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Chapter 5: Energy Decay in Isotropic Turbulence 

Part 5: Energy Spectrum Equation via Fourier Analysis of the Velocity 

Field 

 
Transfer physics in analyzed based on Fourier analysis in wave number space of the 

NS equations, which shows that the energy transfer occurs due to interactions 

between scales at specific combinations of wave numbers.  Whereas previous 

approach used ℛ𝑖𝑗  and K-H equation leading to 𝑘(𝑟, 𝑡) and 𝑇(𝜅, 𝑡) analysis. 

 
Fourier-series representation 

 

The velocity field can be expressed as: 

 

𝑢(𝑥, 𝑡) =∑𝑒𝑖𝑘 ∙𝑥

𝜅

𝑢̂(𝜅, 𝑡)     (1) 

Where 𝑛 = (𝑛1, 𝑛2, 𝑛3) and 𝑛𝑖 are integers with −∞ ≤ 𝑛𝑖 ≤ ∞. 

 

 

 

𝜅 = 2𝜋𝑛/𝐿 
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The Fourier coefficients of the velocity are: 

 

𝑢𝑗̂(𝑘, 𝑡) = ℱ𝑘{𝑢𝑗(𝑥, 𝑡)} 

= 〈𝑢𝑗(𝑥, 𝑡), 𝑒
−𝑖𝑘 ∙𝑥〉∀ 

=
1

∀
∫𝑢𝑗(𝑥, 𝑡)𝑒

−𝑖𝑘 ∙𝑥𝑑𝑥

∀

 

 

Where the operator ℱ𝑘{   } is defined as 

 

ℱ𝑘{ 𝑔(𝑥)} = 〈𝑔(𝑥), 𝑒
−𝑖𝑘 ∙𝑥〉     (2) 

 

Note that 𝑒𝑖𝜅 ∙𝑥 = constant=1 for 𝜅  ∙ 𝑥 = 0, → 𝜅 ⊥ 𝑥 

 

The Fourier modes are orthogonal: 

〈𝑒𝑖𝜅 ∙𝑥, 𝑒−𝑖𝜅′ ∙𝑥〉 = 𝛿𝜅,𝜅′ = {
1,     if     𝜅 = 𝜅′,

0,     if    𝜅 ≠ 𝜅′ 
 

 

 

 

 

Since 𝑢(𝑥, 𝑡) is real,  

𝑢(𝑥, 𝑡) = 𝑢∗(𝑥, 𝑡) 

 

Where an asterisk denotes the complex conjugate.   

Inner product 

〈𝑓, 𝑔〉 = ∫𝑓(𝑥)𝑔∗(𝑥)
∀

𝑑𝑥 

∀= 𝐿3 

 

Inner product 
= 

Volume average 
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Therefore,  

𝑢(𝑥, 𝑡) =∑𝑒𝑖𝑘 ∙𝑥

𝜅

𝑢̂(𝜅, 𝑡) =∑𝑒−𝑖𝑘 ∙𝑥

𝜅

𝑢̂∗(𝜅, 𝑡) =∑𝑒𝑖𝑘 ∙𝑥

𝜅

𝑢̂∗(−𝜅, 𝑡) 

Since the first and second equalities are true [𝑢(𝑥, 𝑡) real] then the last equality 

follows by substitution −𝜅 for 𝜅 which is possible since the Fourier series is 

symmetric about 𝜅 = 0 [𝑢(𝑥, 𝑡) real] therefore: 

∑[𝑢̂∗(−𝜅, 𝑡) − 𝑢̂(𝜅, 𝑡)]

𝜅

𝑒𝑖𝑘 ∙𝑥 = 0 

𝑢̂∗(−𝜅, 𝑡) = 𝑢̂(𝜅, 𝑡), i.e., conjugate symmetry 

One of the principal reasons for invoking the Fourier representation is the form 

taken by derivatives. Using Eq. (1) and taking derivative with respect to 𝑥𝑗: 

 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
∑𝑒𝑖𝑘 ∙𝑥

𝜅

𝑢̂(𝜅, 𝑡) 

𝜕𝑢(𝑥,𝑡)

𝜕𝑥𝑗
= 𝑖𝑘𝑗 ∑ 𝑒𝑖𝑘 ∙𝑥𝜅 𝑢̂(𝜅, 𝑡) = 𝑖𝑘𝑗 ∑ 𝑒−𝑖𝑘 ∙𝑥𝜅 𝑢̂∗(𝜅, 𝑡) 

ℱ𝑘 { 
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥𝑗
} = 〈𝑖𝑘𝑗∑𝑒−𝑖𝑘

′ ∙𝑥

𝜅′

𝑢̂∗(𝜅′, 𝑡), 𝑒−𝑖𝑘 ∙𝑥〉 

= 𝑖𝑘𝑗∑𝑢̂∗(𝜅′, 𝑡)

𝜅′

〈𝑒−𝑖𝑘
′ ∙𝑥, 𝑒−𝑖𝑘 ∙𝑥〉 

ℱ𝑘 { 
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥𝑗
} = 𝑖𝑘𝑗∑𝑢̂∗(𝜅′, 𝑡)

𝜅′

𝛿𝜅,𝜅′ = 𝑖𝑘𝑗𝑢̂
∗(𝜅, 𝑡) = 𝑖𝑘𝑗𝑢̂(𝜅, 𝑡)     (3) 

 

 

 

Differentiation with respect to 𝑥𝑗  in physical space corresponds to multiplication 

by 𝑖𝜅𝑗 in wave number space.  

Since 𝑢 is real 

𝑢̂∗(𝜅, 𝑡) = 𝑢̂(𝜅, 𝑡) 

𝑢(𝑥, 𝑡) =∑cos (𝑘 ∙ 𝑥)

𝜅

𝑢̂(𝜅, 𝑡) =∑𝑐𝑜𝑠(𝑘 ∙ 𝑥)

𝜅

𝑢̂∗(𝜅, 𝑡) 

 

 

Inner product 

 



4 
 

The Evolution of Fourier modes  

Divergence of velocity in wave number space 

 

ℱ𝑘{𝑢𝑖,𝑗} = 𝑖𝜅𝑗𝑢̂𝑗 = 𝑖𝜅 ∙ 𝑢̂ 

 

∇ ∙ 𝑢 = 0 → ℱ𝑘 {
𝜕𝑢𝑖
𝜕𝑥𝑖
} = 𝑖𝑘𝑖𝑢̂𝑖 = 𝜅 ∙ 𝑢̂ = 0 → 𝜅 ⊥ 𝑢̂ 

 

Consider an arbitrary vector 𝐺̂, it can always be decomposed into a component 

parallel to 𝜅 and a component normal to 𝜅 

 

𝐺̂ = 𝐺̂|| + 𝐺̂⊥ 

 

And considering 𝑒̂ = 𝜅/𝜅 the unit vector in the direction of 𝜅, we have 

 

𝐺̂|| = 𝑒̂(𝑒̂ ∙ 𝐺̂) = 𝜅(𝜅 ∙ 𝐺̂)/𝜅2 

 

Or using index notation 

𝐺̂||𝑗 =
𝜅𝑗𝜅𝑘
𝜅2

𝐺̂𝑘 

 

(𝜅1𝐺1̂ + 𝜅2𝐺2̂ + 𝜅3𝐺3̂)(𝜅1, 𝜅2, 𝜅3)/𝜅
2 = 𝐺̂|| 

 

[(𝜅 ∙ 𝐺̂)𝜅1, (𝜅 ∙ 𝐺̂)𝜅2, (𝜅 ∙ 𝐺̂)𝜅3]/𝜅
2 = 𝐺̂|| 
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For the perpendicular component 

 

𝐺̂⊥ = 𝐺̂ − 𝐺̂|| = 𝐺̂ − 𝜅(𝜅 ∙ 𝐺̂)/𝜅2 = 𝑃𝑗𝑘𝐺̂𝑘 

 

Where the projection tensor 𝑃𝑗𝑘(𝜅) is  

 

𝑃𝑗𝑘 ≡ 𝛿𝑗𝑘 −
𝜅𝑗𝜅𝑘
𝜅2

 

 

Which determines 𝐺̂⊥ to be the projection of 𝐺̂ onto the plane normal to 𝜅. 
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Navier-Stokes in conservative form: 

 

𝜕𝑢𝑗
𝜕𝑡
+
𝜕(𝑢𝑗𝑢𝑘)

