Chapter 5: Energy Decay in Isotropic Turbulence

Part 5: Energy Spectrum Equation via Fourier Analysis of the Velocity
Field

Transfer physics in analyzed based on Fourier analysis in wave number space of the
NS equations, which shows that the energy transfer occurs due to interactions
between scales at specific combinations of wave numbers. Whereas previous
approach used R;; and K-H equation leading to k(, t) and T(x, t) analysis.

Fourier-series representation

The velocity field can be expressed as:

=

= 2nn/L

u(x t) = z e®2a(k,t) (1)

Where n = (n4,n,,n3) and n; are integers with —oo < n; < oo.
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Fig 6.8. A sketch of the Fourier mode corresponding to k = (4, 2,0). The oblique
lines show the crests, where R(e**) = cosk * x is unity.



The Fourier coefficients of the velocity are:

4k, t) = F{u;(x, t)}
Inner product
= (uj(x,t), e k%), +— -
Volume average
1 .
o e
v

Where the operator F{ }is defined as

Fil 9(x)} = (g(x) e7E%) (2)
Note that e’ X = constant=1fork -x =0, > Kk L x
The Fourier modes are orthogonal:
’ RE 0, if k#kK'

|

Inner product

(f,g) = f f(x)g* (@) dx

Since 1_1(&, t) is real,
u(xt) = u'(xt)

Where an asterisk denotes the complex conjugate.



Therefore,
u(x,t) = Zlﬂu(m) 2 (i t) = ) ek Ea (-, t)
K

Since the first and second equalities are true [g(g, t) real] then the last equality
follows by substitution —k for k which is possible since the Fourier series is
symmetric about k = 0 [u(x, t) real] therefore:

Z[u (-1, t) —d(x t)] eex =

4*(—x, t) = 4(k, t), i.e., conjugate symmetry

One of the principal reasons for invoking the Fourier representation is the form
taken by derivatives. Using Eqg. (1) and taking derivative with respect to x;:

du(xt) _ 0 Z x4k, t)

P = i By E i) = iy e )
ag(g,t) _ i e mnt o
?k{a—xj} — (lije ik 12 (K_, t),e ik Xy Inner product
K

= ik; ) 0°(i, ) (e 7K %, ek )
E,
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Since u is real

(i t) = 2 t)
u(t) = Y cos (k- Ak t) = ) coslle VA (i)

Differentiation with respect to x; in physical space corresponds to multiplication
by ikx; in wave number space.



The Evolution of Fourier modes

Divergence of velocity in wave number space

Tk{ui,j} = lK]ﬁ] = IK - 2

du; N
V-g=0—>7-"k{ }zlkiuizg-
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Consider an arbitrary vector G, it can always be decomposed into a component
parallel to k and a component normal to k

[

=gl 4 ¢

And considering é = k/k the unit vector in the direction of k, we have

6l = e(e - G) = (k- )/«

Or using index notation

(Kla\l + Kz@ + ’C36§)(K1' K2, ’C3)/K2 = @

[(E ' Q)Kl' (E ' Q)KZ' (E ' Q)’%]/’CZ =Gl



For the perpendicular component

Gt =

o))

_@:Q_E(E'Q)/KZ = jkék

Where the projection tensor Py (k) is

Kij

Pi = 0 —— 5~

Which determines G* to be the projection of G onto the plane normal to k.

K1

Fig. 6.9. A sketch (in two-dimensional wavenumber space) showing the decomposition
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of any vector G into a component G parallel to k, and a component G perpendicular
to K.



Navier-Stokes in conservative form:

ou; N o(uwjue)  0%w;  1dp
dt oxy v Oxix, pox;

Apply the operator Fj.{ } to NS:

auj dﬁj Parti.al derivative in time in .
—J__J t physical space becomes ordinary
k (x, t)
ot dt derivative in wavenumber space.
azuj 2~ ( )
v = —vk“U;(k,t
k 6xkxk T =

Fr {_13_29} = —iKGP B, t) = Fy {p(& t)}

p

Where previous derivation showing differentiation with respect to x; in physical
space corresponds to multiplication by ik; in wave number space was used and
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The nonlinear convection term is written as

And its Fourier coefficients will be defined later.



Thus, NS becomes:

~

ol; o
526t +victty (e ) = —ingB(ic t) — G (1o )
Multiply by k; such that LHS=0, since

kil = 0 (4a) (continuity equation)*

and multiply by i to obtain

Eqg. (4b) can be shown to be equivalent to the pressure Poisson equation in Fourier
space and to show that the pressure and convection terms can be combined using
the projection tensor.

