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Chapter 5: Energy Decay in Isotropic Turbulence 

Part 3: Equation for Two-Point Correlations & Self-Preservation and 

the Karman-Howarth Equation 

 
 

 

ℛ𝑖𝑗(𝑟, 𝑡) = 𝑢𝑖(𝑥, 𝑡)𝑢𝑗(𝑥 + 𝑟, 𝑡)     

𝑟 = 𝑦 − 𝑥 
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P5.6 Bernard 

Only hypothesis is 

incompressibility. 

If 𝑥 = 𝑦 recover Reynolds 

stress equation for 

incompressible flow  

Time derivative of ℛ𝑖𝑗 

Convective transport of ℛ𝑖𝑗 

Production terms  

Flux terms due to 𝑆𝑖𝑘,𝑗 related to 

vortex stretching. 

Flux terms due to two-point 

pressure-velocity correlation 

Viscous tensorial dissipation  
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No convection 

or production 

by the mean 

flow velocity 

and velocity 

gradient, 

respectively. 
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Note that the ℛ𝑖𝑗  and ℛ𝑖𝑖 equations are not closed as they contain the two-point 

triple velocity correlation terms and if equations derived for 𝑆𝑖𝑘,𝑖  they would 

contain fourth order velocity correlation terms, i.e., conundrum of the RANS 

turbulence closure problem and paradox. 

 

Next impose isotropy by using isotropic tensor form of ℛ𝑖𝑖 and 𝑆𝑖𝑘,𝑖  to obtain the 

K-H equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contracting indices the 

two-point pressure-

velocity correlation 

gradient terms = 0. 
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Self-Preservation and the Karman-Howarth Equation 

 
The ℛ𝑖𝑖 equation is transformed to the Karman-Howarth equation under the 

assumptions of homogeneous and isotopic turbulence. 

 

𝜕ℛ𝑖𝑖
𝜕𝑡

(𝑟, 𝑡)
⏟      

1

−
𝜕𝑆𝑖𝑘,𝑖
𝜕𝑟𝑘

(−𝑟, 𝑡)
⏟        

2

+
𝜕𝑆𝑖𝑘,𝑖
𝜕𝑟𝑘

(𝑟, 𝑡)
⏟      

3

= 2𝜈
𝜕2ℛ𝑖𝑖

𝜕𝑟𝑘
2 (𝑟, 𝑡)

⏟        
4

     (1) 

 

 

This is a scalar equation, where each term is function of 𝑟 and 𝑡, in the most 

general case. 

 

Combining Eq. (1) with the Chapter 4 Part 2 isotropic expressions for ℛ𝑖𝑗  and 𝑆𝑖𝑗,𝑙 

 

ℛ𝑖𝑗(𝑟, 𝑡) = 𝑢
2 [(𝑓 +

𝑟

2

𝑑𝑓

𝑑𝑟
) 𝛿𝑖𝑗 −

𝑟𝑖𝑟𝑗
𝑟2
𝑟

2
 
𝑑𝑓

𝑑𝑟
] 

 

𝑆𝑖𝑗𝑙(𝑟, 𝑡) = 𝑢𝑟𝑚𝑠
3 [(𝑘 − 𝑟

𝑑𝑘

𝑑𝑟
)
𝑟𝑖𝑟𝑗𝑟𝑙
2𝑟3

−
𝑘

2
𝛿𝑖𝑗
𝑟𝑙
𝑟
+
1

4𝑟

𝑑(𝑘𝑟2)

𝑑𝑟
(𝛿𝑖𝑙

𝑟𝑗
𝑟
+ 𝛿𝑗𝑙

𝑟𝑖
𝑟
)] 

 

it is possible to analyze each term in Eq. (1) separately. 

 

 

 

 

 

Divergence of a vector Laplacian of a 

scalar 

Time derivative 

of a scalar 
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Term 1: 

ℛ𝑖𝑖(𝑟, 𝑡) = 𝑢
2 [(𝑓 +

𝑟

2

𝑑𝑓

𝑑𝑟
) 𝛿𝑖𝑖⏟
3

−
𝑟𝑖𝑟𝑖
𝑟2
𝑟

2
 
𝑑𝑓

𝑑𝑟
] = 𝑢2 (3𝑓 + 𝑟

𝑑𝑓

𝑑𝑟
) 

 

3𝑓 + 𝑟
𝑑𝑓

𝑑𝑟
=
1

𝑟2
(3𝑓𝑟2 + 𝑟3

𝑑𝑓

𝑑𝑟
) =

1

𝑟2
(3𝑓𝑟2 +

𝑑(𝑟3𝑓)

𝑑𝑟
− 3𝑓𝑟2) =

1

𝑟2
𝑑(𝑟3𝑓)

𝑑𝑟
 

 

𝜕ℛ𝑖𝑖
𝜕𝑡

(𝑟, 𝑡) =
𝜕

𝜕𝑡
[𝑢2

1

𝑟2
𝑑(𝑟3𝑓)

𝑑𝑟
] 

 

 

Terms 2 and 3: 

 

 𝑆𝑖𝑘,𝑖(𝑟, 𝑡) = 𝑢𝑟𝑚𝑠
3 [(𝑘 − 𝑟

𝑑𝑘

𝑑𝑟
)
𝑟𝑖𝑟𝑘𝑟𝑖
2𝑟3

−
𝑘

2
𝛿𝑖𝑘
𝑟𝑖
𝑟
+
1

4𝑟

𝑑(𝑘𝑟2)

𝑑𝑟
(𝛿𝑖𝑖

𝑟𝑘
𝑟
+ 𝛿𝑘𝑖

𝑟𝑖
𝑟
)] 

= 𝑢𝑟𝑚𝑠
3 [(𝑘 − 𝑟

𝑑𝑘

𝑑𝑟
)
𝑟𝑘
2𝑟
−
𝑘

2

𝑟𝑘
𝑟
+
1

4𝑟

𝑑(𝑘𝑟2)

𝑑𝑟
(3
𝑟𝑘
𝑟
+
𝑟𝑘
𝑟
)] 

= 𝑢𝑟𝑚𝑠
3 [−

𝑑𝑘

𝑑𝑟

𝑟𝑘
2
+
𝑟𝑘
𝑟2
𝑑(𝑘𝑟2)

𝑑𝑟
] 

= 𝑢𝑟𝑚𝑠
3 [−

𝑑𝑘

𝑑𝑟

𝑟𝑘
2
+
𝑟𝑘
𝑟2
(𝑟2

𝑑𝑘

𝑑𝑟
+ 2𝑘𝑟)] 