𝜕𝑥𝑘
= 𝜈

𝜕2𝑢𝑗
𝜕𝑥𝑘𝑥𝑘

−
1

𝜌

𝜕𝑝

𝜕𝑥𝑗
 

 

Apply the operator ℱ𝑘{  } to NS: 

 

ℱ𝑘 {
𝜕𝑢𝑗
𝜕𝑡
} =

𝑑𝑢̂𝑗
𝑑𝑡
(𝜅, 𝑡) 

 

ℱ𝑘 {𝜈
𝜕2𝑢𝑗
𝜕𝑥𝑘𝑥𝑘

} = −𝜈𝜅2𝑢̂𝑗(𝜅, 𝑡) 

 

ℱ𝑘 {−
1

𝜌

𝜕𝑝

𝜕𝑥𝑗
} = −𝑖𝜅𝑗𝑝̂ 

 

Where previous derivation showing differentiation with respect to 𝑥𝑗  in physical 

space corresponds to multiplication by 𝑖𝜅𝑗  in wave number space was used and  

 

𝑝(𝑥, 𝑡)

𝜌
=∑𝑒𝑖𝑘 ∙𝑥

𝜅

𝑝̂(𝜅, 𝑡) 

 

The nonlinear convection term is written as  

 

ℱ𝑘 {
𝜕(𝑢𝑗𝑢𝑘)

𝜕𝑥𝑘
} = 𝐺̂𝑗(𝜅, 𝑡) 

 

And its Fourier coefficients will be defined later. 

𝑝̂(𝜅, 𝑡) ≡ ℱ𝑘 {
𝑝(𝑥, 𝑡)

𝜌
} 

Partial derivative in time in 

physical space becomes ordinary 

derivative in wavenumber space. 
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Thus, NS becomes: 

 
𝜕𝑢̂𝑗
𝜕𝑡
(𝜅, 𝑡) + 𝜈𝜅2𝑢̂𝑗(𝜅, 𝑡) = −𝑖𝜅𝑗𝑝̂(𝜅, 𝑡) − 𝐺̂𝑗(𝜅, 𝑡) 

 

Multiply by 𝜅𝑗  such that LHS=0, since 

 

𝜅𝑗𝑢̂𝑗 = 0    (4𝑎) (continuity equation)1 

 

and multiply by 𝑖 to obtain 

𝜅2𝑝̂ = 𝑖𝜅𝑗𝐺̂𝑗      (4𝑏) 

Eq. (4b) can be shown to be equivalent to the pressure Poisson equation in Fourier 

space and to show that the pressure and convection terms can be combined using 

the projection tensor. 

 

1) In wave number space, the Poisson equation for pressure is obtained by 

taking the Fourier transform of the divergence of the NS equations: 

 

ℱ𝑘 {−∇
2 (
𝑝

𝜌
)} = ℱ𝑘 {

𝜕

𝜕𝑥𝑗
[
𝜕(𝑢𝑗𝑢𝑘)

𝜕𝑥𝑘
]} 

ℱ𝑘 {−∇
2 (
𝑝

𝜌
)} = ℱ𝑘 {−

𝜕2

𝜕𝑥𝑗
2 (
𝑝

𝜌
)} = −𝑖2𝑘𝑗

2𝑝̂ = 𝑘2𝑝̂ 

ℱ𝑘 {
𝜕

𝜕𝑥𝑗
[
𝜕(𝑢𝑗𝑢𝑘)

𝜕𝑥𝑘
]} = 𝑖𝜅𝑗ℱ𝑘 {

𝜕(𝑢𝑗𝑢𝑘)

𝜕𝑥𝑘
} = 𝑖𝜅𝑗𝐺̂𝑗(𝜅, 𝑡) 

In both cases using the property of 
𝜕

𝜕𝑥𝑗
 in wave number space = 𝑖𝜅𝑗, as per Eq. (3). 

Thus: 

𝑘2𝑝̂ = 𝑖𝜅𝑗𝐺̂𝑗(𝜅, 𝑡) 

 
1 Eq. (4a) shows that in incompressible flow 𝑢̂𝑗 is perpendicular to 𝜅, i.e., for any 

value of 𝜅, 𝑢̂𝑗is oriented tangent to the surface of the sphere of radius |𝜅| centered at 

the origin. 
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2) By using 𝑗 = 𝑘 in Eq. (4b) and multiplying by −𝑖𝜅𝑗  

 

−𝑖𝜅𝑗𝜅
2𝑝̂ = 𝜅𝑗𝜅𝑘𝐺̂𝑘 

 

Dividing by 𝜅2 

−𝑖𝜅𝑗𝑝̂ =
𝜅𝑗𝜅𝑘
𝜅2

𝐺̂𝑘 = 𝐺̂
||
𝑗  

 

i.e., the pressure term −𝑖𝜅𝑗𝑝̂ exactly balances 𝐺̂||, the component of 𝐺̂ in direction 

of 𝜅. 

 

The NS equations can be re-written as  

𝜕𝑢̂𝑗
𝜕𝑡
+ 𝜈𝜅2𝑢̂𝑗 = 𝐺̂

||
𝑗 − 𝐺̂𝑗      (5𝑎) 

     = −𝐺̂⊥𝑗 

                                                                       = −𝑃𝑗𝑘𝐺̂𝑘 

 

Consider the final period of decay of isotropic turbulence in which 𝑅𝑒 is so low, that 

convection is negligible relative to the effects of viscosity such that the RHS of the 

above equation is zero. Then, for a specified initial condition 𝑢̂(𝜅, 0), the solution 

of the NS in wave number space is: 

𝑢̂(𝜅, 𝑡) = 𝑢̂(𝜅, 0)𝑒−𝜈𝜅
2𝑡 

Thus, each Fourier mode evolves and decays exponentially with 𝑡 at rate 𝜈𝜅2, 

independently from the other modes. High wave number modes (small 𝜆) decay 

more rapidly than low wave numbers (large 𝜆), as per E(𝜅, 𝑡0) Part 4 Eq. (16). 

 

Combines pressure and 

convection terms. 
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Expressed in terms of 𝑢̂(𝜅), the nonlinear convective term is: 

𝐺̂𝑘(𝜅, 𝑡) = ℱ𝑘 {
𝜕(𝑢𝑘𝑢𝑙)

𝜕𝑥𝑙
} = 𝑖𝜅𝑙ℱ𝑘{𝑢𝑘𝑢𝑙} 

           = 𝑖𝜅𝑙ℱ𝑘 {(∑𝑢̂𝑘(𝜅
′)𝑒𝑖𝑘

′ ∙𝑥

𝜅′

)(∑𝑢̂𝑙(𝜅
′′)𝑒𝑖𝑘

′′ ∙𝑥

𝜅′′

)} 

= 𝑖𝜅𝑙∑∑𝑢̂𝑘(𝜅
′)𝑢̂𝑙(𝜅

′′)

𝜅′′

〈𝑒𝑖(𝑘
′+𝜅′′) ∙𝑥, 𝑒−𝑖𝑘 ∙𝑥〉

𝜅′

 

                                                    = 𝑖𝜅𝑙∑∑𝑢̂𝑘(𝜅
′)𝑢̂𝑙(𝜅

′′)

𝜅′′

𝛿𝜅,𝜅′+𝜅′′
𝜅′

 

                                                    = 𝑖𝜅𝑙∑𝑢̂𝑘(𝜅
′)𝑢̂𝑙

𝜅′

(𝜅 − 𝜅′)⏟     

 

Thus, the incompressible flow NS equations in wave number 

space: 

(
𝑑

𝑑𝑡
+ 𝜈𝜅2) 𝑢̂𝑗(𝜅, 𝑡)

= −𝑃𝑗𝑘(𝜅)𝑖𝜅𝑙∑𝑢̂𝑘(𝜅
′, 𝑡)𝑢̂𝑙 (𝜅 − 𝜅

′
⏟  , 𝑡)

𝜅′

     (5𝑏) 

 

The LHS involves 𝑢̂ only at 𝜅. In contrast, the RHS involves 𝑢̂ at 𝜅′ and 𝜅′′, such that 

𝜅′ + 𝜅′′ = 𝜅, and the contributions from 𝜅′ = 𝜅 and 𝜅′′ = 𝜅 are zero. 

In wave number space, the convection term is nonlinear and non-local, involving 

the interaction of wave number triads, 𝜅, 𝜅′and 𝜅′′, such that 𝜅′ + 𝜅′′ = 𝜅, i.e., 

responsible for inter-scale interactions. 

