Chapter 5 Part 6: Highlights

1. Requirement High Re: p = g only achieved very large R; >> laboratory

flows.

E(k)~xk™? p= g — 8R, 3%
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Fig. 6.29. The spectrum power-law exponent p (E{x) ~ x7F) as a function of the
Reynolds number in grid turbulence: symbols, experimental data of Mydlarski and

Warhaft (1998); dashed line, p = 3; solid line, empirical curve p = 3 — 8R;**,
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Energy cascade not one way and involves multiple size eddies with net transfer
toward smaller scales. In wave number space, as per Fourier series NS, involves
triads of wave numbers with two nearly equal and third much smaller.

2. Higher-order statistics

Simplest examples of higher-order statistics are the normalized velocity-
derivative moments:

— —zn/z
M, = (u1,1) /(u1,1)

Forn = 3 and n = 4, these are the velocity-derivative skewness S and kurtosis
K.

3/2
M; = (ul,l)g/(ul,l)z = Skewness (S = 0 for

S < 0 = f( vortex stretching and related energy transfer between scales) and
measure of the bias or asymmetry in the velocity fluctuations between + and -
values.



2
M, = (u1,1)4/(u1,1)2 = Kurtosis (K = 3 for Gaussian)

Measure of how much the velocity fluctuations are congregated at large and
small values.

Kolmogorov originally assumed, the PDF of the velocity fluctuations is
homogeneous and isotropic, which is often approximated as Gaussian, such
that for each n, M,, is a constant; however, in fact, S and K are not constant but
increase with Re.
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Fig. 6.30. Measurements (symbols) compiled by Van Atta and Antonia (1980) of
the velocity-derivative kurtosis as a function of Reynolds number. The solid line is
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Ry
F1rovRe 1. Measurements of the velocity-derivative skewness in various turbulent flows plotted
va. the turbulent Reynolds number (sce table 1 for symbols).

Type of flow Author(s) Symbol

Nearly isotropic Batchelor & Townsend (1849) [ ]
grid turbulence Stewart & Townsend (1951) [ »]
Mills et al. (1958) @

Frenkiel & Klebanoff (1971) -]

Kuo & Corrsin (1971) [

Betchov & Lorenzen (1874) [:]

Bennett & Corrsin (1978) o

Present data L J

Homogeneous shear flow Tavoularis (1978) 4]
Duet flow Comte-Bellot (1865) A
Elena, Chauve & Dumas (1977) v

Mixing layers Wyngaard & Tennekes (1870) +
Champagne, Pao & Wygnanski (1976) X

Axisymmetrie jet Friehe, Van Atta & Gibson (1972) &
New measurements 3

Boundary layer Ueda & Hinze (1075) B
Atmosphere Gibson, Stegen & Williams (1970} [ ]
Wyngaard & Tennekes (1970) [m]
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Higher order statistics pertaining to the inertial subrange are provided by the
longitudinal velocity structure functions (Chapter 4 Part 8):

Dy (r) = (Ayuw)"
Au=U; (g + e, t) — Ul(g, t)

Recallforthe second (Chapter 4, Part 8) and third (Part 3, pg. 18) order structure
functions D, (r), D3 (r) in the inertial sub-range:

D, = Dy, (r,t) = Cy(er)?/3
D3 = Dy, (7, t) = Czer

Which were determined according to Kolmogorov’s second hypothesis, for L >
r > n, D,(r) based on the assumption that they depend onlyon ¢ andr, i.e.,

Da(r) = (AW = Cy(er)™?
Where C,, are constants (C, = 2,C; = —4/5).
More generally in the inertial subrange,
Dy (r)~1¢n

But the measured exponents differ from the Kolmogorov prediction, i.e., {,, =
%, asclearly ¢, # %for n=4.
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Fig. 6.31. Measurements (symbols) compiled by Anselmet et al. (1984) of the longi-
tudinal velocity structure function exponent {, in the inertial subrange, D,(r) ~ r*.
The solid line is the Kolmogorov (1941) prediction, {, = ’§n; the dashed line is the
prediction of the refined similarity hypothesis, Eq. (6.323) with u = 0.25.



Itis instructive to examine the PDFs that underlie M,,. For example, for n=1, the
PDF is denoted by f,(z), where Z is the standardized derivative

/2

S |
Z = u1,1/(u1,1)2

M,

=2 foooznfz(z)dz

1 21/2
= (u1,1) /(w11)

12

Appendix

Fig. 6.32, The PDF fz(z) of the normalized velocity derivative Z
(Bu, /8x;)/ {(Buy /8%, )*)? measured by Van Atta and Chen (1970) in the atmospheric
boundary layer (high Re). The solid line is a Gaussian; the dashed lines correspond

to exponential tails (Eqs. (6.309) and (6.310)).

low probability tails can make vast contributions to higher moments. For

example, compare the tails for

M,(f’) = 2.[ z"f,(z)dz
5

Using (0) and considering only even moments so we can compare with

Gaussian values.