= 𝑢𝑟𝑚𝑠
3 [

𝑟𝑘
2

𝑑𝑘

𝑑𝑟
+ 2𝑘

𝑟𝑘
𝑟2
] 

 

 

 

× 
𝑟2

𝑟2
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Now, taking a derivative with respect to 𝑟𝑘 

 

 
𝜕𝑆𝑖𝑘,𝑖
𝜕𝑟𝑘

(𝑟, 𝑡) = 𝑢𝑟𝑚𝑠
3

𝜕

𝜕𝑟𝑘
[2𝑘

𝑟𝑘
𝑟2
+
𝑟𝑘
2

𝑑𝑘

𝑑𝑟
] 

= 𝑢𝑟𝑚𝑠
3 [(

6

𝑟
𝑘 + 2𝑟𝑘

𝑟𝑘
𝑟
(−

1

𝑟2
) + 2

𝑟𝑘
𝑟

𝑟𝑘
𝑟

𝜕𝑘

𝜕𝑟
) + (

3

2

𝑑𝑘

𝑑𝑟
+
1

2
𝑟𝑘
𝑟𝑘
𝑟

𝜕2𝑘

𝜕𝑟2
)] 

= 𝑢𝑟𝑚𝑠
3 [(

4

𝑟
𝑘 + 2

𝜕𝑘

𝜕𝑟
) + (

3

2

𝑑𝑘

𝑑𝑟
+
1

2
𝑟
𝜕2𝑘

𝜕𝑟2
)] 

=
1

2
𝑢𝑟𝑚𝑠
3 [𝑟

𝜕2𝑘

𝜕𝑟2
+ 7

𝜕𝑘

𝜕𝑟
+
8

𝑟
𝑘] 

=
1

2𝑟2
𝑢𝑟𝑚𝑠
3 [𝑟3

𝜕2𝑘

𝜕𝑟2
+ 7𝑟2

𝜕𝑘

𝜕𝑟
+ 8𝑟𝑘] 

=
1

2𝑟2
𝑢𝑟𝑚𝑠
3 [

𝜕

𝜕𝑟
(𝑟3

𝜕𝑘

𝜕𝑟
) − 3𝑟2

𝜕𝑘

𝜕𝑟
+ 7𝑟2

𝜕𝑘

𝜕𝑟
+ 8𝑟𝑘] 

𝜕𝑆𝑖𝑘,𝑖
𝜕𝑟𝑘

(𝑟, 𝑡) =
1

2𝑟2
𝑢𝑟𝑚𝑠
3 [

𝜕

𝜕𝑟
(𝑟3

𝜕𝑘

𝜕𝑟
) + 4 (

𝜕

𝜕𝑟
(𝑟2𝑘) − 2𝑟𝑘) 𝑟2

𝜕𝑘

𝜕𝑟
+ 8𝑟𝑘] 

 

𝑆𝑖𝑘,𝑖(𝑟, 𝑡) = −𝑆𝑖𝑘,𝑖(−𝑟, 𝑡) since 𝑘(𝑟) = −𝑘(−𝑟) 

 

𝜕𝑆𝑖𝑘,𝑖
𝜕𝑟𝑘

(±𝑟, 𝑡) = ±
1

2𝑟2
𝑢𝑟𝑚𝑠
3

𝜕

𝜕𝑟
[𝑟3

𝜕𝑘

𝜕𝑟
+ 4𝑟2𝑘] 
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Term 4: 

𝜕2ℛ𝑖𝑖

𝜕𝑟𝑘
2 (𝑟, 𝑡) = 𝑢

2 [7
𝜕2𝑓

𝜕𝑟2
+
8

𝑟

𝜕𝑓

𝜕𝑟
+ 𝑟

𝜕3𝑓

𝜕𝑟3
] 

=
𝑢2

𝑟2
[7𝑟2

𝜕2𝑓

𝜕𝑟2
+ 8𝑟

𝜕𝑓

𝜕𝑟
+ 𝑟3

𝜕3𝑓

𝜕𝑟3
] 

=
𝑢2

𝑟2
[7
𝜕

𝜕𝑟
(𝑟2

𝜕𝑓

𝜕𝑟
) − 14𝑟

𝜕𝑓

𝜕𝑟
+ 8𝑟

𝜕𝑓

𝜕𝑟
+
𝜕

𝜕𝑟
(𝑟3

𝜕2𝑓

𝜕𝑟2
) − 3𝑟2

𝜕2𝑓

𝜕𝑟2
] 

=
𝑢2

𝑟2
[7
𝜕

𝜕𝑟
(𝑟2

𝜕𝑓

𝜕𝑟
) − 6𝑟

𝜕𝑓

𝜕𝑟
+
𝜕

𝜕𝑟
(𝑟3

𝜕2𝑓

𝜕𝑟2
) − 3

𝜕

𝜕𝑟
(𝑟2

𝜕𝑓

𝜕𝑟
) + 6𝑟

𝜕𝑓

𝜕𝑟
] 

𝜕2ℛ𝑖𝑖

𝜕𝑟𝑘
2 (𝑟, 𝑡) =

𝑢2

𝑟2
𝜕

𝜕𝑟
[4𝑟2

𝜕𝑓

𝜕𝑟
+ 𝑟3

𝜕2𝑓

𝜕𝑟2
] 

 

Therefore, Eq. (1) becomes, 

 

𝜕

𝜕𝑡
[𝑢2

1

𝑟2
𝑑(𝑟3𝑓)

𝑑𝑟
]

⏟          
1

= 2
1

2𝑟2
𝑢𝑟𝑚𝑠
3

𝜕

𝜕𝑟
[𝑟3

𝜕𝑘

𝜕𝑟
+ 4𝑟2𝑘]

⏟                  
2+3

+ 2𝜈
𝑢2

𝑟2
𝜕

𝜕𝑟
[4𝑟2

𝜕𝑓

𝜕𝑟
+ 𝑟3

𝜕2𝑓

𝜕𝑟2
]

⏟              
4

 

 
1

𝑟2
𝜕

𝜕𝑡
[𝑢2

𝑑(𝑟3𝑓)

𝑑𝑟
] =

1

𝑟2
𝑢𝑟𝑚𝑠
3

𝜕

𝜕𝑟
[𝑟3

𝜕𝑘

𝜕𝑟
+ 4𝑟2𝑘] + 2𝜈

1

𝑟2
𝑢2
𝜕

𝜕𝑟
[4𝑟2

𝜕𝑓

𝜕𝑟
+ 𝑟3

𝜕2𝑓

𝜕𝑟2
] 