1) In wave number space, the Poisson equation for pressure is obtained by
taking the Fourier transform of the divergence of the NS equations:

v () - n [

In both cases using the property of% in wave number space = ik;, as per Eq. (3).
]

Thus:
kzﬁ = lK]G\](E, t)

' Eq. (4a) shows that in incompressible flow #; is perpendicular to k, i.e., for any
value of k, 1;is oriented tangent to the surface of the sphere of radius || centered at
the origin.



2) By using j = k in Eq. (4b) and multiplying by —ik;

. 2 A ~
—IKiK D = KjKy Gy

Dividing by k2

Kij ~ ~
KZ

A

—lK;p =

i.e., the pressure term —ik;p exactly balances G, the component of G in direction
of k.

The NS equations can be re-written as

01, an _ Al A
E-I_VK 4 =6";—-G; (5a)

— _AL.
= G]

Combines pressure and

=—p.G. —»
P]ka convection terms.

Consider the final period of decay of isotropic turbulence in which Re is so low, that
convection is negligible relative to the effects of viscosity such that the RHS of the
above equation is zero. Then, for a specified initial condition Q(E, O), the solution
of the NS in wave number space is:

2k, ¢) = 2, 0)e ™"t

Thus, each Fourier mode evolves and decays exponentially with t at rate vk?,
independently from the other modes. High wave number modes (small 1) decay
more rapidly than low wave numbers (large 1), as per E(k, ty) Part 4 Eq. (16).



Expressed in terms of Q(E), the nonlinear convective term is:

A o0(uru
Gr (ke t) = Fk {(a—ill)} = ik, Frfueu} As per Eq. (3)
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Thus, the incompressible flow NS equations in wave number
space:

d R
(a + wc2> i (E» t)

. ~ ~ Tri f .
= — jk(E)lKl z uk(K_', t)ul (E _ K_', t) (Sb) riads of wavenumbers
N——

[
K
—_— 14

K

The LHS involves @ only at k. In contrast, the RHS involves @ at k" and k", such that
k' + k' = K, and the contributions from k¥’ = k and k'’ = k are zero.

In wave number space, the convection term is nonlinear and non-local, involving
the interaction of wave number triads, k,k'and k", such that k' + k"' =k, i.e,,
responsible for inter-scale interactions.

Eqg. (5) is a deterministic (for a truncated series) coupled set of nonlinear ODEs for
ﬁj(E, t) for each k, i.e., three equations and three unknowns. Based continuity
Kjﬁj(E, t) = 0 LHS perpendicular k and so also is the RHS, as per Eq. (5a).



The kinetic energy of Fourier modes (Pope)

Under the assumption of homogeneous flow, the mean velocity ﬁ({, t) is zero,
such that its Fourier coefficients are also zero. Therefore, the instantaneous
velocity field corresponds to the fluctuating velocity, having zero mean. To describe
the turbulence statistically, now consider homogeneous flow and higher order
statistics.

The two-point two-velocity correlation R;; (g,g +r, t) can be represented in
physical space and wave number space:

Ensemble

Rij(xx+1,t) = (w(x t)w(x + 1, t))e—
Rij (1,1, t) = (Filua(x, ) }F i {u; (2, ) })

= (;(k, t) % (K, t))

average

The dependence from x and x' = x + r in physical space is transformed into
dependence from k and k'’ in wave number space.

Recall for homogeneous turbulence R;; (g,g +r, t) = ,‘RU(Z , t) and equivalently
in wave number space, 4;(k, t) and ﬁj(ﬁ’, t) are uncorrelated, unless k' + k = 0,
i.e., k' = —k — 1l; and #I; only f(@, t), as per Appendix A.1. This relates the vector
r in physical space, with an equivalent vector k in wave number space.

