the smaller scales. 

 

In wave number space, as shown previously, the energy transfer is accomplished 

by triad interactions among modes: 

𝜅𝑎 + 𝜅𝑏 + 𝜅𝑐 = 0 

DNS results show that the transfer is predominantly local, with |𝜅𝑎| ≈ |𝜅𝑏|, but 

that is affected by interactions with a third mode of significantly smaller wave 

number |𝜅𝑐| ≪ |𝜅𝑎| ≈ |𝜅𝑏|. 

 

 

 

 

 

 

Higher-order statistics  

We have mostly (other than skewness S and palenstrophy G) considered only 

second order velocity statistics (i.e., statistics that are quadratic in velocity), which 

are of primary importance, e.g., as per the TKE 𝑘 and Reynolds stresses 〈𝑢𝑖𝑢𝑗〉. 

 

Simplest examples of higher-order statistics are the normalized velocity-derivative 

moments: 

𝑀𝑛 = (𝑢1,1)
𝑛
(𝑢1,1)

2
𝑛/2

⁄  

 

For 𝑛 = 3 and 𝑛 = 4, these are the velocity-derivative skewness 𝑆 and kurtosis 𝐾. 

 

𝑀3 = (𝑢1,1)
3
(𝑢1,1)

2
3/2

⁄ = 

𝑆 < 0 = 𝑓( vortex stretching and related energy transfer between scales) and 

measure of the bias or asymmetry in the velocity fluctuations between + and – 

values. 

Skewness (𝑆 = 0 for Gaussian) 

Triads of wavenumbers. 
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𝑀4 = (𝑢1,1)
4
(𝑢1,1)

2
2

=⁄  

 

Measure of how much the velocity fluctuations are congregated at large and small 

values. 

Kolmogorov originally assumed, the PDF of the velocity fluctuations is 

homogeneous and isotropic, which is often approximated as Gaussian, such that 

for each n, 𝑀𝑛 is a constant; however, in fact, S and K are not constant but increase 

with Re. 

 

Recall 𝑆 (odd 𝑀𝑛) for 𝑢1,1 plays a major role in the equation for the decay of 

isotropic turbulence, as does G (even 𝑀𝑛). Thus, non-Gaussian processes must be 

considered to predict the transfer term. 

 

As shown in Part 1, 𝑆 is related to the vortex stretching term in the 𝜀 equation and 

in Part 3 to the triple velocity correlation terms in the similarity form of the K-H 

equation. Fig. 6.32 compares the distribution of the normalized velocity derivative 

with a Gaussian distribution. The effect of the tails is fundamental to obtain a 

negative skewness, i.e., transfer of energy.  

 

An equivalent definition of the skewness in wave number space is, which shows its 

relationship to the ratio of the Transfer term and energy spectrum: 

 

𝑆(𝑡) =
3√30

14

∫ 𝑘2𝑇(𝑘, 𝑡)𝑑𝑘
∞

0

[∫ 𝑘2𝐸(𝑘, 𝑡)𝑑𝑘
∞

0
]
3/2

 

 

𝐾 ≈ 4 for low 𝑅𝜆 and 𝐾 ≈ 40 for high 𝑅𝜆. Kurtosis does not reach an asymptotic 

value, but it increases as ~𝑅𝜆
3/8. It is expected that 𝐾 is related to 𝐺 

𝐺 =
𝑢2 (𝑢1,11)

2

(𝑢1,1)
2
2  

Kurtosis (𝐾 = 3 for Gaussian) 

Appendix A.1 
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For 𝑅𝜆 < 10, S decreases rapidly and it should go towards zero for 𝑅𝜆 ≪ 1, as 

shown in Part 3. ( 𝑘 goes to zero like 𝜂−4 and is related to Skewness see page 14). 

 

𝑆𝑘 = 0.5 was used 

to solve 𝑘 − 𝜀 

equations and K-H 

equation. 