 

Integrate over 𝑟 

 

𝜕

𝜕𝑡
[𝑢2𝑟3𝑓] = 𝑢𝑟𝑚𝑠

3 [𝑟3
𝜕𝑘

𝜕𝑟
+ 4𝑟2𝑘] + 2𝜈𝑢2 [4𝑟2

𝜕𝑓

𝜕𝑟
+ 𝑟3

𝜕2𝑓

𝜕𝑟2
] 

 

 

Chapter 4 Part 3 Eq. (7) 

× 
𝑟2

𝑟2
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Divide by 𝑟3 

𝜕

𝜕𝑡
[𝑢2𝑓] = 𝑢𝑟𝑚𝑠

3 [
𝜕𝑘

𝜕𝑟
+
4

𝑟
𝑘] + 2𝜈𝑢2 [

4

𝑟

𝜕𝑓

𝜕𝑟
+
𝜕2𝑓

𝜕𝑟2
]     (2) 

 

𝜕

𝜕𝑡
[𝑢2𝑓] =

𝑢𝑟𝑚𝑠
3

𝑟4
𝜕

𝜕𝑟
(𝑟4𝑘) +

2𝜈𝑢2

𝑟4
𝜕

𝜕𝑟
(𝑟4

𝜕𝑓

𝜕𝑟
)     (3) 

 

The Karman-Howarth equation relates 𝑓(𝑟, 𝑡), 𝑘(𝑟, 𝑡) and 𝑢𝑟𝑚𝑠(𝑡).  However, as 

with the ℛ𝑖𝑗  equation the K-H equation is not closed, as if considered an equation 

for 𝑓(𝑟, 𝑡), it contains an additional unknown, i.e., the triple velocity correlation 

term 𝑘(𝑟, 𝑡). 

 

Using a Taylor expansion for 𝑓 and 𝑘 

𝑓(𝑟, 𝑡) = 𝑓(0, 𝑡)⏟  
1

+ 𝑓′′(0, 𝑡)
𝑟2

2!
+ 𝑓𝐼𝑉(0, 𝑡)

𝑟4

4!
+ … 

𝑘(𝑟, 𝑡) = 𝑘′(0, 𝑡)1⏟    
=0

𝑟 + 𝑘′′′(0, 𝑡)
𝑟3

3!
+ ⋯  

and substituting into Eq. (3) gives two equations by gathering terms depending on 

like powers of 𝑟.  

 

The 𝑟0 equation gives, 

𝑑𝑢2

𝑑𝑡
= 10𝜈𝑢2𝑓′′(0, 𝑡)     (4) 

 

And using the definitions of turbulent kinetic energy 

 
1 Chapter 4 Part 2 pg.9: for homogeneous turbulence. 

Karman-Howarth 

Equation 

Alternative 

version Pope 6.75 

Appendix A.1 

 

Appendix A.2 
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𝑘 =
3

2
𝑢2 

and Taylor microscale 

 

𝜆𝑓
2 = −

2

𝑓′′(0, 𝑡)
 

 

in Eq. (4) yields 

 

𝑑𝑘

𝑑𝑡
=
3

2
10𝜈𝑢2 (−

2

𝜆𝑓
2) = −30

𝜈𝑢2

𝜆𝑓
2  

 

And using the TKE equation for homogeneous isotropic turbulence 

 

𝑑𝑘

𝑑𝑡
= −𝜀 

 

Gives  

 

𝜀 = 30
𝜈𝑢2

𝜆𝑓
2 = 15

𝜈𝑢2

𝜆𝑔
2

 

 

A result obtained already in Chapter 4.  
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 The 𝑟2 equation gives, 

 

𝑑𝜀

𝑑𝑡
= 𝑆𝑘

∗𝑅𝑇
1/2 𝜀

2

𝑘
− 𝐺∗

𝜀2

𝑘
      

 

Which, coupled with  

𝑑𝑘

𝑑𝑡
= −𝜀 

 

Describes the decay of homogeneous isotropic turbulence, as per Part 2. This shows 

that all the isotropy information in the 𝑘 and 𝜀 equations is contained in the 

Karman-Howart equation, for which it should be emphasized were derived from 

the Navier-Stokes equations, as were the 𝑘 and 𝜀 equations (see Chapter 3 Parts 3 

and 4). 

 

Assuming self-similarity 

𝑓(𝑟, 𝑡) = 𝑓 (
𝑟

𝐿(𝑡)
= 𝜂) 

𝑘(𝑟, 𝑡) = 𝑘̃ (
𝑟

𝐿(𝑡)
= 𝜂) 

 

The Karman-Howarth equation becomes, 

 

2𝜂−4
𝑑

𝑑𝜂
(𝜂4

𝑑𝑓

𝑑𝜂
) + 𝜂

𝑑𝑓

𝑑𝜂
(
7

3
𝐺0 − 5) + 10𝑓 = 𝑅𝜆 (

7

6
𝑆𝑘0𝜂

𝑑𝑓

𝑑𝜂
− 𝜂−4

𝑑(𝜂4𝑘̃)

𝑑𝜂
)  (5) 

 

Where 𝜂 = 𝑟/𝜆𝑔 is a similarity variable.  

Appendix A.3 

  𝐿(𝑡) = 𝜆𝑔(𝑡) 
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Eq. (5) represents a single ODE for 𝑓(𝜂) and 𝑘̃(𝜂) with 𝑅𝜆(𝑡) acting as a parameter.  

Note that Eq. (5) contains 𝐺0 and 𝑆𝑘0, which were shown in Part 2 to be constants 

during self-similar decay and equal to: 

 

𝐺 = 𝑓𝐼𝑉(0) 

 

−𝑆𝑘 = 𝑘̃′′′(0) 

 

For self-similarity at all times,  𝑓(𝑟, 𝑡) = 𝑓(𝜂) ≠ 𝑓(𝑡) and  𝑘(𝑟, 𝑡) = 𝑘̃(𝜂)) ≠ 𝑓(𝑡) 

and Eq. (5) must be always satisfied regardless of how 𝑅𝜆(𝑡) varies. Consequently, 

both Eq. (5) RHS and LHS = 0 independently, otherwise LHS multivalued for changes 

in 𝑅𝜆(𝑡), since 𝑓, 𝑘̃, 𝑆𝑘0, 𝐺0 ≠ 𝑓(𝑡), i.e., LHS = a constant, which can only be zero. 