Thus, all the covariance information is contained in:

Rij (e t) = (@ (ke ) (1, £)) = (B (=1, )1 (1, 1)) = (@7 (5, £) 8y (1, 1)) = (@7 (—1c, ) (e, £))

Real signal Conjugate Real signal
symmetry

And ﬁij(g, t) represent the Fourier coefficients of the two-point velocity
correlation: fei,- (5, t) = TR{RU(E, t)} Appendix A.1
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In homogeneous turbulence, the Fourier representation of R;; becomes
Rij(r.t) = zﬁij(z, t)e' KT
K

The kinetic energy of the Fourier mode E(k, t) is defined as:

N 1 1.
E(et) = 527 (x )(e t) = SRl t) (60)
The TKE is:
1

k(t) = Euiui = z%ﬁii(ﬂ, t) = 2 E(E, t)

The dissipation rate £(t) is also related to E(E, t), by
.02
g(t) = —v yga@?eﬁ(g, t) (6b)

= —vlim e™® T (—rkyic) R;i(x, 1)
K

= Z 2vi?E (K, t)
K

Thus, E‘(E, t) and ZVKZE(E, t) are the contributions to TKE and & from Fourier
mode K, i.e., over spherical shell of radius |E|

A dynamical equation for the discrete energy spectrum [Eg. (6a)] may be derived
by taking the average of the sum of Eq. (5b) times ﬁ]’-‘(g, t) and the complex
conjugate of Eq. (5b) times ﬁj(g, t). The result is:

d . ~ .
EE(E' t) = T(E' t) - ZVKZE(E» t) (7) Appendix A.2

T t) = kiPr()R i ) (@ (©)0()ai (6= )

14

And R{ } denotes the real part.
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Comparing Eq. (7) with Part 4 Eq. (4) and since the time derivative and dissipation
terms are the same suggests that the transfer terms are also equivalent; however,
the former is in continuous form, whereas the latter in discrete form. Note that Eq.
(7) derived from NS, whereas Part 4 Eq. (4) from R;; equation

dE
s (,t) = T(k,t) — 2vk?E(k,t) (Part4,Eq.4)

1
T(k,t) = §j| | Tyi(x, t) kK2d0 = 2nKk?Ty (1, t)  (Part 4,Eq.5)
k|=k

Tii(g, t) 203 fSu(r t)e”””dr (Part4,Eq.2j=1)

S (L t) = 5;;1 (_D t) + 6;';,: (1, t) (Part4,Eq.3j=1)

Sii(1,8) = wi(x, g (x, Ouy(x + 1, 1)
and in both cases under the assumption of homogeneous turbulence.

Summing over all k, LHS of Eq. (7) becomes dk/dt, while the last term on the
right-hand side sums to —¢, such that the sum of ’IA*(E, t) is zero: ZET(E' t) =0

Thus, the term T‘(E, t) represents the transfer of energy between modes.

Eqg. (7) has a direct correspondence with K-H equation, but has the advantage of
providing clear quantification of the energy at different scales of motion and an
explicit expression for the energy-transfer rate — T(E, t), which plays a central
role in the energy cascade and involves the wave number triplets k' + k" = k.
Triad interactions allow energy of different scales to give rise to new scales. These
in turn have triad interactions and this chain branching gives rise to chaotic
behavior.

The terms E‘(E, t) and —ZVKZE(E, t) in Eg. (7) can be related to the two-point
two-velocity correlation in wave number space ﬁij(g, t) via Eq. (6a,b). Eq. (7)
and Part 4, Eq. 4 have the same assumptions and in discrete and continuous
form, respectively, which suggest correspondence between wave number triplets
and Fourier transform of Sii(g, t), which is related to Sik,i(ﬁ' t).
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The kinetic energy of Fourier modes (Bernard)

Recall previous derivation discrete NS as per Pope

(% + wc2> ﬁj(ﬂ, t) = —iKPj Z ﬁk("_" t)al(E — K, t) ()
K,

Can be transformed to Bernard form by sr-;tingj =i, l=m k=j, k=1
d . . .
(a + VKZ) ui(g, t) = —iKkpP;j Z i (L t)um(g -1, t) (8)
!

An equivalent form of Eq. (8) is given by:

d

(& + wc2> (1, ) = Myjm(K) Z 2,(L)an(k—Lt) (9) [ Appendixas
L

i

Mijm = =5 (KmPij(E) + KjPim(E))

Which can be obtained noting that the RHS of Eq. (8) is left unchanged if the dummy
indices j and m are switched, and summation on [ is replaced by the equivalent
summationonl' =k — L.

Applying the same steps used to go from Eq. (5) to (7), i.e., taking the average of
the sum of Eq. (9) times ] (E: t) and the complex conjugate of Eq. (9) times 1; (E: t)
gives a dynamical equation for the discrete energy spectrum in the form:

d . N .

