
Chapter 5 Part 6: Highlights 

1. Requirement High Re: 𝒑 =
𝟓

𝟑
 only achieved very large 𝑹𝝀 >> laboratory 

flows. 

𝐸(𝜅) ~ 𝜅−𝑝  𝑝 =
5

3
− 8𝑅𝜆

−3/4 

 

Energy cascade not one way and involves multiple size eddies with net transfer 

toward smaller scales.  In wave number space, as per Fourier series NS, involves 

triads of wave numbers with two nearly equal and third much smaller. 

2. Higher-order statistics 

Simplest examples of higher-order statistics are the normalized velocity-
derivative moments: 

𝑀𝑛 = (𝑢1,1)
𝑛
(𝑢1,1)

2
𝑛/2

⁄  
 
For 𝑛 = 3 and 𝑛 = 4, these are the velocity-derivative skewness 𝑆 and kurtosis 
𝐾. 
 

𝑀3 = (𝑢1,1)
3
(𝑢1,1)

2
3/2

⁄ = 

𝑆 < 0 = 𝑓( vortex stretching and related energy transfer between scales) and 
measure of the bias or asymmetry in the velocity fluctuations between + and – 
values. 

Skewness (𝑆 = 0 for 
Gaussian) 



𝑀4 = (𝑢1,1)
4
(𝑢1,1)

2
2

=⁄  

 
Measure of how much the velocity fluctuations are congregated at large and 
small values. 

Kolmogorov originally assumed, the PDF of the velocity fluctuations is 
homogeneous and isotropic, which is often approximated as Gaussian, such 
that for each n, 𝑀𝑛 is a constant; however, in fact, S and K are not constant but 

increase with Re. 

 

 

Kurtosis (𝐾 = 3 for Gaussian) 



Higher order statistics pertaining to the inertial subrange are provided by the 
longitudinal velocity structure functions (Chapter 4 Part 8): 

𝐷𝑛(𝑟) ≡ (∆𝑟𝑢)
𝑛 

∆𝑟𝑢 ≡ 𝑈1(𝑥 + 𝑒1̂𝑟, 𝑡) − 𝑈1(𝑥, 𝑡) 

Recall for the second (Chapter 4, Part 8) and third (Part 3, pg. 18) order structure 
functions 𝐷2(𝑟), 𝐷3(𝑟) in the inertial sub-range: 

𝐷2 = 𝐷𝐿𝐿(𝑟, 𝑡) = 𝐶2(𝜀𝑟)
2/3 

𝐷3 = 𝐷𝐿𝐿𝐿(𝑟, 𝑡) = 𝐶3𝜀𝑟 

Which were determined according to Kolmogorov’s second hypothesis, for 𝐿 ≫
𝑟 ≫  𝜂, 𝐷𝑛(𝑟) based on the assumption that they depend only on 𝜀 and 𝑟, i.e., 

𝐷𝑛(𝑟) ≡ (∆𝑟𝑢)
𝑛 = 𝐶𝑛(𝜀𝑟)

𝑛/3 

Where 𝐶𝑛 are constants (𝐶2 = 2, 𝐶3 = −4/5). 

More generally in the inertial subrange,  

𝐷𝑛(𝑟)~𝑟
𝜁𝑛  

But the measured exponents differ from the Kolmogorov prediction, i.e., 𝜁𝑛 =
𝑛

3
,  as clearly 𝜁𝑛 ≠

𝑛

3
 for n ≥ 4. 

 

 



It is instructive to examine the PDFs that underlie 𝑀𝑛. For example, for n=1, the 
PDF is denoted by 𝑓𝑍(𝑧), where 𝑍 is the standardized derivative 

𝑍 ≡ 𝑢1,1/(𝑢1,1)
2
1/2

 

 

low probability tails can make vast contributions to higher moments.  For 
example, compare the tails for 

𝑀𝑛
(5)
≡ 2∫ 𝑧𝑛𝑓𝑍(𝑧)𝑑𝑧

∞

5

 

Using (0) and considering only even moments so we can compare with 
Gaussian values. 

 

The super skewness 𝑀6 = 220, while Gaussian value is 15. 

𝑀1 = (𝑢1,1)
1
(𝑢1,1)

2
1/2

⁄  
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𝑀𝑛 ≡ 2∫ 𝑧𝑛𝑓𝑍(𝑧)𝑑𝑧
∞

0

 

 



3. Dissipation intermittency 

Discrepancies between 𝑀𝑛 and 𝐷𝑛(𝑟) with EFD are attributed to the 
phenomenon of internal intermittency and accounted for in the refined 
similarity hypotheses, which introduces several new quantities related to 
dissipation. 

One-dimensional surrogates for instantaneous dissipation and average of 𝜀0 
within a sphere ∀(𝑟) of radius 𝑟 are represented by: 

𝜀0̂ = 15𝜈 (
𝜕𝑢1

𝜕𝑥1
)
2
  (2𝐴)    𝜀̃ = 15𝜈 (𝜕𝑢1

𝜕𝑥1
)
2
    

𝜀𝑟̂(𝑥, 𝑡) =
1

𝑟
∫ 𝜀𝑟̂(𝑥 + 𝑟, 𝑡)
𝑟

0

𝑑𝑟 

And in locally isotropic turbulence, each of these quantities have mean 𝜀, 

 i.e.,  〈𝜀0̂〉 = 〈𝜀𝑟̂(𝑥, 𝑡)〉 = 𝜀 = 𝜀̃ (2𝐵). 