 

LHS = 0 gives the confluent hypergeometric equation with solution 

 

𝑓(𝜂) = 𝑀(
1

𝐺0
∗ − 1

,
5

2
,−
5(𝐺0

∗ − 1)

4
𝜂2)     (6) 

 

Where 𝑀 is the confluent hypergeometric function. 

 

Integration of the RHS=0 of Eq. (5) yields 

 

𝑘̃(𝜂) =
7

6
𝑆𝑘0

1

𝜂4
∫ 𝑠5

𝑑𝑓

𝑑𝑠
𝑑𝑠

𝜂

0

     (7) 

 

Which can be solved using 𝑓 given by Eq. (6).  Once 𝐺0 and 𝑆𝑘0  are specified so to 

are 𝑓(𝜂) and 𝑘̃(𝜂) and vice versa within the constraint of complete self-similarity. 

 

 

https://en.wikipedia.org/wiki/Confluent_hypergeometric_function
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Recall complete similarity not possible in isotropic decay ∴ in reality 𝑓(𝜂) and 𝑘̃(𝜂) 

must be 𝑓(𝑡). However, still useful to examine high and low 𝑅𝑇 equilibrium 

solutions.  

1) For small 𝑅𝜆, which is still 𝑓(𝑡) and near 𝑅𝑇∞ = 0 → 𝑅𝑇0~0.1. RHS of Eq. (5) 

small such that LHS ≈ 0, which is referred to as the separability condition.  Since 

𝐺0
∗ = 7/5 for final period 

 

𝑓(𝜂) = 𝑀(
5

2
,
5

2
,−
𝜂2

2
) = 𝑒−

𝜂2

2      (8) 

As used in Part 2 

𝑓(𝑟, 𝑡) = 𝑒
−
𝑟2

2𝜆𝑔
2

 

 

Assuming that decay is self-similar near 𝑅𝑇 = 0, then Eq. (7) holds and solving the 

integral yields, 

 

𝑘̃(𝜂) =
7

6
𝑆𝑘0

1

𝜂4
[(𝜂5 + 5𝜂3 + 15𝜂)𝑒−𝜂

2/2 − 15√
𝜋

2
erf (

𝜂

√2
)]     (9) 

 

Where 

erf(𝜂) =
2

√𝜋
∫ 𝑒−𝑠

2
𝑑𝑠

𝜂

0

 

is the error function.   

 

Note that 𝐺0
∗ and 𝑆𝑘0  are constants based on assigned values provided by EFD or 

DNS (see Part 2 pg. 7). 
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Fig. 5.7 shows a plot of Eq. (9), where 𝑘̃ is seen to have a much slower decay for 

large 𝜂 than the Gaussian form of 𝑓, which shows the importance of vortex 

stretching in the energy cascade process. 

 

𝑘̃(𝜂) → 𝜂−4   for  𝜂 → ∞  

 

 

 

2) For large Re equilibrium, consider 𝑅𝜆 = constant ≠ 0. If 𝑅𝜆 = 𝑓(𝑡), LHS 

would have to be multivalued to satisfy equation. If 𝑅𝜆 = constant a solution for 

and 𝑓(𝜂) and  𝑘̃(𝜂) exists, but the equation is indeterminate (1 eq. 2 unknowns; 

thus, unlike self-similar 𝑘 and 𝜀 equation, Karman-Howarth equation is not solvable 

without additional assumptions, i.e., in addition to self-similarity. 

 

 

 

𝜂 =
𝑟

𝜆𝑔
 

Dissipation range 

Inertial sub range 

Energy range 
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Byers, C. P., MacArt, J. F., Mueller, M. E., & Hultmark, M. (2019). Similarity 

constraints in decaying isotropic turbulence. Paper presented at 11th International 

Symposium on Turbulence and Shear Flow Phenomena, TSFP 2019, Southampton, 

United Kingdom. 
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Additional Discussion Karman-Howarth Equation (Pope pp. 202-205) 

𝜕

𝜕𝑡
[𝑢2𝑓] =

𝑢𝑟𝑚𝑠
3

𝑟4
𝜕

𝜕𝑟
(𝑟4𝑘) +

2𝜈𝑢2

𝑟4
𝜕

𝜕𝑟
(𝑟4

𝜕𝑓

𝜕𝑟
)     (3) 

a) Closure problem, i.e., one equation, two unknowns 𝑓(𝜂) and 𝑘̃(𝜂) → one 

could write equation for 𝑘̃(𝜂), but it would depend on fourth-order 

correlation and so on.  
 

b) Terms in 𝑘 and 𝜈 represent inertial and viscous processes, respectively. 
 

c) At 𝑟 = 0, 𝑘 term = 0 since  
 

𝑘(𝑟, 𝑡) ≈ 𝑘′′′𝑟3/3!  + 𝑘𝑉𝑟5/5! 
 

And homogeneity shows that 𝑘′(0, 𝑡) = 0; also, 𝑓 is even in 𝑟, Eq. (3) becomes, 

𝜕

𝜕𝑡
[𝑢2𝑓]|

𝑟=0
= 2𝜈𝑢2 [

1

𝑟4
𝜕

𝜕𝑟
(𝑟4

𝜕𝑓

𝜕𝑟
)]
𝑟=0

 

= 2𝜈𝑢2
1

𝑟4
[4𝑟3

𝜕𝑓

𝜕𝑟
+ 𝑟4

𝜕2𝑓

𝜕𝑟2
]
𝑟=0

 

= 2𝜈𝑢2
1

𝑟4
[4𝑟4

1

𝑟

𝜕𝑓

𝜕𝑟
+ 𝑟4

𝜕2𝑓

𝜕𝑟2
]
𝑟=0

= 2𝜈𝑢2
1

𝑟4
[5𝑟4

𝜕2𝑓

𝜕𝑟2
]
𝑟=0

 

 

𝑑

𝑑𝑡
𝑢2 = 10𝜈𝑢2𝑓′′(0, 𝑡) = −

10𝜈𝑢2

𝜆𝑔(𝑡)
2
= −

2

3
𝜀  (10) 

Where the Taylor expansion for 𝑓(𝑟) 

𝑓′(𝑟) = 𝑓′(0) + 𝑟𝑓′′(0) +
𝑟2

2!
𝑓′′′(0) + ⋯ 

lim
𝑟→0

𝑓′(𝑟)

𝑟
= 𝑓′′(0) 

was used.  