Eq. (5) is a deterministic (for a truncated series) coupled set of nonlinear ODEs for 

𝑢̂𝑗(𝜅, 𝑡) for each 𝜅, i.e., three equations and three unknowns. Based continuity 

𝜅𝑗𝑢̂𝑗(𝜅, 𝑡) = 0 LHS perpendicular  𝜅 and so also is the RHS, as per Eq. (5a). 

Inner product 

 

As per Eq. (3) 

 

𝜅′′ 

 

𝜅′ 

 

𝜅 

 

Triads of wavenumbers. 

𝜅′′ 

𝜅′′ 

𝜅 = 𝜅′ + 𝜅′′ 

𝜅 − 𝜅′ = 𝜅′′ 
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The kinetic energy of Fourier modes (Pope) 

Under the assumption of homogeneous flow, the mean velocity 𝑈(𝑥, 𝑡) is zero, 

such that its Fourier coefficients are also zero. Therefore, the instantaneous 

velocity field corresponds to the fluctuating velocity, having zero mean. To describe 

the turbulence statistically, now consider homogeneous flow and higher order 

statistics.  

 

The two-point two-velocity correlation ℛ𝑖𝑗(𝑥, 𝑥 + 𝑟 , 𝑡) can be represented in 

physical space and wave number space: 

 

ℛ𝑖𝑗(𝑥, 𝑥 + 𝑟 , 𝑡) = 〈𝑢𝑖(𝑥, 𝑡)𝑢𝑗(𝑥 + 𝑟, 𝑡)〉 

ℛ̂𝑖𝑗(𝜅, 𝜅
′, 𝑡) = 〈ℱ𝑘{𝑢𝑖(𝑥, 𝑡)}ℱ𝑘′{𝑢𝑗(𝑥

′, 𝑡)}〉 

     = 〈𝑢̂𝑖(𝑘, 𝑡)𝑢̂𝑗(𝑘′, 𝑡)〉 

 

The dependence from 𝑥 and 𝑥′ = 𝑥 + 𝑟 in physical space is transformed into 

dependence from 𝜅 and 𝜅′ in wave number space. 

Recall for homogeneous turbulence ℛ𝑖𝑗(𝑥, 𝑥 + 𝑟 , 𝑡) = ℛ𝑖𝑗(𝑟 , 𝑡) and equivalently 

in wave number space, 𝑢̂𝑖(𝑘, 𝑡) and 𝑢̂𝑗(𝑘′, 𝑡) are uncorrelated, unless 𝜅′ + 𝜅 = 0, 

i.e., 𝜅′ = −𝜅 → 𝑢̂𝑖  and 𝑢̂𝑗 only 𝑓(𝑘, 𝑡), as per Appendix A.1.  This relates the vector 

𝑟 in physical space, with an equivalent vector 𝜅 in wave number space. 

Thus, all the covariance information is contained in: 

 

ℛ̂𝑖𝑗(𝜅, 𝑡) = 〈𝑢̂𝑖(𝜅, 𝑡)𝑢̂𝑗(𝜅, 𝑡)〉 = 〈𝑢̂𝑖(−𝜅, 𝑡)𝑢̂𝑗(𝜅, 𝑡)〉 = 〈𝑢̂𝑖
∗(𝜅, 𝑡)𝑢̂𝑗(𝜅, 𝑡)〉 = 〈𝑢̂𝑖

∗(−𝜅, 𝑡)𝑢̂𝑗(𝜅, 𝑡)〉 

 

And ℛ̂𝑖𝑗(𝜅, 𝑡) represent the Fourier coefficients of the two-point velocity 

correlation: ℛ̂𝑖𝑗(𝜅, 𝑡) = ℱ𝑘{ℛ𝑖𝑗(𝑥, 𝑡)}. 

 

 

Ensemble 

average 

Real signal Conjugate 

symmetry 
Real signal 

Appendix A.1 
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In homogeneous turbulence, the Fourier representation of ℛ𝑖𝑗  becomes 

ℛ𝑖𝑗(𝑟 , 𝑡) =∑ℛ̂𝑖𝑗(𝜅, 𝑡)𝑒
𝑖 𝜅∙𝑟

𝜅

 

The kinetic energy of the Fourier mode 𝐸̂(𝜅, 𝑡) is defined as: 

𝐸̂(𝜅, 𝑡) =
1

2
𝑢̂𝑖
∗(𝜅, 𝑡)𝑢̂𝑖(𝜅, 𝑡) =

1

2
ℛ̂𝑖𝑖(𝜅, 𝑡)   (6𝑎) 

The TKE is: 

𝑘(𝑡) =
1

2
𝑢𝑖𝑢𝑖 =∑

1

2
ℛ̂𝑖𝑖(𝜅, 𝑡) =∑𝐸̂(𝜅, 𝑡)

𝜅𝜅

 

The dissipation rate 𝜀(𝑡) is also related to 𝐸̂(𝜅, 𝑡), by 

𝜀(𝑡) = −𝜈 lim
𝑟→0

𝜕2

𝜕𝑟𝑘
2ℛ𝑗𝑗(𝑟, 𝑡)    (6b) 

= −𝜈 lim
𝑟→0

∑𝑒𝑖𝑘 ∙𝑟(−𝜅𝑘𝜅𝑘)

𝜅

ℛ̂𝑗𝑗(𝜅, 𝑡) 

=∑2𝜈𝜅2𝐸̂(𝜅, 𝑡)

𝜅

 

Thus, 𝐸̂(𝜅, 𝑡) and 2𝜈𝜅2𝐸̂(𝜅, 𝑡) are the contributions to TKE and 𝜀 from Fourier 

mode 𝜅, i.e., over spherical shell of radius |𝜅|. 

 

A dynamical equation for the discrete energy spectrum [Eq. (6a)] may be derived 

by taking the average of the sum of Eq. (5b) times 𝑢̂𝑗
∗(𝜅, 𝑡) and the complex 

conjugate of Eq. (5b) times 𝑢̂𝑗(𝜅, 𝑡). The result is: 

𝑑

𝑑𝑡
𝐸̂(𝜅, 𝑡) = 𝑇̂(𝜅, 𝑡) − 2𝜈𝜅2𝐸̂(𝜅, 𝑡)     (7) 

𝑇̂(𝜅, 𝑡) = 𝜅𝑙𝑃𝑗𝑘(𝜅)ℜ{𝑖∑〈𝑢𝑗̂(𝜅)𝑢̂𝑘
∗(𝜅′)𝑢̂𝑙

∗ (𝜅 − 𝜅′⏟  )〉

𝜅′

} 

And ℜ{ } denotes the real part.   

 

Appendix A.2  

𝜅′′ 
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Comparing Eq. (7) with Part 4 Eq. (4) and since the time derivative and dissipation 

terms are the same suggests that the transfer terms are also equivalent; however, 

the former is in continuous form, whereas the latter in discrete form.  Note that Eq. 

(7) derived from NS, whereas Part 4 Eq. (4) from ℛ𝑖𝑗  equation  

𝑑𝐸

𝑑𝑡
(𝜅, 𝑡) = 𝑇(𝜅, 𝑡) − 2𝜈𝜅2𝐸(𝜅, 𝑡)     (𝑃𝑎𝑟𝑡 4, 𝐸𝑞. 4) 

𝑇(𝜅, 𝑡) =
1

2
∫ 𝑇𝑖𝑖(𝜅, 𝑡)
|𝜅|=𝜅

𝜅2𝑑𝛺 = 2𝜋𝜅2𝑇𝑖𝑖(𝜅, 𝑡)    (𝑃𝑎𝑟𝑡 4, 𝐸𝑞. 5) 

𝑇𝑖𝑖(𝜅, 𝑡) =
1

(2𝜋)3
∫𝑆𝑖𝑖(𝑟, 𝑡)𝑒

𝑖𝜅∙𝑟𝑑𝑟
∀

     (𝑃𝑎𝑟𝑡 4, 𝐸𝑞. 2 𝑗 = 1) 

𝑆𝑖𝑖(𝑟, 𝑡) =
𝜕𝑆𝑖𝑘,𝑖
𝜕𝑟𝑘

(−𝑟, 𝑡) +
𝜕𝑆𝑖𝑘,𝑖
𝜕𝑟𝑘

(𝑟, 𝑡)     (𝑃𝑎𝑟𝑡 4, 𝐸𝑞. 3 𝑗 = 1) 

𝑆𝑖𝑘,𝑖(𝑟, 𝑡) = 𝑢𝑖(𝑥, 𝑡)𝑢𝑘(𝑥, 𝑡)𝑢𝑖(𝑥 + 𝑟, 𝑡)     

and in both cases under the assumption of homogeneous turbulence. 