S and K are 

very non-

Gaussian 
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Higher order statistics pertaining to the inertial subrange are provided by the 

longitudinal velocity structure functions (Chapter 4 Part 8): 

 

𝐷𝑛(𝑟) ≡ (∆𝑟𝑢)
𝑛 

Where: 

∆𝑟𝑢 ≡ 𝑈1(𝑥 + 𝑒1̂𝑟, 𝑡) − 𝑈1(𝑥, 𝑡) 

 

Recall for the second (Chapter 4, Part 8) and third (Part 3, pg. 18) order structure 

functions 𝐷2(𝑟), 𝐷3(𝑟) in the inertial sub-range: 

 

𝐷2 = 𝐷𝐿𝐿(𝑟, 𝑡) = 𝐶2(𝜀𝑟)
2/3 

𝐷3 = 𝐷𝐿𝐿𝐿(𝑟, 𝑡) = 𝐶3𝜀𝑟 

 

Which were determined according to Kolmogorov’s second hypothesis, for 𝐿 ≫

𝑟 ≫  𝜂, 𝐷𝑛(𝑟) based on the assumption that they depend only on 𝜀 and 𝑟, i.e., 

 

𝐷𝑛(𝑟) ≡ (∆𝑟𝑢)
𝑛 = 𝐶𝑛(𝜀𝑟)

𝑛/3 

 

Where 𝐶𝑛 are constants (𝐶2 = 2, 𝐶3 = −4/5). 

 

More generally in the inertial subrange,  

 

𝐷𝑛(𝑟)~𝑟
𝜁𝑛 
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But the measured exponents differ from the Kolmogorov prediction, i.e., 𝜁𝑛 =
𝑛

3
,  

as clearly 𝜁𝑛 ≠
𝑛

3
 for n ≥ 4. 

 

 

It is instructive to examine the PDFs that underlie 𝑀𝑛. For example, for n=1, the 

PDF is denoted by 𝑓𝑍(𝑧), where 𝑍 is the standardized derivative 

𝑍 ≡ 𝑢1,1/(𝑢1,1)
2
1/2

 

 

𝑀1 = (𝑢1,1)
1
(𝑢1,1)

2
1/2

⁄  
 

Appendix A.2 
 

𝑀𝑛 ≡ 2∫ 𝑧𝑛𝑓𝑍(𝑧)𝑑𝑧
∞

0
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The tails of the distribution (beyond 4 SD) follow straight lines → exponential tails: 

 

𝑓𝑍(𝑧) = 0.2 exp(−1.1|𝑧|),      for 𝑧 > 4 

𝑓𝑍(𝑧) = 0.2 exp(−1.0|𝑧|),      for 𝑧 < −4    (0) 

 

Where the slower decay for negative 𝑧 is consistent with 𝑆 < 0.  This clearly shows 

the importance of these rare events in the determination of S that has been shown 

to play a major role in the energy cascade. 

 

The tails represent rare events:  using (0) the probability of |𝑍| exceeding 5 is 

equal to 0.3% (Appendix A.5). 

𝑃(−∞ ≤ 𝑉 ≤ −5) + 𝑃(5 ≤ 𝑉 ≤ ∞) = 2(𝐹(∞) − 𝐹(5)) = 2∫ 𝑓(𝑉)𝑑𝑉
∞

5

 

However, these low probability tails can make vast contributions to higher 

moments.  For example, compare the tails for 

𝑀𝑛
(5)
≡ 2∫ 𝑧𝑛𝑓𝑍(𝑧)𝑑𝑧

∞

5

 

Using (0) and considering only even moments so we can compare with Gaussian 

values. 

 

The super skewness 𝑀6 = 220, while Gaussian value is 15. 

𝑀𝑛 ≡ 2∫ 𝑧𝑛𝑓𝑍(𝑧)𝑑𝑧
∞

0
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Dissipation intermittency 

Discrepancies between 𝑀𝑛 and 𝐷𝑛(𝑟) with EFD (i.e., non-Gaussian behavior) are 

attributed to the phenomenon of internal intermittency and accounted for in the 

refined similarity hypotheses, which introduces several new quantities related to 

dissipation. 

 

Instantaneous dissipation 

𝜀0 = 2𝜈𝑠𝑖𝑗𝑠𝑖𝑗      (1) 

And 

𝜀𝑟(𝑥, 𝑡) =
3

4𝜋𝑟3
∭ 𝜀0(𝑥 + 𝑟, 𝑡)𝑑𝑟

∀(𝑟)

     (2) 

 

which represents the average of 𝜀0 within a sphere ∀(𝑟) of radius 𝑟. 