𝜆𝑔(𝑡)
2 = −

1

𝑓′′(0, 𝑡)
 

Pope Ex. 6.6 

𝑓(0, 𝑡) = 1 
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Hence, for 𝑟 = 0, the Karman-Howart equation reduces to 
2

3
 times the 𝑘 equation, 

𝑑𝑘

𝑑𝑡
= −𝜀 

d) Energy cascade for high Re hypothesis is that the energy transfer from 

larger to smaller scales is an inertial process for 𝑟 ≫ 𝜂, consequently, 𝑘 

term is responsible for this process. 

 

e) If 𝑢(𝑥, 𝑡) were a Gaussian field then 𝑘(𝑟, 𝑡), like all higher order moments, 

would be zero → energy cascade depends on non-Gaussian aspects of the 

velocity field. This fact is used in the Quasi-normal approximation method 

for KH equation. 

 

 

Skewness of velocity derivative 

𝑢3𝑘′′′(0, 𝑡) = (
𝜕𝑢1

𝜕𝑥1
)
3
= −𝑆𝑘 (

𝜀

15𝜈
)
3/2

= −
2

35
𝜔𝑖𝜔𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
  Pope (6.84) 

Where: 

𝑆𝑘 = −
(𝑢1,1)

3

(𝑢1,1)
2
3/2  Part 1 Eq. (15) 

 

The velocity-derivative skewness includes – sign as per Bernard. Pope and Hinze 

define 𝑆𝑘 without the – sign. In Bernard definition, 𝑆𝑘 is positive, while for Hinze 

and Pope it is negative.  This fact does not change the physical meaning of the 

equations but could require some sign changes in the derivations. Throughout 

these notes, Bernard definition is used to be consistent.  

 

∴ connection between 𝑆𝑘, vortex stretching and transfer of energy between 

different scales, as will be shown in Part 4. 
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The Kolmogorov 4/5 law (see Chapter 4 Part 8) 

 

The Karman-Howarth equation can be re-expressed in terms of the structure 

functions 𝐷𝐿𝐿(𝑟, 𝑡) and 𝐷𝐿𝐿𝐿(𝑟, 𝑡) 

 

𝐷𝐿𝐿𝐿(𝑟, 𝑡) = [𝑢1(𝑥 + 𝑟𝑒̂1, 𝑡) − 𝑢1(𝑥, 𝑡)]
3
 

As 

𝜕

𝜕𝑡
𝐷𝐿𝐿𝐿 +

1

3𝑟4
𝜕

𝜕𝑟
(𝑟4𝐷𝐿𝐿𝐿) =

2𝜈

𝑟4
𝜕

𝜕𝑟
(𝑟4

𝜕𝐷𝐿𝐿𝐿
𝜕𝑟

) −
4

5
𝜀 

 

Integrating 

3

𝑟5
∫ 𝑠4
𝑟

0

𝜕

𝜕𝑡
𝐷𝐿𝐿𝐿(𝑠, 𝑡)𝑑𝑠 = 6𝜈

𝜕𝐷𝐿𝐿𝐿
𝜕𝑟

− 𝐷𝐿𝐿𝐿 −
4

5
𝜀𝑟 

 

For isotropic turbulence in the inertial subrange, unsteady term = 0 and viscous 

term negligible leads to Kolmogorov -4/5 law 

 

𝐷𝐿𝐿𝐿 = −
4

5
𝜀𝑟 

 

Kolmogorov further argued that the structure function skewness,  

 

𝑆′ ≡ 𝐷𝐿𝐿𝐿(𝑟, 𝑡)/𝐷𝐿𝐿(𝑟, 𝑡)
3/2  

is constant, leading to  

𝐷𝐿𝐿(𝑟, 𝑡) = (−
4

5𝑆′
)
2/3

(𝜀𝑟)2/3 

 

Which represents Kolmogorov hypothesis, and shows consistency between it and 

the NS equations, and relates Kolmogorov constant to skewness 𝑆′. 

Pope Ex. 6.9 
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The Loitsyanskii integral  

 

Multiplying Eq. (3) (K-H equation Pope form) by 𝑟4 and integrating between 0 and 

𝑅, yields 

𝑑

𝑑𝑡
∫ 𝑢2𝑟4𝑓(𝑟, 𝑡)𝑑𝑟
𝑅

0

= 𝑢𝑟𝑚𝑠
3 𝑅4𝑘(𝑟, 𝑡) + 2𝜈𝑢2𝑟4𝑓′(𝑟, 𝑡)     (11) 

Loitsyanskii considered lim
𝑅→∞

Eq.  (11) and assumed 𝑓(𝑟, 𝑡) and 𝑘(𝑟, 𝑡) decrease 

rapidly with 𝑟, such that the Loitsyanskii integral, 

𝐵2 = ∫ 𝑢2𝑟4𝑓(𝑟, 𝑡)𝑑𝑟
∞

0

 

Converges (i.e., constant value), in which case the terms in 𝑘(𝑅, 𝑡) and 𝑓′(𝑅, 𝑡) 

vanish.  With these assumptions, 𝐵2 ≠ 𝑓(𝑡), and became known as Loitsyanskii 

invariant.   

However, these assumptions are incorrect, as shown by Saffman.  Depending on 

how the isotropic turbulence is created, 𝐵2 can be finite or divergent.  When it is 

finite 𝑘(𝑟, 𝑡) does not vanish as R goes to infinity and 𝐵2 increases in time.  

Saffman considered the following alternative invariant, 

𝐶 = ∫ 𝑟2ℛ(𝑟)𝑑𝑟
∞

0

 

Where: 

ℛ(𝑟) =
1

8𝜋𝑟2
∫ ℛ𝑖𝑖(𝑟)𝑑𝐴(𝑟)
|𝑟|=𝑟

 

 

And for isotropic turbulence, ℛ(𝑟) =
1

2
𝑢2(3𝑓 + 𝑟𝑓′).  

 

 

 

Appendix A.4 
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Eq. (6.93) = Eq. 