Summing over all 𝜅, LHS of Eq. (7) becomes 𝑑𝑘/𝑑𝑡, while the last term on the 

right-hand side sums to −𝜀, such that the sum of 𝑇̂(𝜅, 𝑡) is zero:  ∑ 𝑇̂(𝜅, 𝑡) = 0𝜅  

Thus, the term 𝑇̂(𝜅, 𝑡) represents the transfer of energy between modes.  

 

Eq. (7) has a direct correspondence with K-H equation, but has the advantage of 

providing clear quantification of the energy at different scales of motion and an 

explicit expression for the energy-transfer rate → 𝑇̂(𝜅, 𝑡), which plays a central 

role in the energy cascade and involves the wave number triplets 𝜅′ + 𝜅′′ = 𝜅.   

Triad interactions allow energy of different scales to give rise to new scales.  These 

in turn have triad interactions and this chain branching gives rise to chaotic 

behavior. 

 

The terms 𝐸̂(𝜅, 𝑡) and −2𝜈𝜅2𝐸̂(𝜅, 𝑡) in Eq. (7) can be related to the two-point 

two-velocity correlation in wave number space ℛ̂𝑖𝑗(𝜅, 𝑡) via Eq. (6a,b).  Eq. (7) 

and 𝑃𝑎𝑟𝑡 4, 𝐸𝑞. 4 have the same assumptions and in discrete and continuous 

form, respectively, which suggest correspondence between wave number triplets 

and Fourier transform of 𝑆𝑖𝑖(𝑟, 𝑡), which is related to 𝑆𝑖𝑘,𝑖(𝑟, 𝑡). 

 



13 
 

The kinetic energy of Fourier modes (Bernard) 

Recall previous derivation discrete NS as per Pope 

(
𝑑

𝑑𝑡
+ 𝜈𝜅2) 𝑢̂𝑗(𝜅, 𝑡) = −𝑖𝜅𝑙𝑃𝑗𝑘∑𝑢̂𝑘(𝜅

′, 𝑡)𝑢̂𝑙(𝜅 − 𝜅
′, 𝑡)

𝜅′

     (5) 

Can be transformed to Bernard form by setting 𝑗 = 𝑖, 𝑙 = 𝑚, 𝑘 = 𝑗,  𝜅′ = 𝑙 

(
𝑑

𝑑𝑡
+ 𝜈𝜅2) 𝑢̂𝑖(𝜅, 𝑡) = −𝑖𝜅𝑚𝑃𝑖𝑗∑𝑢̂𝑗(𝑙, 𝑡)𝑢̂𝑚(𝜅 − 𝑙, 𝑡)

𝑙

     (8) 

An equivalent form of Eq. (8) is given by: 

 

(
𝑑

𝑑𝑡
+ 𝜈𝜅2) 𝑢̂𝑖(𝜅, 𝑡) = 𝑀𝑖𝑗𝑚(𝜅)∑𝑢̂𝑗(𝑙, 𝑡)𝑢̂𝑚(𝜅 − 𝑙, 𝑡)     (9)

𝑙

 

𝑀𝑖𝑗𝑚 = −
𝑖

2
(𝜅𝑚𝑃𝑖𝑗(𝜅) + 𝜅𝑗𝑃𝑖𝑚(𝜅)) 

 

Which can be obtained noting that the RHS of Eq. (8) is left unchanged if the dummy 

indices 𝑗 and 𝑚 are switched, and summation on 𝑙 is replaced by the equivalent 

summation on 𝑙′ = 𝜅 − 𝑙. 

Applying the same steps used to go from Eq. (5) to (7), i.e., taking the average of 

the sum of Eq. (9) times 𝑢̂𝑖
∗(𝜅, 𝑡) and the complex conjugate of Eq. (9) times 𝑢̂𝑖(𝜅, 𝑡) 

gives a dynamical equation for the discrete energy spectrum in the form: 

 

𝑑

𝑑𝑡
𝐸̂(𝜅, 𝑡) + 2𝜈𝜅2𝐸̂(𝜅, 𝑡)

=
1

2
𝑀𝑖𝑗𝑚∑(𝑢𝑖̂(−𝜅)𝑢̂𝑗(𝑙)𝑢𝑚̂(𝜅 − 𝑙) − 𝑢𝑖̂(𝜅)𝑢̂𝑗(𝑙)𝑢𝑚̂(−𝜅 − 𝑙))

𝜅′

 (10) 

Where 𝑙 has been replaced with −𝑙 in the second term for later convenience. The 

RHS accounts for the energy transfer between wave numbers. The triadic nature 

of such exchanges is evident in these expressions.  

 

Equivalency of Eq. (10) and Eq. (7) transfer terms needs to be shown. 

Appendix A.3 

Appendix A.4 
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Limit of Infinite Space (In progress) 

Consider now limit of Eq. (10) as 𝐿 → ∞.  

Define 

𝐸𝑖𝑗
𝐿 (𝜅, 𝑡) = (

𝐿

2𝜋
)
3

𝑢̂𝑖(𝜅, 𝑡)𝑢̂𝑗(−𝜅, 𝑡)     (11) 

And using the following: 

𝑢̂𝑗
∗(𝜅, 𝑡) = 𝑢̂𝑗(−𝜅, 𝑡) 

 

𝑢̂𝑖(𝜅, 𝑡)𝑢̂𝑗
∗(𝜅, 𝑡) =

1

𝐿3
∫ℛ𝑖𝑗
∀

(𝑟, 𝑡)𝑒−𝑖𝜅∙𝑟𝑑𝑟 

Eq. (11) becomes: 

𝐸𝑖𝑗
𝐿 (𝜅, 𝑡) = (

𝐿

2𝜋
)
3

𝑢̂𝑖(𝜅, 𝑡)𝑢̂𝑗
∗(𝜅, 𝑡) = (

1

2𝜋
)
3

∫ℛ𝑖𝑗
∀

(𝑟, 𝑡)𝑒−𝑖𝜅∙𝑟𝑑𝑟 

In the limit as 𝐿 → ∞, RHS becomes the Fourier transform or ℛ𝑖𝑗 → ℰ𝑖𝑗  

lim
𝐿→∞

𝐸𝑖𝑗
𝐿 (𝜅, 𝑡) = ℰ𝑖𝑗(𝜅, 𝑡) 

During this process, 𝜅 values become closer and closer, transforming from a 

discrete distribution to a continuous vector.  

A similar reasoning can be applied in the case of the two-point triple velocity 

correlation. Thus, define: 

𝑇𝑖𝑗𝑛
𝐿 (𝜅, 𝑙, 𝑡) = (

𝐿

2𝜋
)
6

𝑢̂𝑖(𝜅, 𝑡)𝑢̂𝑗(𝑙, 𝑡)𝑢̂𝑛(−𝜅 − 𝑙, 𝑡)     (12) 

Where the fact that  

 

𝑢̂𝑖(𝜅, 𝑡)𝑢̂𝑗(𝑙, 𝑡)𝑢̂𝑛(𝑚, 𝑡) = 0 

 

Unless 𝜅 + 𝑙 + 𝑚 = 0 is used. 
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Substituting the Fourier components according to  

𝑢̂𝑖(𝜅, 𝑡) =
1

𝐿3
∫𝑢𝑖(𝑥, 𝑡)
∀

𝑒−𝑖𝜅∙𝑥𝑑𝑥     (13) 

Transforms Eq. (12) into 

𝑇𝑖𝑗𝑛
𝐿 (𝜅, 𝑙, 𝑡)

= (
𝐿

2𝜋
)
6 1

𝐿9
∫∫ ∫ 𝑢𝑖(𝑥, 𝑡)𝑢𝑗 (𝑦, 𝑡) 𝑢𝑛(𝑧, 𝑡)

∀

𝑒
−𝑖𝜅∙(𝑥−𝑧)−𝑖𝑙∙(𝑦−𝑧)

𝑑𝑥𝑑𝑦𝑑𝑧
∀∀

     (14) 

 

For homogeneous turbulence, the triple velocity correlation 𝑆𝑖𝑗𝑛 depends only on 

𝑟 = 𝑥 − 𝑧 and 𝑠 = 𝑦 − 𝑧   →   𝑥 = 𝑟 + 𝑧, 𝑦 = 𝑠 + 𝑧.  

