Chapter 5: Energy Decay in Isotropic Turbulence

Part 4: Energy Spectrum Equation

In Part 3, an equation for R;;(r, t) was derived by taking the average of ui(g, t)

times NS; at y + average of u; (X’ t) times NS; at x subject assumptions of

homogeneous turbulence:
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Where:
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is the two-point pressure-velocity correlation vector.
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Recall Fourier transform definitions of the velocity-spectrum &;; (E» t) and R;; (L t)

tensors:
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These two equations provide a means of decomposing turbulence correlations
into contributions from a continuous range of scales as represented by Fourier

components e
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Fourier transform of the R;; equation gives,

a;’ (1 t) = Ty (i t) + Py t) — 2vie?Ey(i,t) (1)

Which is a 2" order tensor equation, where:
Ty 0) = s [ Su(n esrdr (2
1 EJ - (27_[)3 l] T, e= ( )
Is the Fourier transform of

GAYT, 0S; i
Sij (L t) = a;:l (_L t) + 6;‘,;] (L t) (3)

e., Sl](t’ t) = fV TU(E, t)e‘iEf@

T;; (E, t) = rate of transfer of energy (gains or losses) between different scales of
turbulent motion due to vortex stretching and re-orientation.

1 10%K; 10XK;
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is the Fourier transformed pressure velocity term.

Pij(E» t) = (0 for isotropic turbulence = influence of pressure field on bringing
anisotropic turbulence to an isotropic state.

The viscous dissipation term is evaluated as follows:

2v f 0°R; 2v

ij KT e — K2 - 2¢..
@07 ), ar? (r t)e d_—(zﬂ)3j; R; e Ldr 2VK Sl](g,t)



Contracting indices in Eq. (1), the pressure term drops out and integrating over a
spherical ~ shell converts &;; to the energy spectrum E(x,t) =

%f|g|=x Eii (E: t) k?dQ with K = fooo E (k, t)dk to obtain the energy spectrum equation:

OE
=, (60 =T(6) = 2vi’E(ic,t) - (4)

Which is a scalar equation, where:

df) =elemental solid
angle

1
T(k,t) = §j|‘ | Tyi(x, t) k2d0 = 2Tk, t)  (5) dS(x) = k?dQ
K|=k

jg dS (k) = 4mic?

is the transfer termand T;; = Tk{Sii(f, t)}, as will be shown.

Next assume in addition to homogeneous also isotropic turbulence and substitute
the isotropic form of S;; ;, obtained in Chapter 4 Part 2, into Eq. (3) which gives,

3 1d 3dk 5 :
Sii(r,t) = Upms r—za(r E(T, t) + 4r-k(r, t)) (6) Appendix A.1

Where k(r,t) = S;11(ré;)/ud, is the previously defined (Chapter 4 Part 2)
correlation function, not to be confused with wave number k. Note thatS;; = f(r)
only in isotropic turbulence.

Using Eq. (6) and contracting indices, Eq. (2) becomes [Bernard Eq. (5.121)],

(ee)

T;i(x, t) = 1 Sii(r, )r?
(2m)? J,

sin kr

dr = f(k) + f(E) (7) | AppendixA.2
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Substituting Eq. (7) into Eq. (5) gives,

(00]

1
T(k,t) = %f S;i(r,)kr sinkr dr = 2nk?T;;(k, t)  (8)
0

Which can be interpreted as the Fourier transform of S;; such that the inverse
transform is,

(00]

KT °°
S;(r,t) = 2f T(x,t) dk = 2[ (2mK?T;; (x, t))
0 KT 0

sin sin rcrd 9
——dk 9)

Substituting Eq. (6) into Eqg. (8) and integrating by parts twice gives

3

urms

T(k,t) =

fooic [(3 — k2?7?) sin(kr) — 3kr cos(kr)]k(r,t)dr (10)| Appendix A3
0

Which shows that k(r,t) determines the rate of energy transfer between the
scales of turbulence, as shown later.

Integrating Eq. (4) between 0 and oo and using

(0]

K(t) =f0 E(k,t)dk

€= 2vf k2E(x, t)dk
0

Gives

dl;it) = LOOT(K, t)dk — ¢

And in isotropic turbulence



Therefore, in isotropic turbulence (alternate derivation to follow)

J T(k,t)dk =0
0

i.e., net energy transfer between scales equals zero or in other words gains and
losses are conserved.