Table 6.3. Contributions M® from the exponential tails (|Z| > 5) of the
PDF of Z to the moments M, according to Eqs. (6.310) and (6.311)

Tail contribution Gaussian value

Moment n M® M,
0 0.003 1
2 0.1 1
4 4.2 3
6 220 15
8 1.5 x 10¢ 105
10 1.4 x 10° 945

The super skewness My = 220, while Gaussian value is 15.




3. Dissipation intermittency

Discrepancies between M, and D,(r) with EFD are attributed to the
phenomenon of internal intermittency and accounted for in the refined
similarity hypotheses, which introduces several new quantities related to
dissipation.

One-dimensional surrogates for instantaneous dissipation and average of g,
within a sphere V(r) of radius r are represented by:

6u1

g, = 15v (a—xl)2 (24) &=15v (g—:)z
r

1
E(x,t) = ;f E(x+rt)dr
0

And in locally isotropic turbulence, each of these quantities have mean ¢,
e, (&) = (&(x,t)) =e=&(2B).

&, intermittently attains high values.

R, laboratory (moderate) = &,/ € = 15

R, atmosphere (high) = &,/ ¢ = 50

Kolmogorov conjectured that:

A 2

S—ZN(L/W)“

£.°
?~(L/7”)“

Where L = k3/?/¢. For the inertial subrange, i.e., N <7 <« L and u>0 =
constant=intermittency exponent. Note above equations are for mean square
&, and &,.

~ 2
EFD for%shows u = 0.25 + 0.05.



Refined similarity hypotheses
Original first hypothesis: A, u forr « L are universal and f (¢, v).

Refined first hypothesis: A,.u for r « L are universal and f (¢, v).

Refined second hypothesis: A,u forn « r « L are universal and f (g,.).

The structure functions in the inertial subrange are:

D, (r) ={(A,w)™) = (Cn(gr)n/3|s=er) = Cn<8rn/3>rn/3
Where C,, are universal constants and &, is a volume averaged variable, as per
&.(x,t).

Forn = 3, since ¢, = ¢, the original and the refined hypotheses make the same
prediction, i.e., C3 = —4/5, which represents the Kolmogorov 4/5 law.

For othern, ern/3 can be determined from the PDF of ¢, which is assumed to
be log-normally distributed, i.e., ln(er/eref) has Gaussian distribution such
that:

& : Pope Ex 6.37
g—_n N(L/r)n(n Du/2 (3) Appendix A.3
r

Consequently, if the structure function is predicted to scale as D, (r)~r°n,

n n
Dn(r) =Cy <€r3>r3

n/3—-nn/3-1)u/6
= Cnan/:% Ln(n_l)”/6'r

1 1
5n=§n 1—511(71—3)

Forn < 10, this prediction is in reasonable agreement with Fig. 6.31. For large
n, the large errors are due to the assumption of the log-normal distribution.

For D, (r):



21 2 1
G2=gtgh~3+a¢
Applying a Fourier transform to D,,(r)| AppendixA.4 |results in an expression

for the energy spectrum in the inertial range of the form:
no_s
E(k) = Ag. 3k 3(Lk)™#
This shows that in the inertial-range the spectrum is predicted to be a power
law E (k)~k~P with

5,1, 5.1
P=3T9H¥3736

Hence, only small correction to the -5/3 spectrum.

n
n C_<€_r>2 - —n/2
M. = (u1,1) _ n\v _ Cn & 4
n— 2n/z - __\n/2 (C__)n/z (4)
@) (@®) 8
— 32 _ L
Cn gr3 Cn 3/2(3/2- 2 Cn 3u/8
M3 = — 372 =— 372 (L/r) /2(3/2=1)u/ =— 372 (L/r) u/
(C2&r) (C2) (C2)
[ C, C,
M, = _”_r 7 = _"3/2 (L/r)2@Dw/2 = _”3/2 (L/r)*
(Co&r) (C2) (C2)
—S~(L/r)3+/8
K~(L/r)#*
—S~K3/8
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Fig. 6.33. Measurements of the velocity-derivative skewness S and kurtosis K compiled
by Van Atta and Antonia (1980). The line is —S ~ K.