Therefore, 

𝑆𝑖𝑗𝑛(𝑟, 𝑠, 𝑡) = 𝑢𝑖(𝑥, 𝑡)𝑢𝑗 (𝑦, 𝑡) 𝑢𝑛(𝑧, 𝑡) = 𝑢𝑖(𝑟 + 𝑧, 𝑡)𝑢𝑗(𝑠 + 𝑧, 𝑡)𝑢𝑛(𝑧, 𝑡)     (15) 

 

Changing 𝑥 and 𝑦 variables in Eq. (14) with 𝑟 and 𝑠, respectively, and using Eq. 

(15) gives 

𝑇𝑖𝑗𝑛
𝐿 (𝜅, 𝑙, 𝑡) = (

1

2𝜋
)
6 1

𝐿3
∫ ∫ ∫ 𝑢𝑖(𝑟 + 𝑧, 𝑡)𝑢𝑗(𝑠 + 𝑧, 𝑡)𝑢𝑛(𝑧, 𝑡)⏟                    

𝑆𝑖𝑗𝑛(𝑟,𝑠,𝑡)

𝑒−𝑖𝜅∙𝑟−𝑖𝑙∙𝑠𝑑𝑟𝑑𝑠𝑑𝑧
∀∀∀

 

And carrying out the 𝑧 integration 

𝑇𝑖𝑗𝑛
𝐿 (𝜅, 𝑙, 𝑡) = (

1

2𝜋
)
6

∫ ∫𝑆𝑖𝑗𝑛(𝑟, 𝑠, 𝑡)𝑒
−𝑖𝜅∙𝑟−𝑖𝑙∙𝑠𝑑𝑟𝑑𝑠

∀∀

 

In the limit as 𝐿 → ∞ this becomes 

𝑇𝑖𝑗𝑛(𝜅, 𝑙, 𝑡) = (
1

2𝜋
)
6

∫∫𝑆𝑖𝑗𝑛(𝑟, 𝑠, 𝑡)𝑒
−𝑖𝜅∙𝑟−𝑖𝑙∙𝑠𝑑𝑟𝑑𝑠     (16) 

 

Which represents the Fourier transform of 𝑆𝑖𝑗𝑛. 

∫𝑑𝑧
∀

= 𝐿3 
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Now, the tools to consider the limit of Eq. (10) as 𝐿 → ∞ have been developed.  

 

Multiplying Eq. (10) by (𝐿/2𝜋)3 and taking the limit as 𝐿 → ∞ gives 

lim
𝐿→∞

[(
𝐿

2𝜋
)
3 𝑑

𝑑𝑡
𝐸̂(𝜅, 𝑡)

⏟          
1

+ 2(
𝐿

2𝜋
)
3

𝜈𝜅2𝐸̂(𝜅, 𝑡)
⏟            

2

=
1

2
(
𝐿

2𝜋
)
3

𝑀𝑖𝑗𝑚∑(𝑢𝑖̂(−𝜅)𝑢̂𝑗(𝑙)𝑢𝑚̂(𝜅 − 𝑙)⏟              
3𝑎𝑙

− 𝑢𝑖̂(𝜅)𝑢̂𝑗(𝑙)𝑢𝑚̂(−𝜅 − 𝑙)⏟              
3𝑏

)]   (17)  

Now, consider each term separately. 

Term 1: 

lim
𝐿→∞

(
𝐿

2𝜋
)
3 𝑑

𝑑𝑡
𝐸̂(𝜅, 𝑡) =

1

2
lim
𝐿→∞

(
𝐿

2𝜋
)
3 𝑑

𝑑𝑡
𝑢̂𝑖
∗(𝜅, 𝑡)𝑢̂𝑖(𝜅, 𝑡) 

 

And using Eq. (11) and the fact that 𝑢̂𝑖
∗(𝜅, 𝑡) = 𝑢̂𝑖(−𝜅, 𝑡) 

lim
𝐿→∞

(
𝐿

2𝜋
)
3 𝑑

𝑑𝑡
𝐸̂(𝜅, 𝑡) =

1

2
lim
𝐿→∞

𝐸𝑖𝑗
𝐿 (𝜅, 𝑡) =

1

2

𝑑

𝑑𝑡
ℰ𝑖𝑖(𝜅, 𝑡)     (18) 

 

Moreover, in Chapter 4 Part 5, the following relation was derived: 

ℰ𝑖𝑗(𝜅, 𝑡) =
𝐸(𝜅, 𝑡)

4𝜋𝜅2
(𝛿𝑖𝑗 −

𝜅𝑖𝜅𝑗
𝜅2
) 

And contracting indices gives 

ℰ𝑖𝑖(𝜅, 𝑡) =
𝐸(𝜅, 𝑡)

4𝜋𝜅2
(𝛿𝑖𝑖⏟

3

−
𝜅𝑖𝜅𝑖
𝜅2⏟
1

) =
𝐸(𝜅, 𝑡)

2𝜋𝜅2
     (19) 
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Substituting Eq. (19) into (18) yields 

lim
𝐿→∞

(
𝐿

2𝜋
)
3 𝑑

𝑑𝑡
𝐸̂(𝜅, 𝑡) =

1

4𝜋𝜅2
𝑑𝐸(𝜅, 𝑡)

𝑑𝑡
 

Term 2: 

lim
𝐿→∞

2 (
𝐿

2𝜋
)
3

𝜈𝜅2𝐸̂(𝜅, 𝑡) = lim
𝐿→∞

(
𝐿

2𝜋
)
3

𝜈𝜅2𝑢̂𝑖
∗(𝜅, 𝑡)𝑢̂𝑖(𝜅, 𝑡) 

Using similar steps shown for Term 1: 

lim
𝐿→∞

2 (
𝐿

2𝜋
)
3

𝜈𝜅2𝐸̂(𝜅, 𝑡) = 2 lim
𝐿→∞

𝜈𝜅2ℰ𝑖𝑖(𝜅, 𝑡) =
𝜈

2𝜋
𝐸(𝜅, 𝑡) 

Term 3b: 

lim
𝐿→∞

1

2
(
𝐿

2𝜋
)
3

𝑀𝑖𝑗𝑚∑(𝑢𝑖̂(𝜅)𝑢̂𝑗(𝑙)𝑢𝑚̂(−𝜅 − 𝑙))

𝑙

     (20) 

Recall relation between triad of wave numbers: 

𝜅 + 𝑙+𝑚 = 0 

 

Using Eq. (12) with 𝑖 = 𝑗, 𝑗 = 𝑚, 𝑚 = 𝑖 and 𝜅 = 𝑙, 𝑙 = 𝜅 

lim
𝐿→∞

1

2
(
𝐿

2𝜋
)
3

∑(𝑢𝑗̂(𝑙)𝑢̂𝑚(𝑘 − 𝑙)𝑢𝑖̂(−𝜅))

𝑙

 

=
1

2
lim
𝐿→∞

(
𝐿

2𝜋
)
3

∑(
2𝜋

𝐿
)
6

𝑇𝑗𝑚𝑖
𝐿 (𝑙, 𝜅 − 𝑙, 𝑡)

𝑙

 

=
1

2
lim
𝐿→∞

(
2𝜋

𝐿
)
3

∑𝑇𝑗𝑚𝑖
𝐿 (𝑙, 𝜅 − 𝑙, 𝑡)

𝑙

 

Therefore  

lim
𝐿→∞

1

2
(
𝐿

2𝜋
)
3

𝑀𝑖𝑗𝑚∑(𝑢𝑖̂(𝜅)𝑢̂𝑗(𝑙)𝑢𝑚̂(𝜅 − 𝑙))

𝑙

=
1

2
𝑀𝑖𝑗𝑚∫𝑇𝑗𝑚𝑖(𝑙, 𝜅 − 𝑙, 𝑡) 𝑑𝑙 
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Where the last equality derives from the fact that lim
𝐿→∞

𝑇𝑗𝑚𝑖
𝐿 = 𝑇𝑗𝑚𝑖, as shown in 

Eq. (16), and that (
2𝜋

𝐿
)
3
 represents the volume surrounding each wave number 

vectors in the sum, since 𝜅 = 2𝜋𝑛/𝐿. 