EE(E' t) + ZVKZE(E, t) Appendix A.4
1

= > Mijm ) (@(=0) 2 (Ot (x = 1) = ()2, (DT (—x ~ 1)) (10)

K.',

Where [ has been replaced with —[ in the second term for later convenience. The
RHS accounts for the energy transfer between wave numbers. The triadic nature
of such exchanges is evident in these expressions.

Equivalency of Eq. (10) and Eq. (7) transfer terms needs to be shown.
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Limit of Infinite Space (In progress)
Consider now limit of Eq. (10) as L — oo.
Define

Bh(e0) = (5) (e 0a(-x0) A

And using the following:

(1 t) = 4(~x t)

1 .
s O (6 ) = 35 [ Ry (5. )e vy
Eqg. (11) becomes:

L

3 113 |
B (et) = (57) o0t (o) = (5;) [ Ro (0 o)etezdr

In the limit as L — oo, RHS becomes the Fourier transform or R;; — &;;

lim Ef5 (ke t) = €;(x t)

L—oo
During this process, k values become closer and closer, transforming from a

discrete distribution to a continuous vector.

A similar reasoning can be applied in the case of the two-point triple velocity
correlation. Thus, define:

L

Thalott) = () e OB Oa (x50 (12

Where the fact that

()0 (L t),(m t) = 0

Unless k + [ + m = 0 is used.
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Substituting the Fourier components according to

~ 1 —iK'x

ui(g, t) =13 vui(g, t)e EXdx (13)
Transforms Eq. (12) into

I;n(rc l, t)

27‘[

ffj i(x, t)y; (y, )un(z t)e” —ire-(x—z)-il-(y- Z)dxdydz (14)

For homogeneous turbulence, the triple velocity correlation S;;,, depends only on

r=x—zands=y—z - x=r+z y=s+z

Therefore,

Sin(mst) = w(x Oy (3,) un(z ) = wr + 2 (s + 2 un(zt)  (15)

Changing x and y variables in Eq. (14) with r and s, respectively, and using Eq.

(15) gives

Thn(k L t) = 27‘[ L3_[ fj i(r+z t)u](s+z t)un(z,t) e €T USdrdsdz

And carrying out the z integration

6
Tim( L t) = (i) f f Sijn(r,s,t)e " TS drds
VIV

In the limit as L — oo this becomes

1\° I
Tijn(&llt)=(§) jJSijn(z,gt)e‘lﬂ‘ll'ﬁdgdg (16)

Which represents the Fourier transform of S j,.
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Now, the tools to consider the limit of Eq. (10) as L — oo have been developed.

Multiplying Eq. (10) by (L/2m)? and taking the limit as L — oo gives

L\*d . L\ .
. Ly d L ,
lim <2n> th(E' t)+2(2n> vi2E(k, t)

L—oo
1/L\°
=5 (52) Mim ). | 808, O)F(c— D)
l

- () (Dim(-x -1 || a7

Now, consider each term separately.

Term 1:

lim (;ﬂ)s c(lit A(KZ t) —l <%)3iu (K t)u (K t)

L—> o

And using Eq. (11) and the fact that @} (k, t) = @;(—K, t)

L—> o L—>oo

L\*d 1d
lim (Zn) —E(K t)== llmEL (e t) = T, —&u(r,t) (18)

Moreover, in Chapter 4 Part 5, the following relation was derived:

£y ) = o (55 - )

And contracting indices gives

E(x,t) KiK; E(x,t)
Eit (E' t) = 4nx? éiﬂ T2 | T 2nk? (19)

16



Substituting Eq. (19) into (18) yields

L\3d 1 dE(k,t)
lim <2n) —E(K t) = ~

L—oo dmk?  dt
Term 2:
Ly? Ly?
Lh_)rEOZ (§> vilE(k, t) = Lh_)rgo (E) vic2 @} (x, t) 0 (x, t)

Using similar steps shown for Term 1:
(LY N v
lim 2 (%) VK E(E, t) = 2L11_)r£10wc 81-1-(5, t) = EE(K, t)

L—>oo

Term 3b:

1/L\3

Lh—>r£10 2 (2ﬂ> ijm z ( (1) (D (—x — l)) (20)

Recall relation between triad of wave numbers:

K+l+m=0

Using Eq. (12) withi =j, j=m, m=iandk =1, | =k

3

lim = (5) > (v@(z)am(& - D (-x))
l

1 /LN 21\ °
=5lim (52) 2. () Thlbr—10)

le~

Therefore
1

lim 2( )Mumz (1), (1) (1~ 1)) = Ml]m Tomi(LK — L t)dl

L

17



Where the last equality derives from the fact that lim T

L—>o J

mi = Tjmi, as shown in
Eq. (16), and that (ZTn) represents the volume surrounding each wave number
vectors in the sum, since k = 2nn/L.