 

One-dimensional surrogates for these quantities are represented by: 

𝜀0̂ = 15𝜈 (
𝜕𝑢1

𝜕𝑥1
)
2
  (2𝐴)    𝜀̃ = 15𝜈 (

𝜕𝑢1

𝜕𝑥1
)
2
    

𝜀𝑟̂(𝑥, 𝑡) =
1

𝑟
∫ 𝜀𝑟̂(𝑥 + 𝑟, 𝑡)
𝑟

0

𝑑𝑟 

 

And in locally isotropic turbulence, each of these quantities have mean 𝜀, 

 i.e.,    

〈𝜀0̂〉 = 〈𝜀𝑟̂(𝑥, 𝑡)〉 = 𝜀 = 𝜀̃                (2𝐵) 

𝜀0̂ intermittently attains high values.  

𝑅𝜆 laboratory (moderate) → 𝜀0̂/ 𝜀 ≈ 15 

𝑅𝜆 atmosphere (high) → 𝜀0̂/ 𝜀 ≈ 50 
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Kolmogorov conjectured that: 

𝜀0̂
2

𝜀2
~(𝐿/𝜂)𝜇 

𝜀𝑟̂
2

𝜀2
~(𝐿/𝑟)𝜇 

Where 𝐿 = 𝑘3/2/𝜀.  For the inertial subrange, i.e., η ≪ 𝑟 ≪ 𝐿 and 𝜇 > 0 = 

constant=intermittency exponent.  Note above equations are for mean square 𝜀0̂ 

and 𝜀𝑟̂. 

 

EFD for 
𝜀̂𝑟
2

𝜀2
 shows 𝜇 = 0.25 ± 0.05. 

 

Note that 𝜀0̂
2/𝜀2 = 𝐾 (as shown later) and for 𝜇 = 0.25, and recalling that 

𝐿/𝜂~𝑅𝜆
3/4: 

 

𝐾~𝑅𝜆
3𝜇/2 = 𝑅𝜆

3/8 

 

Which is consistent with EFD shown in Fig. 6.30.  Recall discussion Chapter 4 Part 6 

pg. 19 that bottleneck effect and departure small-scale turbulence from -5/3 law 

related to 𝜀 intermittency. 
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Refined similarity hypotheses  

Original first hypothesis:  ∆𝑟𝑢 for 𝑟 ≪ 𝐿 are universal and 𝑓(𝜀, 𝜈). 

Refined first hypothesis: ∆𝑟𝑢 for 𝑟 ≪ 𝐿 are universal and 𝑓(𝜀𝑟 , 𝜈). 

Refined second hypothesis: ∆𝑟𝑢 for η ≪ 𝑟 ≪ 𝐿 are universal and 𝑓(𝜀𝑟). 

 

The structure functions in the inertial subrange are: 

 

𝐷𝑛(𝑟) = 〈(∆𝑟𝑢)
𝑛〉 = 〈𝐶𝑛(𝜀𝑟)

𝑛/3|𝜀=𝜀𝑟〉 = 𝐶𝑛〈𝜀𝑟
𝑛/3〉𝑟𝑛/3 

 

Where 𝐶𝑛 are universal constants and 𝜀𝑟  is a volume averaged variable, as per 

𝜀𝑟̂(𝑥, 𝑡). 

 

For 𝑛 = 3, since 𝜀𝑟 = 𝜀, the original and the refined hypotheses make the same 

prediction, i.e., 𝐶3 = −4/5, which represents the Kolmogorov 4/5 law.  

 

For 𝑛 = 6, using  

𝜀𝑟̂
2

𝜀2
~(𝐿/𝑟)𝜇 

Such that 

𝐷6(𝑟) = 𝐶6〈𝜀𝑟
6/3〉𝑟6/3 = 𝐶6〈𝜀𝑟

2〉𝑟2~𝜀2𝐿𝜇𝑟2−𝜇 

 

A power law in 𝑟 as per 𝐷𝑛(𝑟)~𝑟
𝜁𝑛 with 𝜁6 = 2 − μ = 1.75 for μ = 0.25. (See Fig. 