(18) below 

𝑓(𝑟, 𝑡) = 𝑒−
𝑟2

8𝜈𝑡 
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Hinze Section 3.3 

 

𝜕

𝜕𝑡
[𝑢2𝑓] =

𝑢𝑟𝑚𝑠
3

𝑟4
𝜕

𝜕𝑟
(𝑟4𝑘) +

2𝜈𝑢2

𝑟4
𝜕

𝜕𝑟
(𝑟4

𝜕𝑓

𝜕𝑟
)    (3) 

 

Karman-Howarth equation represents one equation in two unknowns 𝑓(𝑟) and 

𝑘(𝑟). Like NS equations leads to closure problem since the number of unknowns is 

larger than the number of equations. Also, as with NS equations if one obtains 

higher order velocity correlation equation, they lead to additional unknowns.  

 

Truncation approximation= neglect higher order terms but leads to unphysical 

solutions.  

 

Quasi-normal approximation= neglect higher order cumulants = assume Gaussian 

4th order correlation. However, this implies 𝑆𝑖𝑗𝑙 = 0, which is unacceptable ∴ again 

leads to unphysical solutions.  

 

Direct-interaction approximation= considers interaction of eddies of different 

sized, including their randomness.  

 

Before these approaches, closure problem also attacked based on physical 

assumptions for the inertial term. 
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Consider Eq. (1), i.e., ℛ𝑖𝑖 transport equation for homogeneous turbulence, using 

the simplification 𝑆𝑖𝑘,𝑖(𝑟, 𝑡) = −𝑆𝑖𝑘,𝑖(−𝑟, 𝑡), i.e., odd function for isotropic 

turbulence: 

𝜕ℛ𝑖𝑖
𝜕𝑡

(𝑟, 𝑡) − 2
𝜕𝑆𝑖𝑘,𝑖
𝜕𝑟𝑘

(−𝑟, 𝑡) = 2𝜈
𝜕2ℛ𝑖𝑖

𝜕𝑟𝑘
2 (𝑟, 𝑡)     (12) 

In Hinze, the following notation is used. 

ℛ𝑖𝑖 = 𝑄𝑖,𝑖        2
𝜕𝑆𝑖𝑘,𝑖
𝜕𝑟𝑘

(−𝑟, 𝑡) = 𝑆𝑖,𝑖 

1. Taking the second moment of each term in Eq. (12) Saffman invariant 

 

𝜕

𝜕𝑡
∫ 𝑑𝑟 𝑟2ℛ𝑖𝑖

∞

0

− 2∫ 𝑑𝑟 𝑟2
𝜕𝑆𝑖𝑘,𝑖
𝜕𝑟𝑘

∞

0

= 2𝜈 (𝑟2
𝜕2ℛ𝑖𝑖

𝜕𝑟𝑘
2 )|

0

∞

 

Applying incompressibility yields 

∫ 𝑑𝑟 𝑟2ℛ𝑖𝑖
∞

0
= 0 and 2∫ 𝑑𝑟 𝑟2

𝜕𝑆𝑖𝑘,𝑖

𝜕𝑟𝑘

∞

0
= 0 

Consequently 

lim
𝑟→∞

𝑟2
𝜕2ℛ𝑖𝑖

𝜕𝑟𝑘
2 = 0     (13) 

Which shows how fast ℛ𝑖𝑖 decreases as 𝑟 increases, i.e., 
𝜕2ℛ𝑖𝑖

𝜕𝑟𝑘
2  decreases like 𝑟−3. 

 

2. Taking the fourth moment of each term in Eq. (3) Loitsyanskii integral 

 

𝜕

𝜕𝑡
(𝑢2∫ 𝑑𝑟 𝑟4𝑓

∞

0

) = (𝑢𝑟𝑚𝑠
3 𝑟4𝑘)|0

∞ + 2𝜈𝑢2 (𝑟4
𝜕𝑓

𝜕𝑟
)|
0

∞

 

 

With certain assumptions concerning large-scale structure of turbulence, it is 

reasonable to expect that, 
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lim
𝑟→∞

(𝑟4
𝜕𝑓

𝜕𝑟
) = 0     (14) 

 

i.e., 
𝜕𝑓

𝜕𝑟
 decrease like 𝑟−5. 

 

ℛ𝑖𝑖 and 𝑓 have same asymptotic behavior. If we assume that 𝑓(𝑟) behaves like 𝑟−𝑛 

for large 𝑟, the behavior of ℛ𝑖𝑖 will be: 

ℛ𝑖𝑖 =
𝑢2

𝑟2
𝜕

𝜕𝑟
[𝑟3𝑓(𝑟)] =

𝑢2

𝑟2
𝜕

𝜕𝑟
[𝑟3𝑟−𝑛] 

=
𝑢2

𝑟2
𝜕

𝜕𝑟
[𝑟3−𝑛] =

𝑢2

𝑟2
𝑟2−𝑛 = 𝑢2𝑟−𝑛 

 

Therefore, Eq. (13) requires: 

lim
𝑟→∞

𝑟2
𝜕2ℛ𝑖𝑖

𝜕𝑟𝑘
2 = 0

→ lim
𝑟→∞

𝑢2𝑟2
𝜕2𝑟−𝑛

𝜕𝑟𝑘
2 = 0

→ lim
𝑟→∞

𝑢2𝑟2𝑛(𝑛 + 1)𝑟−𝑛−2 = 0 → lim
𝑟→∞

𝑢2𝑛(𝑛 + 1)𝑟−𝑛 = 0 

 i.e.., 𝑛 > 1.  Eq. (14), instead, would require: 

lim
𝑟→∞

(𝑟4
𝜕𝑓

𝜕𝑟
) = 0 → lim

𝑟→∞
(−𝑟4𝑛𝑟−𝑛−1) → lim

𝑟→∞
(−𝑛𝑟3−𝑛) = 0 

 

i.e., 𝑛 > 3, which is a stronger requirement than Eq. (13).  Conclusion:  Saffman 

invariant requires f(r) decay like 𝑟−2, whereas Loitsyanskii invariant requires f(r) 

decay like 𝑟−4, which is a stronger requirement. 

 

The term 𝑟4𝑘 has usually been assumed to approach zero for increasing 𝑟, and this 

assumption has been used by Loitsyanskii to obtain,  

𝐵2 = ∫ 𝑢2𝑟4𝑓(𝑟, 𝑡)𝑑𝑟
∞

0

 

must be invariant (i.e., constant value) and not function of time→ Loitsyanskii 

invariant. However, this is not true and depends on IC of the turbulence (see 

Saffman). 