When f(r,t) is known, E (k, t) can be evaluated using:

2

E(x) = %Jm@f(r) +7f'(r))krsin(kr)dr  (11) | AppendixA.4
0

12

For the final decay, f(r,t) = e_%, such that E (k) for the final decay is given by:

2

Urms Ag

E(k,t) = Ner

1
(K)Lg)éle_i(mg)z (12) Appendix A.5

Substituting Eq. (12) into Eqg. (4) yields

Tk, t) = E(x, t)%((mg)z ~5)
g
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Figure 5.8 Energy spectrum budget in final period. —, 9E /dt; ——, transfer term; — - —, dissipation. In

this illustration R; = 10, with A denoting 4,.

Transfer term shows that in final decay scales for which k < \/3//19 lose energy to
those for which k > \/g/lg. V5 = 2.2

Ke = 2/Ag4 peak E

See Bernard Problem 4.1

Kqg = \/g//lg peak dissipation V6 = 2.4

In this example, k., and k4 not well separated due to low R;.

No inertial range for above form of E (k, t) equation. As Ag rises the balance in Fig.
5.8 shifts to smaller wave number, i.e., larger scale — higher wave numbers lose all
their energy before lower wave numbers.
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Fig. 5.3 Schematics of variation of (top) 7'(k) and (bottom) E(k) with k on
logarithmic axes for homogeneous isotropic turbulence at sufficiently high Re.
The occurrence of the —5/3 power law at intermediate wavenumbers in the E(k)
spectrum will be discussed in Section 5.5.

Although the expression for the dissipation rate, ¢ = v% g%’j, includes

viscosity, its magnitude is set by the large-scale energy production rate,
which is independent of viscosity.
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Fig. 5.4 Variation of E(k), D(k), and T'(k) on linear axes from numerical simulation of
homogeneous isotropic turbulence. (See (5.8) for the definition of D(k).) Note that T'(k)
is plotted with the opposite sign. In this simulation, 7'(k) does not plateau at zero at
intermediate wavenumbers since the Reynolds number of these pioneering simulations is
relatively low (Rey, ~ 40), and E(k) does not have a well-defined inertial subrange. (Image
credit: Clark, Ferziger and Reynolds (1979), figure 3)

Shows that T(k) = ¢ in the inertial subrange.



Hinze pp. 218-220

Consider the integrated form of Eq. (4)

K

a f i, O)dic = [ Tk, )k — 2v | eE e 13)

If, as previously done, the upper limit of the integral is increased to k = o

fooT(}c, t)de =0 (14)
0

i.e., net energy transfer between scales is zero or in other words gains and losses
are conserved.

An alternative derivation for Eqg. (14) can be obtained starting from Eg. (9).
Specifying r = 0 in Eq. (9) recovers Eq. (14)

sin kr

o) . 1
J, TGt llj)% drx = -5;(0,£)=0

KT

If Sii(O, t) =0.



An alternative form of Eq. (6) for S;; (1, t) is:

2

S;i(r,t) = uﬁms< dk —(r,t) + r (r t) +— k(r t)) (15) | Appendix A.6

3
Substituting the Taylor expansion of k(r,t) = ;—'k”’(O, t) + --- into Eq. (15) gives

35 .
S;i(r,t) = ?rzk”'((), t) Appendix A.7

Which shows that S;; (7, t) behaves like 72 for small values of . Consequently,

Sii(O, t) =0
And Eg. (14) must hold.

Therefore, for k = oo, Eq. (13) becomes,

d [0 0) [0 0)
—f E(x, t)dx = —ZVJ K2E (k, t)dk
dt J, 0

dK(t)
dt

The LHS shows the change of total kinetic energy of turbulence and since there are
no external energy sources, LHS must equal the dissipation caused by viscous
effects.

10



T (k, t) is the Fourier transform of S;;(r, t), which is related to k(r, t). In the K-H
equation, it was previously stated that the term:

3
urms

+—k

[c’)k 4
or r

represents inertial processes. However, it can also be interpreted as a “convective”
action in the transport of f(r,t), caused by the interaction of eddies of different
sizes.