𝜀0̂ intermittently attains high values.  

𝑅𝜆 laboratory (moderate) → 𝜀0̂/ 𝜀 ≈ 15 

𝑅𝜆 atmosphere (high) → 𝜀0̂/ 𝜀 ≈ 50 

 

Kolmogorov conjectured that: 

𝜀0̂
2

𝜀2
~(𝐿/𝜂)𝜇  

𝜀𝑟̂
2

𝜀2
~(𝐿/𝑟)𝜇 

Where 𝐿 = 𝑘3/2/𝜀.  For the inertial subrange, i.e., η ≪ 𝑟 ≪ 𝐿 and 𝜇 > 0 = 
constant=intermittency exponent.  Note above equations are for mean square 
𝜀0̂ and 𝜀𝑟̂. 
 

EFD for 𝜀̂𝑟
2

𝜀2
 shows 𝜇 = 0.25 ± 0.05. 



Refined similarity hypotheses  
Original first hypothesis:  ∆𝑟𝑢 for 𝑟 ≪ 𝐿 are universal and 𝑓(𝜀, 𝜈). 

Refined first hypothesis: ∆𝑟𝑢 for 𝑟 ≪ 𝐿 are universal and 𝑓(𝜀𝑟 , 𝜈). 

Refined second hypothesis: ∆𝑟𝑢 for η ≪ 𝑟 ≪ 𝐿 are universal and 𝑓(𝜀𝑟). 
 
The structure functions in the inertial subrange are: 

𝐷𝑛(𝑟) = 〈(∆𝑟𝑢)
𝑛〉 = 〈𝐶𝑛(𝜀𝑟)

𝑛/3|𝜀=𝜀𝑟〉 = 𝐶𝑛〈𝜀𝑟
𝑛/3〉𝑟𝑛/3 

Where 𝐶𝑛 are universal constants and 𝜀𝑟  is a volume averaged variable, as per 
𝜀𝑟̂(𝑥, 𝑡). 
 

For 𝑛 = 3, since 𝜀𝑟 = 𝜀, the original and the refined hypotheses make the same 
prediction, i.e., 𝐶3 = −4/5, which represents the Kolmogorov 4/5 law.  
 

For other 𝑛, 𝜀𝑟𝑛/3 can be determined from the PDF of 𝜀𝑟, which is assumed to 
be log-normally distributed, i.e., ln(𝜀𝑟/𝜀𝑟𝑒𝑓) has Gaussian distribution such 
that: 
 

𝜀𝑟
𝑛

𝜀𝑟
𝑛 ~(𝐿/𝑟)

𝑛(𝑛−1)𝜇/2     (3) 

Consequently, if the structure function is predicted to scale as  𝐷𝑛(𝑟)~𝑟𝜁𝑛, 
 

𝐷𝑛(𝑟) = 𝐶𝑛 〈𝜀𝑟
𝑛
3〉 𝑟

𝑛
3  

 

= 𝐶𝑛𝜀𝑟
𝑛/3
𝐿𝑛(𝑛−1)𝜇/6𝑟

𝑛/3−𝑛(𝑛/3−1)𝜇/6⏟            

𝜁𝑛  
 

𝜁𝑛 =
1

3
𝑛 [1 −

1

6
𝜇(𝑛 − 3)] 

 
For 𝑛 ≤ 10, this prediction is in reasonable agreement with Fig. 6.31. For large 
𝑛, the large errors are due to the assumption of the log-normal distribution.  
 
For 𝐷2(𝑟):  

Pope Ex 6.37 
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 𝜁2 =
2

3
+
1

9
𝜇 ≈

2

3
+
1

36
 

Applying a Fourier transform to 𝐷𝑛(𝑟)                               results in an expression 
for the energy spectrum in the inertial range of the form:  

𝐸(𝑘) = 𝐴𝜀𝑟
𝑛
3𝑘−

5
3(𝐿𝑘)−𝜇  

This shows that in the inertial-range the spectrum is predicted to be a power 
law 𝐸(𝜅)~𝜅−𝑝 with 

𝑝 =
5

3
+
1

9
𝜇 ≈

5

3
+
1

36
 

Hence, only small correction to the -5/3 spectrum. 

𝑀𝑛 =
(𝑢1,1)

𝑛

(𝑢1,1)
2
𝑛/2

=
𝐶𝑛 (

𝜀𝑟
𝜈 )

𝑛
2

(𝐶2 (
𝜀𝑟
𝜈 ))

𝑛/2
=
𝐶𝑛 𝜀𝑟

𝑛/2

(𝐶2𝜀𝑟)
𝑛/2
     (4) 

 

𝑀3 =
𝐶𝑛 𝜀𝑟

3/2

(𝐶2𝜀𝑟)
3/2

=
𝐶𝑛 

(𝐶2)
3/2
(𝐿/𝑟)3/2(3/2−1)𝜇/2 =

𝐶𝑛 

(𝐶2)
3/2
(𝐿/𝑟)3𝜇/8      

 

𝑀4 =
𝐶𝑛 𝜀𝑟

4/2

(𝐶2𝜀𝑟)
4/2

=
𝐶𝑛 

(𝐶2)
3/2
(𝐿/𝑟)2(2−1)𝜇/2 =

𝐶𝑛 

(𝐶2)
3/2
(𝐿/𝑟)𝜇      

 
−𝑆~(𝐿/𝑟)3𝜇/8 

𝐾~(𝐿/𝑟)𝜇 

−𝑆~𝐾3/8 
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