See Hinze pp. 207, 216-218 
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Consider now limiting case of Eq. (12), where the viscosity effects become 

predominant → characteristic of final decay, 

2𝜈
𝜕2ℛ𝑖𝑖

𝜕𝑟𝑘
2 (𝑟, 𝑡) ≫ 2

𝜕𝑆𝑖𝑘,𝑖
𝜕𝑟𝑘

(−𝑟, 𝑡) 

This hypothesis allows to treat the vector 𝑟 as a scalar 𝑟, such that 
𝜕2ℛ𝑖𝑖

𝜕𝑟𝑘
2 =

𝜕2ℛ𝑖𝑖

𝜕𝑟
  

𝜕ℛ𝑖𝑖
𝜕𝑡

(𝑟, 𝑡) = 2𝜈
1

𝑟2
𝜕

𝜕𝑟
[𝑟2

𝜕ℛ𝑖𝑖
𝜕𝑟

(𝑟, 𝑡)]     (15) 

Where the identity  

2𝜈
𝜕2ℛ𝑖𝑖

𝜕𝑟𝑘
2
(𝑟, 𝑡) = 2𝜈

1

𝑟2
𝜕

𝜕𝑟
[𝑟2

𝜕ℛ𝑖𝑖
𝜕𝑟

(𝑟, 𝑡)] 

was used.  

Assume  

ℛ𝑖𝑖(𝑟, 𝑡) = 𝜑(𝑡)𝜓(𝜒) 

Where 𝜒 = 𝑟/√8𝜈𝑡, i.e., separation of variables 

 

Substituting into Eq. (15) leads to two differential equations, 

1

𝜑

𝑑𝜑

𝑑𝑡
= −

𝛼

𝑡
 

With solution 𝜑 = 𝑐 × 𝑡−𝛼 and 

𝜒
𝑑2𝜓

𝑑𝜒2
+ 2(𝜒2 + 1)

𝑑𝜓

𝑑𝜒
+ 4𝛼𝜒𝜓 = 0 

Assuming 𝛼 = (2𝑝 + 1)/2 with 𝑝 integer, the solution is 

𝜓𝑝 =
1

𝜒
exp(−𝜒2)𝐻2𝑝−1(𝜒) 

Where 𝐻𝑛(𝜒) is the Hermite polynomial 
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𝐻𝑛(𝜒) = (−1)
𝑛 exp(𝜒2)

𝑑𝑛

𝑑𝜒𝑛
exp(−𝜒2) 

𝐻0 = 1, 𝐻1 = 2𝜒, 𝐻2 = 4𝜒
2 − 2, 𝐻3 = 8𝜒

3 − 12𝜒   

 

General solution of Eq. (15) is: 

ℛ𝑖𝑖(𝑟, 𝑡) = 𝜑(𝑡)𝜓(𝜒) 

=
√8𝜈

𝑟
exp(−𝑟2/8𝜈𝑡)∑

𝐴𝑝
𝑡𝑝
𝐻2𝑝−1 (

𝑟

√8𝜈𝑡
)

∞

1

      (15𝐴) 

Where the constants 𝐴𝑝 must be chosen such that the series converges and that  

ℛ𝑖𝑖(0, 𝑡) = 𝑢
2 (3𝑓(0)⏟

1

+ 𝑟
𝑑𝑓

𝑑𝑟
(0)) = 3𝑢2 

 

Applying 2nd moment condition  

∫ 𝑑𝑟 𝑟2ℛ𝑖𝑖

∞

0

= 0 

We find that all the terms of Eq. (15A) satisfy this condition except the term where 

𝑝 = 1; so 𝐴1 must be zero. 

Applying 4th moment condition  

∫ 𝑑𝑟 𝑟4ℛ𝑖𝑖

∞

0

= 0 

We find that only 𝑝 = 2 term ≠ 0. 

Therefore, solution of Eq. (15) for 𝑝 = 2 may be reduced to  

 

ℛ𝑖𝑖(𝑟, 𝑡) = −
4𝐴2

𝑡
5
2

(3 −
𝑟2

4𝜈𝑡
) exp(−

𝑟2

8𝜈𝑡
)   (16) 

Appendix A.7 

Appendix A.8 



26 
 

And applying the condition ℛ𝑖𝑖(0, 𝑡) = 3𝑢
2 yields: 

ℛ𝑖𝑖(0, 𝑡) = 3𝑢
2 = −

4𝐴2
𝑡5/2

(3 −
02

4𝜈𝑡
) exp(−02/8𝜈𝑡) = −

12𝐴2
𝑡5/2

 

𝑢2 = −4𝐴2𝑡
−
5
2 = 𝑐 × 𝑡−

5
2     (17) 

𝐴2 = −
𝑢2

4
𝑡
5
2   (18) 

And, consequently, from Eq. (16) and (18) 

ℛ𝑖𝑖(𝑟, 𝑡) = −
4

𝑡
5
2

𝑢2

4
𝑡
5
2  (3 −

𝑟2

4𝜈𝑡
) exp(−

𝑟2

8𝜈𝑡
) 

ℛ𝑖𝑖(𝑟, 𝑡) = −𝑢
2 (3 −

𝑟2

4𝜈𝑡
) 𝑒−

𝑟2

8𝜈𝑡     (19) 

Combining the relation between ℛ𝑖𝑖(𝑟, 𝑡) and 𝑓(𝑟, 𝑡) 

ℛ𝑖𝑖(𝑟, 𝑡) = 𝑢
2 (3𝑓(𝑟, 𝑡) + 𝑟

𝜕𝑓

𝜕𝑟
(𝑟, 𝑡) ) =

𝑢2

𝑟2
𝜕

𝜕𝑟
[𝑟3𝑓(𝑟, 𝑡)] 

 

With Eq. (19) gives the following differential equation 

 

𝑢2

𝑟2
𝜕

𝜕𝑟
[𝑟3𝑓(𝑟, 𝑡)] = −𝑢2 (3 −

𝑟2

4𝜈𝑡
) 𝑒−

𝑟2

8𝜈𝑡 

 

With boundary conditions 

𝑓(0, 𝑡) = 1 
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And by integration 

 

𝑟3𝑓(𝑟, 𝑡) = ∫𝑟2 (3 −
𝑟2

4𝜈𝑡
) 𝑒−

𝑟2

8𝜈𝑡 = 𝑟3𝑒−
𝑟2

8𝜈𝑡 + 𝐶 

Or equivalently  

𝑓(𝑟, 𝑡) = 𝑒−
𝑟2

8𝜈𝑡     (20) 

 

Where 𝐶 = 0 from the application of BCs. 

 

Thus, for dominating viscosity effects, Eq. (12) shows the decay law for the 

turbulence ⇒ −5/2 decay as shown in Chapter 5 Part 2. 