Term 3a:

Same steps as Term 3b give:

im 2 () l,mz 2,0 (D () = 2 Myjm [ T (L~ L) L

L—coo 2

Therefore Eq. (17) becomes:

1 dE(k,t)
4?2 dt Z_E( 6, t)

= My () [T = 1) = (b~ L)l D)

And using homogeneity properties of Tj,;, it can be shown that:

iji(L —K— L t) = _iji (LE - L t)
And Eq. (21) becomes:

1 dE(k,t)
4tk?  dt

Z_E( K,t) = Mijm | Trmi(Le— L t)dl

Finally, multiplying by 4mk?

dE (x,t)

—F 2vi2E (k,t) = 4k’ Myjm, | Trmi(LE — L t)dl  (22)

i
Mijm = —E(Kmpij(ﬁ) T KjPim(E))

18



This represents an alternative form of the equation for the energy spectrum that
can be compared with

dE
r (k,t) = T(k,t) — 2vk?E(x,t) (Part4,Eq.4)

1
T(x,t) = Ej Ti(x, t) k2d0 = 2K Ty (k,t)  (Part 4,Eq.5)

K|=k

For homogeneous turbulence and

dE
r (k,t) + 2vi?E (k, t)

us °°
= :;”S j k[(3 — k?r?) sinkr — 3kr coskr]k(r,t)dr (23)
0

obtained in Part 4; however, also subject assumption of isotropy, whereas Eq. (22)
only assume homogeneity. In both expressions, the RHS represents the rate of
transfer of energy between scales.

Eqg. (22) clearly shows the interaction between the wave number triads that are
responsible for the transfer of energy between scales.

Eg. (23), on the other hand, shows the role of the two-point three-velocity
correlation in the transfer process.

It would be useful to understand the relationship and physics of the transfer terms
in triad vs. two-point three-velocity and its correlation forms.
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Appendix A
A.l

Rij(x,x +1,t) = (w(x t)y(x +1,t))
Rij (11", t) = (Frfui (2, ) JFrr {wy (2, 1))
= (0 (k, t); (K, t))

= «ui(ﬁ, t), e K x) (u] (x t) e iKrx! xr)

linner product] linner product|

1 L L ' .
(@ (ke )y (K, ) = 7 f f Gy (x, €y (, £)) e 71X 5D gy
o
Substituting x’ = x +r and using the fact that in homogeneous turbulence
Rij(xx +1,t) = Ry(r,t)

1 (*r* . N
(ui(& t)uj(k_” t)) = E_[ f :Rij(fr t)e—lg-(EHC_)e—lE Tdxdx'
e
Using the fact that dx’' = dr
1 L
=)

. R B -
e_lﬁ'(E'HC_)dEE‘/ :Rl](ti t)e‘”c_'fdt

— (e—igk —ixk' )(:le(r t) e—uc )

linner product| [inner product]

= 81 (Rij(r, 1), €7ET)

linner product|

And using the definition of the Fourier coefficients

(0 (K, )1 (K, 1)) = FrfRij (1, )36

Substituting k' = —k
Rij(k,t) = @k )@ (—k t)) = F{Rij(x,t)
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A.2

d
(5 + v (1) = —iP Y w(K )@k - KE)  (14)

kr

The conjugate of Eq. (1A) is equal to

(% + VKZ) 7 (1, t) = —ir P Z we(k (k=K' t)  (24)
k1

Multiplying Eq. (1A) by @} (E, t) gives

dﬁ(E’ t) ~ A %
< ]dt + wczuj(g, t)) i} (E' t)

= —irBye ) (e )Tk, )T~ K t) (34)
kr

Multiplying Eq. (2A) by ﬁ,i(g, t) gives

dﬁ*(E’ t) A~ % A~
( ]dt +vic2 5 (k, t)>uj(g, t)

= —iriPy Y (e O (K, O] (k — k') (44)
kr

Taking the sum of Eq. (3A) and (4A) yields
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<daj§f, t) 2, 1) + 2 Y) aa*(x t) 8,0 t)>

+_

Now, it is necessary to take the average of Eq. (5A) and analyze each term.