Term 3a: 

Same steps as Term 3b give: 

lim
𝐿→∞

1

2
(
𝐿

2𝜋
)
3

𝑀𝑖𝑗𝑚∑(𝑢𝑖̂(𝜅)𝑢̂𝑗(𝑙)𝑢𝑚̂(−𝜅 − 𝑙)) =
1

2
𝑀𝑖𝑗𝑚∫𝑇𝑗𝑚𝑖(𝑙, −𝜅 − 𝑙, 𝑡) 𝑑𝑙

𝑙

 

Therefore Eq. (17) becomes: 

1

4𝜋𝜅2
𝑑𝐸(𝜅, 𝑡)

𝑑𝑡
+
𝜈

2𝜋
𝐸(𝜅, 𝑡)

=
1

2
𝑀𝑖𝑗𝑚(𝜅)∫𝑇𝑗𝑚𝑖(𝑙, 𝜅 − 𝑙, 𝑡) − 𝑇𝑗𝑚𝑖(𝑙,−𝜅 − 𝑙, 𝑡) 𝑑𝑙     (21) 

And using homogeneity properties of 𝑇𝑗𝑚𝑖, it can be shown that: 

𝑇𝑗𝑚𝑖(𝑙,−𝜅 − 𝑙, 𝑡) = −𝑇𝑗𝑚𝑖(𝑙, 𝜅 − 𝑙, 𝑡) 

And Eq. (21) becomes: 

1

4𝜋𝜅2
𝑑𝐸(𝜅, 𝑡)

𝑑𝑡
+
𝜈

2𝜋
𝐸(𝜅, 𝑡) = 𝑀𝑖𝑗𝑚∫𝑇𝑗𝑚𝑖(𝑙, 𝜅 − 𝑙, 𝑡) 𝑑𝑙   

Finally, multiplying by 4𝜋𝜅2 

𝑑𝐸(𝜅, 𝑡)

𝑑𝑡
+ 2𝜈𝜅2𝐸(𝜅, 𝑡) = 4𝜋𝜅2𝑀𝑖𝑗𝑚∫𝑇𝑗𝑚𝑖(𝑙, 𝜅 − 𝑙, 𝑡) 𝑑𝑙     (22) 

𝑀𝑖𝑗𝑚 = −
𝑖

2
(𝜅𝑚𝑃𝑖𝑗(𝜅) + 𝜅𝑗𝑃𝑖𝑚(𝜅)) 
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This represents an alternative form of the equation for the energy spectrum that 

can be compared with  

𝑑𝐸

𝑑𝑡
(𝜅, 𝑡) = 𝑇(𝜅, 𝑡) − 2𝜈𝜅2𝐸(𝜅, 𝑡)     (𝑃𝑎𝑟𝑡 4, 𝐸𝑞. 4) 

𝑇(𝜅, 𝑡) =
1

2
∫ 𝑇𝑖𝑖(𝜅, 𝑡)
|𝜅|=𝜅

𝜅2𝑑𝛺 = 2𝜋𝜅2𝑇𝑖𝑖(𝜅, 𝑡)    (𝑃𝑎𝑟𝑡 4, 𝐸𝑞. 5) 

For homogeneous turbulence and 

 

𝑑𝐸

𝑑𝑡
(𝜅, 𝑡) + 2𝜈𝜅2𝐸(𝜅, 𝑡)

=
𝑢𝑟𝑚𝑠
3

𝜋
∫ 𝜅[(3 − 𝜅2𝑟2) sin 𝜅𝑟 − 3𝜅𝑟 cos 𝜅𝑟]𝑘(𝑟, 𝑡)𝑑𝑟    
∞

0

(23) 

 

obtained in Part 4; however, also subject assumption of isotropy, whereas Eq. (22) 

only assume homogeneity.  In both expressions, the RHS represents the rate of 

transfer of energy between scales. 

Eq. (22) clearly shows the interaction between the wave number triads that are 

responsible for the transfer of energy between scales. 

Eq. (23), on the other hand, shows the role of the two-point three-velocity 

correlation in the transfer process. 

 

It would be useful to understand the relationship and physics of the transfer terms 

in triad vs. two-point three-velocity and its correlation forms. 
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Appendix A 

A.1 

ℛ𝑖𝑗(𝑥, 𝑥 + 𝑟 , 𝑡) = 〈𝑢𝑖(𝑥, 𝑡)𝑢𝑗(𝑥 + 𝑟, 𝑡)〉 

ℛ̂𝑖𝑗(𝜅, 𝜅
′, 𝑡) = 〈ℱ𝑘{𝑢𝑖(𝑥, 𝑡)}ℱ𝑘′{𝑢𝑗(𝑥

′, 𝑡)}〉 

     = 〈𝑢̂𝑖(𝑘, 𝑡)𝑢̂𝑗(𝑘′, 𝑡)〉 

                                       = 〈〈𝑢𝑖(𝑥, 𝑡), 𝑒
−𝑖𝜅∙𝑥〉⏟          

𝑖𝑛𝑛𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

〈𝑢𝑗(𝑥′, 𝑡), 𝑒
−𝑖𝜅′∙𝑥′〉⏟          

𝑖𝑛𝑛𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

〉 

〈𝑢̂𝑖(𝑘, 𝑡)𝑢̂𝑗(𝑘′, 𝑡)〉 =
1

𝐿6
∫ ∫ 〈𝑢𝑖(𝑥, 𝑡)𝑢𝑗(𝑥′, 𝑡)〉⏟          

𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑒−𝑖(𝜅∙𝑥+𝜅
′∙𝑥′)𝑑𝑥𝑑𝑥′

ℒ

0

ℒ

0

 

Substituting 𝑥′ = 𝑥 + 𝑟 and using the fact that in homogeneous turbulence 

ℛ𝑖𝑗(𝑥, 𝑥 + 𝑟 , 𝑡) = ℛ𝑖𝑗(𝑟 , 𝑡) 

〈𝑢𝑖(𝑘, 𝑡)𝑢𝑗(𝑘′, 𝑡)〉⏟          
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

=
1

𝐿6
∫ ∫ ℛ𝑖𝑗(𝑟 , 𝑡)𝑒

−𝑖𝑥∙(𝜅+𝜅′)𝑒−𝑖𝜅
′∙𝑟𝑑𝑥𝑑𝑥′

ℒ

0

ℒ

0

 

Using the fact that 𝑑𝑥′ = 𝑑𝑟 

=
1

𝐿3
∫ 𝑒−𝑖𝑥∙(𝜅+𝜅

′)𝑑𝑥
1

𝐿3
∫ ℛ𝑖𝑗(𝑟 , 𝑡)𝑒

−𝑖𝜅′∙𝑟𝑑𝑟
ℒ

0

ℒ

0

 

= 〈𝑒−𝑖𝑥∙𝑘 , 𝑒−𝑖𝑥∙𝑘
′
〉⏟          

𝑖𝑛𝑛𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

〈ℛ𝑖𝑗(𝑟 , 𝑡), 𝑒
−𝑖𝜅′∙𝑟〉⏟            

𝑖𝑛𝑛𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

 

= 𝛿𝜅,−𝜅′ 〈ℛ𝑖𝑗(𝑟 , 𝑡), 𝑒
−𝑖𝜅′∙𝑟〉⏟            

𝑖𝑛𝑛𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

 

And using the definition of the Fourier coefficients 

〈𝑢̂𝑖(𝑘, 𝑡)𝑢̂𝑗(𝑘′, 𝑡)〉⏟          
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

= ℱ𝑘{ℛ𝑖𝑗(𝑟 , 𝑡)}𝛿𝜅,−𝜅′ 

Substituting 𝜅′ = −𝜅 

ℛ̂𝑖𝑗(𝑘 , 𝑡) = 〈𝑢̂𝑖(𝑘, 𝑡)𝑢̂𝑗(−𝑘, 𝑡)〉⏟            
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

= ℱ𝑘{ℛ𝑖𝑗(𝑥 , 𝑡) 
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A.2 

(
𝑑

𝑑𝑡
+ 𝜈𝜅2) 𝑢̂𝑗(𝜅, 𝑡) = −𝑖𝜅𝑙𝑃𝑗𝑘∑𝑢𝑘̂(𝑘′, 𝑡)𝑢𝑙̂(𝜅 − 𝑘′, 𝑡)

𝑘′

     (1𝐴) 

 

The conjugate of Eq. (1A) is equal to 

 