6.31) 
 

For other 𝑛, 𝜀𝑟
𝑛/3 can be determined from the PDF of 𝜀𝑟, which is assumed to be 

log-normally distributed, i.e., ln(𝜀𝑟/𝜀𝑟𝑒𝑓) has Gaussian distribution such that: 

 

𝜀𝑟
𝑛

𝜀𝑟
𝑛 ~(𝐿/𝑟)

𝑛(𝑛−1)𝜇/2     (3) 

 

 

Pope Ex 6.37 

Appendix A.3 
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Consequently, if the structure function is predicted to scale as  𝐷𝑛(𝑟)~𝑟
𝜁𝑛, 

 

𝐷𝑛(𝑟) = 𝐶𝑛 〈𝜀𝑟
𝑛
3〉 𝑟

𝑛
3  

 

= 𝐶𝑛𝜀𝑟
𝑛/3
(𝐿/𝑟)𝑛(𝑛/3−1)𝜇/6𝑟𝑛/3 

 

= 𝐶𝑛𝜀𝑟
𝑛/3
𝐿𝑛(𝑛−1)𝜇/6𝑟

𝑛/3−𝑛(𝑛/3−1)𝜇/6⏟            

𝜁𝑛  

 

 

𝜁𝑛 =
1

3
𝑛 [1 −

1

6
𝜇(𝑛 − 3)] 

 

For 𝑛 ≤ 10, this prediction is in reasonable agreement with Fig. 6.31. For large 

𝑛, the large errors are due to the assumption of the log-normal distribution.  

 

For 𝐷2(𝑟):  

 𝜁2 =
2

3
+
1

9
𝜇 ≈

2

3
+
1

36
 

 

 

Applying a Fourier transform to 𝐷𝑛(𝑟)                              results in an expression for 

the energy spectrum in the inertial range of the form:  

 

𝐸(𝑘) = 𝐴𝜀𝑟
𝑛
3𝑘−

5
3(𝐿𝑘)−𝜇  

 

This shows that in the inertial-range the spectrum is predicted to be a power law 

𝐸(𝜅)~𝜅−𝑝 with 

 

𝑝 =
5

3
+
1

9
𝜇 ≈

5

3
+
1

36
 

 

Hence, only small correction to the -5/3 spectrum. 

 

 

Appendix A.4 
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For the velocity-derivative moments, using Eq. (2A) 

 

(
𝜕𝑢1
𝜕𝑥1

)
2

=
𝜀0̂
15𝜈

 

 

And for a general exponent 𝑛 

 

(
𝜕𝑢1
𝜕𝑥1

)
𝑛

= (
𝜀0̂
15𝜈

)

𝑛/2

= 𝐶𝑛 (
𝜀0̂
𝜈
)

𝑛/2

 

 

Using the refined hypotheses (Eq. 2B) yield 

 

(𝑢1,1)
𝑛
= 𝐶𝑛 (

𝜀𝑟
𝜈
)

𝑛/2

 

 

With 𝐶𝑛 = constants, and hence 

 

𝑀𝑛 =
(𝑢1,1)

𝑛

(𝑢1,1)
2
𝑛/2

=
𝐶𝑛 (

𝜀𝑟
𝜈 )

𝑛
2

(𝐶2 (
𝜀𝑟
𝜈 ))

𝑛/2
=
𝐶𝑛 𝜀𝑟

𝑛/2

(𝐶2𝜀𝑟)
𝑛/2
     (4) 

 

 

Substituting Eq. (3) into Eq. (4) for 𝑛 = 3 (𝑆) and 𝑛 = 4 (𝐾): 

 

𝑀3 =
𝐶𝑛 𝜀𝑟

3/2

(𝐶2𝜀𝑟)
3/2

=
𝐶𝑛 

(𝐶2)
3/2
(𝐿/𝑟)3/2(3/2−1)𝜇/2 =

𝐶𝑛 

(𝐶2)
3/2
(𝐿/𝑟)3𝜇/8      

 

𝑀4 =
𝐶𝑛 𝜀𝑟

4/2

(𝐶2𝜀𝑟)
4/2

=
𝐶𝑛 

(𝐶2)
3/2
(𝐿/𝑟)2(2−1)𝜇/2 =

𝐶𝑛 

(𝐶2)
3/2
(𝐿/𝑟)𝜇      
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−𝑆~(𝐿/𝑟)3𝜇/8 

𝐾~(𝐿/𝑟)𝜇 

Hence 

−𝑆~𝐾3/8 

 

Which is consistent with EFD: 
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Appendix A 

A.1 

Definition of Skewness of 𝑢1,1: 

𝑆(𝑡) = −(𝑢1,1)
3
(𝑢1,1)

2
3/2

⁄      (1𝐴) 

 

Using the relation obtained in Chapter 4 Part 3: 