1)

(du](rc D t)+aﬁ*(,c 9, e t)) [aj(g,g)ta;(ﬂ,t)] o

Recall definition of the discrete energy spectrum

~ 1— —
B(et) = 5 (5 0% (1)

And substitute it into Eq. (6A)

=2

d (e, )07 (1 t) d [% (ke ) ( t)] dE(x,t)
dt BT

dt

2)
(D O R ERRE) - >3 = )7 (=)
1
- 0 - N
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3)

—ir P Z 0 (1, ) (k' )@ (i — K, t) — i, Py Z ;(x, t) i, (k' )87 (x — k', t)
k1

EI

Recall for real valued function:
87 (i t) = (-rt) = (1)

—iriPy Y (e OB (K, 08 (k— K1) — Py » () (K, 05 (e — K1)

EI E/

= —2isBye ) (@ (1, ) (K ) (1~ K, 1))
k1

Therefore, Eq. (5A) becomes:

dE (1, t)
ST

+ 4B (16 t) = ~2ik By ) (816, (K, ) (i~ 1))
k1

Or equivalently

dE(k,t)

=22 = —2uiB () — Py ) (0 (s )2 (K O (1~ K, 6))

K!

And since E(E, t) is real, it can be rewritten as

dE(x,t) _

= ~2vetE(o t) + PR {—i Z@ ()it ()t (ke — K_’)>}
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A3

d
(35 + v u(ic ©) = —iremPy Y GLOTG(k-L1)  (74)

L

Switching the dummy indices j and m gives
d
(55 + v ) (i ) = =inPan Y (L) (L)
L

and replacing the summation on [ with the equivalent summationon ' = k — [:

k=1
d 5 _ TN ,
(a+v;c ) = —ijimZu](l_, t) um(K—l,t) (84)
14

Taking the average of the sum of the RHS of Eq. (7A) and (8A), i.e.,
(RHS 4 + RHS,,4)/2

Gives

p .
(E + VKZ) Uk t) = _%(Kmpij + ijim)zﬁj(l; t)tm (k — L t)
:

(% + v;c2> ;(x, t) = Myjm (k) 2 @ (L t)an(k — L t)
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A4

d
(@ + VKZ) i (1, t) = Myjm (1) Z (L O)an(k—1Lt) (94)

The conjugate of Eq. (9A) is equal to
d 2 Ak Ak Ak
(35 + i) 2 (6 6) = Mm@ ) 8 (L) B (K~ LE)  (104)
L

Multiplying Eq. (9A) by ] (E, t) gives

dA' )
( ulc(lf ) +vic2 iy (k, t)) 2 (x t)

= Mym(0 ) 8 (6 OG(LA(c~LE) (114)
!

Multiplying Eq. (10A) by @;(k, t) gives
(%t&t) + vt (k, t)) (x t)
= Myn(© ) 2,( O (L Ak~ L) (124)
L

Taking the sum of Eq. (11A) and (12A) and averaging yields

ik t) . du;(x.t)
( ldt a7 (i, t) + ldt ui(E,t)>

+ (vnzﬁi(g, )4 (x, t)

+ it (e, t) i (1, t)) = Mijm (1) <Z 47 (1, ) (L t) U (k. — L t)
1

+ Z (e, £)a; (L t) (e — L t))
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First two terms follow same steps as shown in Appendix A.2.

dE(E' t) 20
2 i + 4vk E(E, t)
= My D 8 (e )24 ) (e~ L 1)
l
+ Y e 08 0 (- L t>>
l
E .
d c(l% t) + ZVKZE(E, t)

1
= 5 Mijm (1) (Z (1 ) (L 1) (x — L 1)

+ Z (1, ) (=L ) (—x + L t)>

Replacing [ with —[ in the second summation:

dE(x t)

58
i + 2vk E(E, t)

- %Mijm (1) <Z (1 )8 (L ) (ke — L)

L

+ Z i (16, )0 (L ) (— = L, t)>
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However, summation indices are dummy variables, such that the second
summation can have either —[ or [ as the summation index without changing the

result:

dE (x t)

pr + 2vk2E(k, t)

1
= Mm@ | D" (=16, )y (L )t (i~ L )
!

£ 2,06 O (L ) (-~ L)
L
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