(
𝑑

𝑑𝑡
+ 𝜈𝜅2) 𝑢̂𝑗

∗(𝜅, 𝑡) = −𝑖𝜅𝑙𝑃𝑗𝑘∑𝑢𝑘
∗̂(𝑘′, 𝑡)𝑢𝑙

∗̂(𝜅 − 𝑘′, 𝑡)

𝑘′

     (2𝐴) 

Multiplying Eq. (1A) by 𝑢̂𝑗
∗(𝜅, 𝑡) gives 

(
𝑑𝑢̂𝑗(𝜅, 𝑡)

𝑑𝑡
+ 𝜈𝜅2𝑢̂𝑗(𝜅, 𝑡)) 𝑢̂𝑗

∗(𝜅, 𝑡)

= −𝑖𝜅𝑙𝑃𝑗𝑘∑𝑢̂𝑗
∗(𝜅, 𝑡)𝑢𝑘̂(𝑘′, 𝑡)𝑢𝑙̂(𝜅 − 𝑘′, 𝑡)

𝑘′

  (3𝐴) 

Multiplying Eq. (2A) by 𝑢̂𝑖(𝜅, 𝑡) gives 

(
𝑑𝑢̂𝑗

∗(𝜅, 𝑡)

𝑑𝑡
+ 𝜈𝜅2𝑢̂𝑗

∗(𝜅, 𝑡)) 𝑢̂𝑗(𝜅, 𝑡)

= −𝑖𝜅𝑙𝑃𝑗𝑘∑𝑢̂𝑗(𝜅, 𝑡)𝑢𝑘
∗̂(𝑘′, 𝑡)𝑢𝑙

∗̂(𝜅 − 𝑘′, 𝑡)

𝑘′

  (4𝐴) 

Taking the sum of Eq. (3A) and (4A) yields 
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 (
𝑑𝑢̂𝑗(𝜅, 𝑡)

𝑑𝑡
𝑢̂𝑗
∗(𝜅, 𝑡) +

𝜕𝑢̂𝑗
∗(𝜅, 𝑡)

𝜕𝑡
𝑢̂𝑗(𝜅, 𝑡))

+ (𝜈𝜅2𝑢̂𝑗(𝜅, 𝑡)𝑢̂𝑗
∗(𝜅, 𝑡) + 𝜈𝜅2𝑢̂𝑗

∗(𝜅, 𝑡)𝑢̂𝑗(𝜅, 𝑡))

= −𝑖𝜅𝑙𝑃𝑗𝑘∑𝑢̂𝑗
∗(𝜅, 𝑡)𝑢̂𝑘(𝑘′, 𝑡)𝑢𝑙̂(𝜅 − 𝑘′, 𝑡)

𝑘′

  

− 𝑖𝜅𝑙𝑃𝑗𝑘∑𝑢̂𝑗(𝜅, 𝑡)𝑢̂𝑘
∗(𝑘′, 𝑡)𝑢̂𝑙

∗(𝜅 − 𝑘′, 𝑡)

𝑘′

   (5𝐴) 

Now, it is necessary to take the average of Eq. (5A) and analyze each term. 

1)  

 (
𝑑𝑢̂𝑗(𝜅, 𝑡)

𝑑𝑡
𝑢̂𝑗
∗(𝜅, 𝑡) +

𝜕𝑢̂𝑗
∗(𝜅, 𝑡)

𝜕𝑡
𝑢̂𝑗(𝜅, 𝑡)) =

𝜕 [𝑢̂𝑗(𝜅, 𝑡)𝑢̂𝑗
∗(𝜅, 𝑡)]

𝜕𝑡
   (6𝐴) 

 

Recall definition of the discrete energy spectrum 

𝐸̂(𝜅, 𝑡) =
1

2
𝑢̂𝑗
∗(𝜅, 𝑡)𝑢̂𝑗(𝜅, 𝑡) 

 

And substitute it into Eq. (6A) 

𝑑 [𝑢̂𝑗(𝜅, 𝑡)𝑢̂𝑗
∗(𝜅, 𝑡)]

𝑑𝑡
= 2

𝑑 [
1
2
𝑢̂𝑗(𝜅, 𝑡)𝑢̂𝑗

∗(𝜅, 𝑡)]

𝑑𝑡
= 2

𝑑𝐸̂(𝜅, 𝑡)

𝑑𝑡
 

 

2)  

 (𝜈𝜅2𝑢̂𝑗(𝜅, 𝑡)𝑢̂𝑗
∗(𝜅, 𝑡) + 𝜈𝜅2𝑢̂𝑗

∗(𝜅, 𝑡)𝑢̂𝑗(𝜅, 𝑡)) = 2𝜈𝜅
2𝑢̂𝑗(𝜅, 𝑡)𝑢̂𝑗

∗(𝜅, 𝑡) 

= 4𝜈𝜅2
1

2
 𝑢̂𝑗(𝜅, 𝑡)𝑢̂𝑗

∗(𝜅, 𝑡) = 4𝜈𝜅2𝐸̂(𝜅, 𝑡) 
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3)  

−𝑖𝜅𝑙𝑃𝑗𝑘∑𝑢̂𝑗
∗(𝜅, 𝑡)𝑢̂𝑘(𝑘′, 𝑡)𝑢𝑙̂(𝜅 − 𝑘′, 𝑡)

𝑘′

 − 𝑖𝜅𝑙𝑃𝑗𝑘∑𝑢̂𝑗(𝜅, 𝑡)𝑢̂𝑘
∗(𝑘′, 𝑡)𝑢̂𝑙

∗(𝜅 − 𝑘′, 𝑡)

𝑘′

 

 

Recall for real valued function: 

𝑢̂𝑖
∗(𝜅, 𝑡) = 𝑢̂𝑖(−𝜅, 𝑡) = 𝑢̂𝑖(𝜅, 𝑡) 

−𝑖𝜅𝑙𝑃𝑗𝑘∑𝑢̂𝑗(𝜅, 𝑡)𝑢̂𝑘
∗(𝑘′, 𝑡)𝑢𝑙̂

∗(𝜅 − 𝑘′, 𝑡)

𝑘′

  − 𝑖𝜅𝑙𝑃𝑗𝑘∑𝑢̂𝑗(𝜅, 𝑡)𝑢̂𝑘
∗(𝑘′, 𝑡)𝑢̂𝑙

∗(𝜅 − 𝑘′, 𝑡)

𝑘′

 

= −2𝑖𝜅𝑙𝑃𝑗𝑘∑〈𝑢̂𝑗(𝜅, 𝑡)𝑢̂𝑘
∗(𝑘′, 𝑡)𝑢𝑙̂

∗(𝜅 − 𝑘′, 𝑡)〉

𝑘′

 

Therefore, Eq. (5A) becomes: 

2
𝑑𝐸̂(𝜅, 𝑡)

𝑑𝑡
+ 4𝜈𝜅2𝐸̂(𝜅, 𝑡) = −2𝑖𝜅𝑙𝑃𝑗𝑘∑〈𝑢̂𝑗(𝜅, 𝑡)𝑢̂𝑘

∗(𝑘′, 𝑡)𝑢𝑙̂
∗(𝜅 − 𝑘′, 𝑡)〉

𝑘′

 

Or equivalently 

𝑑𝐸̂(𝜅, 𝑡)

𝑑𝑡
= −2𝜈𝜅2𝐸̂(𝜅, 𝑡) − 𝑖𝜅𝑙𝑃𝑗𝑘∑〈𝑢̂𝑗(𝜅, 𝑡)𝑢̂𝑘

∗(𝑘′, 𝑡)𝑢𝑙̂
∗(𝜅 − 𝑘′, 𝑡)〉

𝑘′

 

And since 𝐸̂(𝜅, 𝑡) is real, it can be rewritten as 

𝑑𝐸̂(𝜅, 𝑡)

𝑑𝑡
= −2𝜈𝜅2𝐸̂(𝜅, 𝑡) + 𝜅𝑙𝑃𝑗𝑘ℜ{−𝑖∑〈𝑢𝑗̂(𝜅)𝑢̂𝑘

∗(𝜅′)𝑢̂𝑙
∗(𝜅 − 𝜅′)〉

𝜅′

} 
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A.3 

(
𝑑

𝑑𝑡
+ 𝜈𝜅2) 𝑢̂𝑖(𝜅, 𝑡) = −𝑖𝜅𝑚𝑃𝑖𝑗∑𝑢𝑗̂(𝑙, 𝑡)𝑢𝑚̂(𝜅 − 𝑙, 𝑡)

𝑙

     (7𝐴) 