 

𝑢2𝑓′′(0) = −𝑢1,1
2    (2𝐴) 

 

And substituting Eq. (2A) into (1A) gives 

𝑆(𝑡) =
(𝑢1,1)

3

(𝑢2𝑓′′(0))

3
2

    (3𝐴) 

 

Next, the relation between 𝑓′′(0) and 𝜀 is given by 

 

𝜀 = −15𝜈𝑢2𝑓′′(0) → 𝑓′′(0) = −
𝜀

15𝜈𝑢2
     (4𝐴) 

 

Substituting Eq. (4A) into (3A) yields 

 

𝑆(𝑡) =
(𝑢1,1)

3

(𝑢2𝑓′′(0))

3
2

= −
(𝑢1,1)

3

(𝑢2
𝜀

15𝜈𝑢2
)

3
2

= −
(𝑢1,1)

3

(
𝜀
15𝜈

)

3
2

     (5𝐴) 
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Where 𝜀 can be related to the 3D energy spectrum using 

 

𝜀 = 2𝜈∫ 𝜅2𝐸(𝜅, 𝑡)𝑑𝜅
∞

0

     (6𝐴) 

 

And substituting Eq. (6A) into (5A) gives 

 

𝑆 = −
(𝑢1,1)

3

(
2𝜈 ∫ 𝜅2𝐸(𝜅, 𝑡)𝑑𝜅

∞

0

15𝜈
)

3
2

= −(
15

2
)
3/2 (𝑢1,1)

3

(∫ 𝜅2𝐸(𝜅, 𝑡)𝑑𝜅
∞

0
)
3
2

     (7𝐴) 

 

Next, (𝑢1,1)
3
 can be related to 𝑘′′′(0) as shown in Chapter 4 Part 2 

 

(𝑢1,1)
3
= 𝑆11,1 = 𝑢𝑟𝑚𝑠

3 𝑘′′′(0)     (8𝐴) 

 

Moreover, in Chapter 5 Part 4 the quantity 𝑆𝑖,𝑖  was defined as  

 

𝑆𝑖𝑖(𝑟, 𝑡) =
𝜕𝑆𝑖𝑘,𝑖
𝜕𝑟𝑘

(−𝑟, 𝑡) +
𝜕𝑆𝑖𝑘,𝑖
𝜕𝑟𝑘

(𝑟, 𝑡) 

 

Or equivalently 𝑟𝑆𝑖,𝑖(𝑟, 𝑡) is the Fourier transform of 𝑇(𝑘, 𝑡)/𝑘 where 𝑇(𝑘, 𝑡) is 

the transfer term: 

𝑆𝑖,𝑖(𝑟, 𝑡) = 2∫
sin 𝑘𝑟

𝑘𝑟
𝑇(𝑘, 𝑡)𝑑𝑘

∞

0

     (9𝐴) 
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Next, sin(𝑘𝑟) can be approximated using a Taylor series expansion as: 

 

sin(𝜅𝑟) = 𝜅𝑟 −
𝜅3𝑟3

6
+ 𝑂(𝑟5) 

 

Such that Eq. (9A) becomes: 

 

𝑆𝑖,𝑖(𝑟, 𝑡) = 2∫
(𝜅𝑟 −

𝜅3𝑟3

6 )

𝑘𝑟
𝑇(𝑘, 𝑡)𝑑𝑘

∞

0

 

= 2∫ (1 −
𝜅2𝑟2

6
)𝑇(𝑘, 𝑡)𝑑𝑘

∞

0

 

= 2∫ 𝑇(𝑘, 𝑡)𝑑𝑘
∞

0

− 2∫ (
𝜅2𝑟2

6
)𝑇(𝑘, 𝑡)𝑑𝑘

∞

0

 

 

Where the first term on the RHS is zero in view of the reasoning shown in Chapter 

5 Part 4. 

𝑆𝑖,𝑖(𝑟, 𝑡) = −∫ (
𝜅2𝑟2

3
)𝑇(𝑘, 𝑡)𝑑𝑘

∞

0

     (10𝐴) 

 

Isolating ∫ 𝜅2𝑇(𝑘, 𝑡)𝑑𝑘
∞

0
 on the RHS of Eq. (10A) gives 

 
3

𝑟2
𝑆𝑖,𝑖(𝑟, 𝑡) = −∫ 𝜅2𝑇(𝑘, 𝑡)𝑑𝑘

∞

0

     (11𝐴) 