Similarly, the term fOK T (k, t)dk can be interpreted as the interaction of eddies of

different wave numbers, transferring energy by inertial effects to or from the
eddies in region 0 to k, which is the reason T(k, t) is referred to as the energy-
transfer-spectrum function.

Neglecting the interaction of eddies in Eq. (4) gives

0E
Fr (k,t) = —2vk?E(x, t)

And integrating

E(k,t) = E(k, ty) exp[—2vKk?(t — ty)] (16)

11



Comparing this expression with Eq. (12)

2 2
E(x,t) = um\/zijg (Kﬂg)4e_%(’c’19) (12)

The two exponential forms are equivalent for t > t, —» t — t, = t since (Hinze
p.210, for final decay)

/1f=V8Vt =>/1g=v4vt )[f=\/§)'g

1
exp[—2vk?t] = exp [——K2V4V tv4vt ] = exp—E(K/lg)z

Moreover, assuming IC

2

E(k,ty) = urv"ig )"

Eqg. (12) and Eqg. (15) become identical.

Eqg. (12) shows that the decrease of kinetic energy with time occurs at a higher rate
for large wave number eddies and E(k, t) increases very rapidly, proportional to
k* for small wave numbers, and decreases monotonously to zero as k increases.
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Appendix A
A.l

Sijl(f) = u?ms

dk k_rn  1dkr®), 7 T
(" dr) 2r3_55”?+ﬂ o (0l +8)

Forj=kandl =i

dk k rl- 1 d(kr?) 1
Slkl(r) urms [(k - r%>_ - 2 + 4r  dr ( i + Sik ?)]

(k— dk) ’ ka+id(kT2)(4r_k)]

— 143
= Urms

2r 2r 4r dr

d2r

Tk dk T'k
= Ums [2 ar 2k7]

[ dk Tk Tk d(krz)

Taking a derivative with respect to 7y, yields

(1) = i [0 + ) + 0] )
As shown in Chapter 5 Part 1 Appendix A.2.
Similarly,
4k(—r)

(24)

aSiki 3 r " 7 ,
6rk (_t) = Urms [_Ek (—T‘) + Ek (—T) -

And using the following relations
k(r) = —k(-r)
k'(r) =k'(—r)
k'"(r) =—k"(-r)

13



Into Eq. (2A) gives

aSikl
ark

(r)—urms[zk”(r)+ k() + () (34)

Now, defining

Sii (r, t) = a Lkl (—r, t) + a;k’l (r, t)
k

Tk
And using Egs. (1A) and (3A) yields
3 [ ( )
Si(r,t) = udns [rk""(r) + 7K' (r) + ——=
Multiplying and dividing by 72 results in
1
Si(r,t) = urms[ 3k'" + 7r2k’ + 8kr]

Or equivalently

1
S;i(r,t) = ud, —2— (r3k' + 4r%k)

14



A.2

U(K t) = (21 )3J U(r t)e™Idr (44)

Converting to spherical coordinates
r =r(sinf cos¢ é; + sinf sin¢ é, + cos b é;)
Also, for isotropic turbulence

1d dk
Si(r,t) =ul,s—= . (r —(r t) + 4r2k(r, t))

Such that S;; is only a function of 7, a scalar quantity.
Assume that,

K = Ké3

Which is possible due to the isotropy hypothesis, i.e., invariance under rotation
and reflection.

Therefore, Eq. (4A) for T;; becomes,

— 1 S iK'Td
Ty (k) = va i(r)e' tdr

1 00 21 T ]
= W.[ drSii(r)j dgbj d@e T c0s 012 5in(0)
0 0 0

1 j°° , n
= r drS--(r)j dBe T cosO sin(@)
(27_[)2 o ii o

Multiply and divide by —ikr

o i
Ty (k) = — j rzdrSii(r)f —ikreTcosO in(Q) do
0

ikr(2m)? J,
And use the relation:

plKrcos6 — ikr cos @

70 —ikr sin(@)e

15



Gives

@ Td .
.. - 2 B ____ _liKkrcos@
T (1) i;cr(Zn)ZJO ’ drs”(r)Jo a6 ° do
1 «© , -
- 2 B ikr cos @
= l'KT(ZTC)Z,](; r2drS;(r)|e ]0
oo ei;cr _ e—iKZT'
= ZS.. —d
kr(2m)? j;) r=Si(r) 2i r
2 - sin(kr)
T;i (k) = (Zn)zf T8 (r) dr
0