Switching the dummy indices 𝑗 and 𝑚 gives 

(
𝑑

𝑑𝑡
+ 𝜈𝜅2) 𝑢̂𝑖(𝜅, 𝑡) = −𝑖𝜅𝑗𝑃𝑖𝑚∑𝑢𝑚̂(𝑙, 𝑡)𝑢𝑗̂(𝜅 − 𝑙, 𝑡)

𝑙

 

and replacing the summation on 𝑙 with the equivalent summation on 𝑙′ = 𝜅 − 𝑙: 

(
𝑑

𝑑𝑡
+ 𝜈𝜅2) 𝑢̂𝑖(𝜅, 𝑡) = −𝑖𝜅𝑗𝑃𝑖𝑚∑𝑢𝑚̂(𝑘 − 𝑙′, 𝑡)𝑢𝑗̂(𝑙′, 𝑡)

𝑘−𝑙

 

(
𝑑

𝑑𝑡
+ 𝜈𝜅2) = −𝑖𝜅𝑗𝑃𝑖𝑚∑𝑢𝑗̂(𝑙

′, 𝑡)

𝑙′

𝑢𝑚̂(𝑘 − 𝑙′, 𝑡)     (8𝐴) 

Taking the average of the sum of the RHS of Eq. (7A) and (8A), i.e.,  

(𝑅𝐻𝑆1𝐴 + 𝑅𝐻𝑆2𝐴)/2 

Gives 

(
𝑑

𝑑𝑡
+ 𝜈𝜅2) 𝑢̂𝑖(𝜅, 𝑡) = −

𝑖

2
(𝜅𝑚𝑃𝑖𝑗 + 𝜅𝑗𝑃𝑖𝑚)⏟            

𝑀𝑖𝑗𝑚

∑𝑢𝑗̂(𝑙, 𝑡)𝑢𝑚̂(𝜅 − 𝑙, 𝑡)

𝑙

 

(
𝑑

𝑑𝑡
+ 𝜈𝜅2) 𝑢̂𝑖(𝜅, 𝑡) = 𝑀𝑖𝑗𝑚(𝑘)∑𝑢𝑗̂(𝑙, 𝑡)𝑢𝑚̂(𝜅 − 𝑙, 𝑡)

𝑙

 

 

 

 

 

 

 



25 
 

A.4 

(
𝑑

𝑑𝑡
+ 𝜈𝜅2) 𝑢̂𝑖(𝜅, 𝑡) = 𝑀𝑖𝑗𝑚(𝜅)∑𝑢̂𝑗(𝑙, 𝑡)𝑢̂𝑚(𝜅 − 𝑙, 𝑡)     (9𝐴)

𝑙

 

The conjugate of Eq. (9A) is equal to 

 

(
𝑑

𝑑𝑡
+ 𝜈𝜅2) 𝑢̂𝑖

∗(𝜅, 𝑡) = 𝑀𝑖𝑗𝑚(𝜅)∑𝑢̂𝑗
∗(𝑙, 𝑡)𝑢̂𝑚

∗ (𝜅 − 𝑙, 𝑡)     (10𝐴)

𝑙

 

 

Multiplying Eq. (9A) by 𝑢̂𝑖
∗(𝜅, 𝑡) gives 

(
𝑑𝑢̂𝑖(𝜅, 𝑡)

𝑑𝑡
+ 𝜈𝜅2𝑢̂𝑖(𝜅, 𝑡)) 𝑢̂𝑖

∗(𝜅, 𝑡)

= 𝑀𝑖𝑗𝑚(𝜅)∑𝑢̂𝑖
∗(𝜅, 𝑡)𝑢̂𝑗(𝑙, 𝑡)𝑢̂𝑚(𝜅 − 𝑙, 𝑡)     (11𝐴)

𝑙

 

Multiplying Eq. (10A) by 𝑢̂𝑖(𝜅, 𝑡) gives 

(
𝑑𝑢̂𝑖

∗(𝜅, 𝑡)

𝑑𝑡
+ 𝜈𝜅2𝑢̂𝑖

∗(𝜅, 𝑡)) 𝑢̂𝑖(𝜅, 𝑡)

= 𝑀𝑖𝑗𝑚(𝜅)∑𝑢̂𝑖(𝜅, 𝑡)𝑢̂𝑗
∗(𝑙, 𝑡)𝑢̂𝑚

∗ (𝜅 − 𝑙, 𝑡)     (12𝐴)

𝑙

 

Taking the sum of Eq. (11A) and (12A) and averaging yields 

 (
𝑑𝑢̂𝑖(𝜅, 𝑡)

𝑑𝑡
𝑢̂𝑖
∗(𝜅, 𝑡) +

𝑑𝑢̂𝑖
∗(𝜅, 𝑡)

𝑑𝑡
𝑢̂𝑖(𝜅, 𝑡))

+ (𝜈𝜅2𝑢̂𝑖(𝜅, 𝑡)𝑢̂𝑖
∗(𝜅, 𝑡)

+ 𝜈𝜅2𝑢̂𝑖
∗(𝜅, 𝑡)𝑢̂𝑖(𝜅, 𝑡)) = 𝑀𝑖𝑗𝑚(𝜅) (∑𝑢̂𝑖

∗(𝜅, 𝑡)𝑢̂𝑗(𝑙, 𝑡)𝑢̂𝑚(𝜅 − 𝑙, 𝑡)

𝑙

+∑𝑢̂𝑖(𝜅, 𝑡)𝑢̂𝑗
∗(𝑙, 𝑡)𝑢̂𝑚

∗ (𝜅 − 𝑙, 𝑡)

𝑙

) 
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First two terms follow same steps as shown in Appendix A.2. 

 

2
𝑑𝐸̂(𝜅, 𝑡)

𝑑𝑡
+ 4𝜈𝜅2𝐸̂(𝜅, 𝑡)

= 𝑀𝑖𝑗𝑚(𝜅)(∑𝑢̂𝑖
∗(𝜅, 𝑡)𝑢̂𝑗(𝑙, 𝑡)𝑢̂𝑚(𝜅 − 𝑙, 𝑡)

𝑙

+∑𝑢̂𝑖(𝜅, 𝑡)𝑢̂𝑗
∗(𝑙, 𝑡)𝑢̂𝑚

∗ (𝜅 − 𝑙, 𝑡)

𝑙

) 

 

𝑑𝐸̂(𝜅, 𝑡)

𝑑𝑡
+ 2𝜈𝜅2𝐸̂(𝜅, 𝑡)

=
1

2
𝑀𝑖𝑗𝑚(𝜅)(∑𝑢̂𝑖(−𝜅, 𝑡)𝑢̂𝑗(𝑙, 𝑡)𝑢̂𝑚(𝜅 − 𝑙, 𝑡)

𝑙

+∑𝑢̂𝑖(𝜅, 𝑡)𝑢̂𝑗(−𝑙, 𝑡)𝑢̂𝑚(−𝜅 + 𝑙, 𝑡)

𝑙

) 

 

Replacing 𝑙 with −𝑙 in the second summation: 

𝑑𝐸̂(𝜅, 𝑡)

𝑑𝑡
+ 2𝜈𝜅2𝐸̂(𝜅, 𝑡)

=
1

2
𝑀𝑖𝑗𝑚(𝜅)(∑𝑢̂𝑖(−𝜅, 𝑡)𝑢̂𝑗(𝑙, 𝑡)𝑢̂𝑚(𝜅 − 𝑙, 𝑡)

𝑙

+∑𝑢̂𝑖(𝜅, 𝑡)𝑢̂𝑗(𝑙, 𝑡)𝑢̂𝑚(−𝜅 − 𝑙, 𝑡)

−𝑙

) 
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However, summation indices are dummy variables, such that the second 

summation can have either −𝑙 or 𝑙 as the summation index without changing the 

result: 

𝑑𝐸̂(𝜅, 𝑡)

𝑑𝑡
+ 2𝜈𝜅2𝐸̂(𝜅, 𝑡)

=
1

2
𝑀𝑖𝑗𝑚(𝜅)(∑𝑢̂𝑖(−𝜅, 𝑡)𝑢̂𝑗(𝑙, 𝑡)𝑢̂𝑚(𝜅 − 𝑙, 𝑡)

𝑙

+∑𝑢̂𝑖(𝜅, 𝑡)𝑢̂𝑗(𝑙, 𝑡)𝑢̂𝑚(−𝜅 − 𝑙, 𝑡)

𝑙

) 

 

 

 