 

In Appendix A.7 of Chapter 5 Part 4 it was shown that: 

 

𝑆𝑖𝑖(𝑟, 𝑡) =
35

6
𝑢𝑟𝑚𝑠
3 𝑟2𝑘′′′(0, 𝑡)     (12𝐴) 
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Substituting Eq. (12A) into (11A) yields 

 

3

𝑟2
35

6
𝑢𝑟𝑚𝑠
3 𝑟2𝑘′′′(0, 𝑡) = −∫ 𝜅2𝑇(𝑘, 𝑡)𝑑𝑘

∞

0

 

35

2
𝑢𝑟𝑚𝑠
3 𝑘′′′(0)  = −∫ 𝜅2𝑇(𝑘, 𝑡)𝑑𝑘

∞

0

 

𝑘′′′(0) = −
2

35𝑢𝑟𝑚𝑠
3 ∫ 𝜅2𝑇(𝑘, 𝑡)𝑑𝑘

∞

0

    (13𝐴) 

 

Substituting Eq. (13A) in the RHS of Eq. (8A) gives 

 

(𝑢1,1)
3
= 𝑢𝑟𝑚𝑠

3 𝑘′′′(0) = −
2

35
∫ 𝜅2𝑇(𝑘, 𝑡)𝑑𝑘
∞

0

     (14𝐴) 

 

Finally, substituting Eq. (14A) into (7A) an expression for 𝑆(𝑡) as a function of the 

transfer term and the energy spectrum is obtained: 

 

𝑆(𝑡) = −(
15

2
)
3/2 (𝑢1,1)

3

(∫ 𝜅2𝐸(𝜅, 𝑡)𝑑𝜅
∞

0
)
3
2

=
2

35
(
15

2
)
3/2 ∫ 𝜅2𝑇(𝑘, 𝑡)𝑑𝑘

∞

0

(∫ 𝜅2𝐸(𝜅, 𝑡)𝑑𝜅
∞

0
)
3
2

 

  

2

35
(
15

2
)
3/2

=
2

7

3

2
√
15

2
√
2

2
=
3

14
√30 

 

𝑆(𝑡) =
3

14
√30

∫ 𝜅2𝑇(𝑘, 𝑡)𝑑𝑘
∞

0

(∫ 𝜅2𝐸(𝜅, 𝑡)𝑑𝜅
∞

0
)
3/2
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A.2 
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A.3 
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A.4 
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A.5 

Characterization of random variables 

𝑝 = 𝑃(𝐵) = 𝑃(𝑈 < 𝑉𝑏) 

0 ≤ 𝑝 ≤ 1 

0=impossible, 1=sure thing 

CDF = Cumulative Distribution function = 𝐹(𝑉) = 𝑃(𝑈 < 𝑉) or 𝑃(𝐵) =

𝑃(𝑈 < 𝑉𝑏) = 𝐹(𝑉𝑏) 

𝐹(−∞) = 0 since (𝑈 < −∞) = 0 

Also 𝐹(𝑉𝑏) > 𝐹(𝑉𝑎) for 𝑉𝑏 > 𝑉𝑎 since 𝑝 > 0  

𝐹(∞) = 1 since (𝑈 < ∞) = 1 

𝐹(𝑉𝑏) − 𝐹(𝑉𝑎) = 𝑃(𝑉𝑎 ≤ 𝑈 ≤ 𝑉𝑏) > 0 

CDF is non-decreasing function.  

PDF = Probability Density function 

𝑓(𝑉) =
𝑑𝐹(𝑉)

𝑑𝑉
≥ 0 

∫ 𝑓(𝑉)𝑑𝑉 = 1
∞

−∞

 

𝑓(−∞) = 𝑓(∞) = 0 

𝑃(𝑉𝑎 ≤ 𝑉 ≤ 𝑉𝑏) =  𝐹(𝑉𝑏) − 𝐹(𝑉𝑎) = ∫ 𝑓(𝑉)𝑑𝑉
𝑉𝑏

𝑉𝑎

 

𝑃(𝑉 ≤ 𝑈 ≤ 𝑉 + 𝑑𝑉) =  𝐹(𝑉 + 𝑑𝑉) − 𝐹(𝑉) = 𝑓(𝑉)𝑑𝑉 

∆𝐹

𝑑𝑉
= 𝑓(𝑉) 

PDF has dimensions 𝑈−1. 