16



A3

Tii (K', t) = (2%)2 Joo Sii(r, t)rz S dr (SA)

S;i(r,t) = ud, 12: (r d—(r t) + 4r2k(r, t)) (64)

— 1 2 — 2
T(k,t) = > J Tyi(x, t) iK*d2 = 2Ty (xk, t)  (74)

K|=K

3 [ee]
T(k,t) = u’;;"sj k [(3 — k?r?) sin(kr) — 3kr cos(kr)]k(r, t)dr
0

Substituting Eq. (6A) into (5A) gives

(0]

1 3 d .y 5 sin kr
T;;(k,t) = =— urmsg(r k'(r,t) +4r<k(r,t)) dr
ul o sin kr
= T j (K0 + 42k, 0) = dr
0

Integration by parts

judv=uv—jvdu

us *
T (x, t) = [ [ms ( 2K'(r, t) + 4rk(r, t)) sin KT]
o

rmsj (r3k'(r, t) + 4r2k(r, t))— (sin Kr) dr  (84)

272 KT

17



Where:

urms (rzk (r,t) + 4rk(r,t)) sin kr

0
3

urms

= an [(r2k' (r, ) + 4rk(r, 1)) sinkr]

urms

= 5 (02K (0. 1) 40t 6, T) ) ST O]

And using the fact that at large r, the triple correlation k(r, t) behaves like r~*
(see Part 3)

lim r2k’(r,t) = 11m rk(r,t) =0

r—oo

Therefore,

3 [o.]
[2 == (r2k'(r,t) + 4rk(r,t)) sin KT] =0
0

And Eg. (8A) becomes:

3

u *© d /sinkr
Tl t) = == j (r3k’(”> + 4r2k(r, t))a ( — )dr (94)
0

Evaluating the derivative of sin kr /kr as

d (sin rcr) COSKr Sinkr
Kr

dr

r K12

18



And substituting into Eq. (9A) gives

COSKr Sinkr
dr

3 o
T;; (i, t) = —urmsj (r3K'(r,©) + 412k (1, 1)) [
0

272 r K12

3
urms

212

*® r
f (rzk’(r, t) coskr + 4rk(r,t) cos kr — p k'(r,t) sinkr
0

4
- k(r,t)sin KT) dr

Using the Product Rule of derivatives

T;;(x, t) = — — 2rk(r,t) |coskr + 4rk(r,t) cos kr

212 dr

ud . j‘x’ d(r2k(r,t))
0

1 d(rk(r,t))

. 4 .
- I —k(r,t) |sinkr — p k(r,t) sinkrdr

+ 2rk(r,t) |coskr

__uﬁmsJ‘” d(rzk(r,t))
© 2m? 0 dr

1 d(rk(r,t))

- I + 3k(r,t) |sinkrdr

19



Grouping terms depending on k(r, t) and integrating by parts again

us * 3k(r,t
T; (K, t) = — ZZTmZS <j 2rk(r,t) cos kr — ( )sin KT dr)
0
3 *®(d(r?k(r,t
B urmszf ( Gy ))>cosrcrdr
(2m)? J, dr
3 © (d(rk(r,t
+—urm_sz J (_(r (r ))> sinkr dr
k(2m)? ), dr

u3 © 3k(r,t
= j 2rk(r,t) coskr — (r.t) sinkr dr
22\ J, K

3 0o
u
el [W + J kr2k(r,t) sinkr dr]
0

- 2m2
u?ms ®

+ rk HTRT [ —f krk(r,t) coskr dr
212K 0

Where the fact that at large r, the triple correlation k(7, t) behaves like r~* was
invoked.

3

u (e 0]
T; = — ZZTmZS_IO [3rk(r,t) coskr —

3k(r,t)
sin kr

+ kr?k(r,t)sinkr]dr (104)

20



Substituting Eq. (10A) into (7A) gives

2,,3

KU © 3k(r,t
T(k,t) = ™ [ [=3rk(r,t) coskr + S
n 0

sinkr — kr2k(r,t) sinkr] dr

3
urms

=— f [—3Kk%rk(r,t) coskr + 3kk(r,t) sinkr — k3r?k(r,t) sinkr] dr
0

T(k,t) = u:;ns JOOK [(3 — k?r?) sin(kr) — 3kr cos(kr)]k(r, t)dr
0

21



A4

In Chapter 2, the velocity spectrum tensor was defined as

1 .
Eij(r,t) = Zn)? j; Rij(r,t)ecTdr

Using a contraction of indices

€k t) = (2%)3 LR”(L t)e™rdr
And for isotropic turbulence, as shown in Chapter 4 Part 2
Rii(r,t) =3f() +rf'(r) (11A1)
Proves that R;; is only a function of 7, a scalar quantity.