CDF and 𝑓(𝑉)𝑑𝑉 are non-dimensional. 

Probability per unit distance 
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Sample space: 𝐵 = (𝑈 < 𝑉𝑏),   𝐶 = (𝑉𝑎 ≤ 𝑈 < 𝑉𝑏) for 𝑉𝑎 < 𝑉𝑏. 
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Means and moments. 

Mean or expectation or EV of 𝑈:  

𝑈 = ∫ 𝑉𝑓(𝑉)𝑑𝑉
∞

−∞

 

Represents the probability weighted average over all values 𝑈. 

 

EV of 𝑄(𝑈): 

𝑄(𝑈) = ∫ 𝑄(𝑉)𝑓(𝑉)𝑑𝑉
∞

−∞

 

 

Properties: 

[𝑎𝑄(𝑈) + 𝑏𝑅(𝑈)] = 𝑎𝑄(𝑈) + 𝑏𝑅(𝑈) 

𝑈 = 𝑈 

Fluctuation in U:  𝑢 = 𝑈 − 𝑈 

 

Variance of U: 

var(𝑈) ≡ 𝑢2 = ∫ (𝑉 − 𝑈)
2
𝑓(𝑉)𝑑𝑉

∞

−∞

 

Standard deviation of U: 

SD(𝑈) = √var(𝑈) = √𝑢2 = 𝑟𝑚𝑠 = 𝑢′ = 𝜎𝑢 

nth central moment: 

𝜇𝑛 = 𝑢
𝑛 = ∫ (𝑉 − 𝑈)

𝑛
𝑓(𝑉)𝑑𝑉

∞

−∞

 

Where 𝜇0 = 1, 𝜇1 = 0, 𝜇2 = 𝜎𝑢
2 
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Standardization 

 It is often convenient to work with standardized random variables, which, by 

definition, have zero mean and unit variance.  

𝑈̂ =
(𝑈 − 𝑈)

𝜎𝑢
=
𝑢

𝜎𝑢
=

𝑢

√𝑢2
 

 

The PDF of 𝑈̂ is: 

𝑓(𝑉̂) = 𝜎𝑢𝑓(𝑈 + 𝜎𝑢𝑉̂) 

The moments of 𝑈̂ are: 

 

𝜇̂𝑛 =
𝜇𝑛
𝜎𝑢
𝑛 =

𝜇𝑛
𝜎𝑢
𝑛 = ∫ 𝑉̂𝑛𝑓(𝑉̂)𝑑𝑉̂

∞

−∞

 

 

 Where 𝜇̂0 = 1, 𝜇̂1 = 0, 𝜇̂2 =  1. The third standardized moment 𝜇̂3 is called the 

skewness, and the fourth 𝜇̂4 is the flatness or kurtosis.  
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Examples of probability distributions 

Uniform distribution 

𝑈 = uniform for 𝑎 ≤ 𝑉 < 𝑏 

 

𝑓(𝑉) = {
1

𝑏 − 𝑎
,      for 𝑎 ≤ 𝑉 < 𝑏,

0,     for 𝑉 < 𝑎 and 𝑉 ≥ 𝑏
 

𝑐 =  𝑎 ≤ 𝑉 < 𝑏 

𝑃(𝑐) = 𝐹(𝑏) − 𝐹(𝑎) ≥ 0 

𝑓(𝑉) =
𝑑𝐹(𝑉)

𝑑𝑉
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The normal distribution 

U normal with EV=𝜇 and SD=𝜎. 

 

PDF 

𝑓(𝑉) = 𝒩(𝑉; 𝜇, 𝜎2) =
1

𝜎√2𝜋
exp [−

1

2
(𝑉 − 𝜇)2/𝜎2] 

We can standardize U if it is normally distributed: 

𝑈̂ ≡ (𝑈 − 𝜇)/𝜎 

And the corresponding PDF is: 

𝑓(𝑉) = 𝒩(𝑉; 0,1) =
1

√2𝜋
𝑒−𝑉

2/2 

The corresponding CDF is: 

𝐹̂(𝑉) = ∫
1

√2𝜋
𝑒−𝑥

2/2𝑑𝑥 =
1

2
[1 + erf (𝑉/√2)]

𝑉

−∞
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