Following the same steps taken for T;; (k) in Appendix A.2 to convert from vector
to scalar equation with time dependence implied, the following result is obtained,

sin(kr)

& __2 ) 2R d 11A2
(09 = Gz | TPRa) T ar (1142

It is also possible to relate &;;(k) to E(x), as shown for relation between 1D and
3D spectra [Chapter 4 Part 2 Eq. (10)], obtaining the equation:

E(k) = 2nk?E;(k)  (124)

Substituting Eq. (11A) into (12A) gives

1r® sin(kr)
E = 2 _ ZR..
(0=~ | PRy T

dr (134)

And substituting Eq. (11A1) into (13A) yields

E o
E(x) = ?.f (3f () + rf'(r))kr sin(kr)dr
0

22



A.5

12

f(rt)=e 2% (144)
Evaluate 1D spectrum E;; using (Chapter 4 Part 5 Eq. (14))

Ei1(xq,t) = —uzj f(r,t)cosk,rdr (154)

Substituting Eq. (14A) into (15A) gives

oo r2

2
Ei1(ky,t) = —uZJ e 245 cosk,r dr
T 0
This integral can be reconducted to a differential equation. Differentiate with
respect to k;

2

dEll(Kl’ t) _ 2 e *© _r—

2
=——u?| re Posiniyrdr
Use the substitution:
r2 - r2
2 522
de %' = Ze 2% gy
g
To obtain
2
dEy1(k,t) 2— ® "
u?AZ f sink,rde %4
dKy s 0

Integrate by parts:

12

dE;,(ky,t) 2 — o _r
Lz —Klj cosk,re “adr
0

dK, s

0

2

dE;q(kq, t) 2— —z
dK,

23



Which is equal to:

dE;{(k, t)
% = =gk, E11 (K, t)

And using separation of variables yields

dEyq(ky, t)
—— — = —A%k,d
Eqq (5, 8) gt
A2 K2
E11(ky,t) = Cexp (‘ gz )
Where the constant C is found by evaluating
2
2— (® 2— (© — V2 —
E, (0t =—u2J rt dr=—u2j e Yadr = —u2)
w00 =23 | f@rodr=2a | =

Such that

V2 — A2 K2
Ei1(kq,t) = \/—Euz/lg exp (— gz 1) (164)

Using the relation between 1D and 3D spectra (Chapter 4 Part 5 Appendix A.2)

E( )_dezEll K, dE;,
VUED e T2 dng

And substituting Eq. (16A) gives

V2 —  [k? 22K2\ K A2 K2
E(iy) = \/—Euzﬂg %(Agkf — 22) exp <— ‘gz 1) + %Kllf] exp (— g2 1)
u2 4 A2 2
E(xy) = Fi(lgkl) exp <— g2 1)
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A.6

1d
S;i(r,t) = uﬁ’ms—Zd—<r —(r t) + 4r2k(r, t))

3 1d
= Urms 5 2 dr

d d
Sii(r; t) = ugms (T t) + T

dk
3r? —(r t) + 13

2

25

a7k t) + 8rk t+42dk t
rz(r') T(T,) ra(r;)

2

k(r t) +-— k(r t))



A.7

2

S;i(r,t) = uﬁms< dk —(r,t) +r k(r t) +— k(r t)> (174)

Taylor expansion for k(r, t) and its derivatives

3
k(r,t) = k”’(O t)

dk 2 2
=0~ 3 k(0,0 = — k" (0,0)

2

k r
Tz (D) = 25K"(0,6) =1k (0,1)

Substituting these expressions into Eq. (17A) gives

r? 4
S;i(r,t) =ud, ¢ 7?k”'(0, t) +r2k''(0,t) + grzk'”((), t)

35 3 271,111
=?urmsr k"' (0,t)
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