𝑓(𝑟, 𝑡) has shape Gaussian curve and remains self-preserving during decay. Shows 

good agreement with EFD. Moreover, using Eqs. (17) and (20) to evaluate 

Loitsyanskii integral proves that it is an exact invariant with respect to time, in these 

conditions.  
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Laws of Turbulence Decay 

Self-similarity fixed-point/equilibrium solutions. 

 

1. Final period/low ReT:  𝑅𝑇0 < 0.1, 𝑅𝑇∞ = 0,  

𝑘 =
5𝑘0
2𝑇𝑡0

𝑡−
5
2  

𝜀 =
5𝜀0
2𝑇𝑡0

𝑡−7/2  

 

2. High ReT:  𝑅𝑇0
∗ = 103, 𝑅𝑇∞

∗ = 170 

𝑘 =
𝑘0
𝑇𝑡0
𝑡−1  

𝜀 =
𝜀0
𝑇𝑡0
𝑡−2  

 

As already mentioned, for High ReT:  Saffman theory, imposing the invariance of 𝐶, 

obtained 

𝑢2 = 𝐾𝐶2/5𝑡−6/5 (1.2) 

Where 𝐾 is a constant that depends upon the structure of the turbulence. To obtain 

this result, differently from Kolmogorov, Saffman only required self-similarity, not 

isotropy (Appendix A.6).  Also obtained when discussing implications for turbulence 

modeling (Part 2) and Example 3.2 Moin and Chan (2025) Fundamentals of 

Turbulent Flows, Cambridge Press. 

 

During the final decay predictions of the −5/2  (−2.5) law using different 

approaches agree such as Pope Ex. 6.10 and Hinze Section 3.3. 
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However, for high ReT approaching or including the inertial sub range, there is no 

consensus many approaches, as vortex stretching, cannot be neglected and 

complex mathematical physics required leading to a large range of decay laws. 

 

Kolmogorov, starting from the invariance of the Loitsyanskii integral, obtained 

that for isotropic turbulence 𝑢2 ∝ 𝑡−10/7 (1.43) during decay (Appendix A.6).  

 

Bachelor, Decay of turbulence in the initial period (1948) based on quasi-

equilibrium/similarity, as also shown by Bernard: 𝑡−1. 
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Appendix A 

Note: To avoid confusion between 𝑘(𝑟, 𝑡) and TKE, a capital K will be used for the 

TKE, in this Appendix. 

A.1 

𝜕

𝜕𝑡
[𝑢2𝑓] = 𝑢𝑟𝑚𝑠

3 [
𝜕𝑘

𝜕𝑟
+
4

𝑟
𝑘] + 2𝜈𝑢2 [

4

𝑟

𝜕𝑓

𝜕𝑟
+
𝜕2𝑓

𝜕𝑟2
]      

 

Multiply and divide by 𝑟4 

 

𝜕

𝜕𝑡
[𝑢2𝑓] =

𝑢𝑟𝑚𝑠
3

𝑟4
[𝑟4

𝜕𝑘

𝜕𝑟
+ 4𝑟3𝑘] + 2𝜈𝑢2 [4𝑟3

𝜕𝑓

𝜕𝑟
+ 𝑟4

𝜕2𝑓

𝜕𝑟2
] 

 

=
𝑢𝑟𝑚𝑠
3

𝑟4
[
𝜕(𝑟4𝑘)

𝜕𝑟
− 4𝑟3𝑘 + 4𝑟3𝑘] +

2𝜈𝑢2

𝑟4
[4𝑟3

𝜕𝑓

𝜕𝑟
+ 𝑟4

𝜕2𝑓

𝜕𝑟2⏟          
]

𝜕
𝜕𝑟
(𝑟4

𝜕𝑓
𝜕𝑟
)

 

 

𝜕

𝜕𝑡
[𝑢2𝑓] =

𝑢𝑟𝑚𝑠
3

𝑟4
𝜕

𝜕𝑟
(𝑟4𝑘) +

2𝜈𝑢2

𝑟4
𝜕

𝜕𝑟
(𝑟4

𝜕𝑓

𝜕𝑟
) 
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A.2 

 

𝜕

𝜕𝑡
[𝑢2𝑓] =

𝑢𝑟𝑚𝑠
3

𝑟4
𝜕

𝜕𝑟
(𝑟4𝑘) +

2𝜈𝑢2

𝑟4
𝜕

𝜕𝑟
(𝑟4

𝜕𝑓

𝜕𝑟
)     (1𝐴) 

 

Taylor series for 𝑓(𝑟, 𝑡) and 𝑘(𝑟, 𝑡) 

𝑓(𝑟, 𝑡) = 𝑓(0, 𝑡)⏟  
1

+ 𝑓′′(0, 𝑡)
𝑟2

2!
+ 𝑓𝐼𝑉(0, 𝑡)

𝑟4

4!
+ … 

𝑘(𝑟, 𝑡) = 𝑘′(0, 𝑡)⏟    
=0

𝑟 + 𝑘′′′(0, 𝑡)
𝑟3

3!
+ ⋯  

Substitute into Eq. (1A) 

𝜕

𝜕𝑡
[𝑢2 (1 + 𝑓′′(0, 𝑡)

𝑟2

2!
+ 𝑓𝐼𝑉(0, 𝑡)

𝑟4

4!
)]

=
𝑢𝑟𝑚𝑠
3

𝑟4
𝜕

𝜕𝑟
(𝑟4𝑘′′′(0, 𝑡)

𝑟3

3!
)

+
2𝜈𝑢2

𝑟4
𝜕

𝜕𝑟
(𝑟4 (𝑓′′(0, 𝑡)𝑟 + 𝑓𝐼𝑉(0, 𝑡)

𝑟3

3!
)) 

 

 

𝜕𝑢2

𝜕𝑡
+
𝑟2

2!

𝜕

𝜕𝑡
(𝑢2𝑓′′(0, 𝑡)) +

𝑟4

4!

𝜕

𝜕𝑡
(𝑓𝐼𝑉(0, 𝑡))

=
𝑢𝑟𝑚𝑠
3

𝑟4
(
7

6
𝑟6𝑘′′′(0, 𝑡)) +

2𝜈𝑢2

𝑟4
(5𝑟4𝑓′′(0, 𝑡) +

7

6
𝑟6𝑓𝐼𝑉(0, 𝑡)) 
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Simplify powers of 𝑟 

 

𝜕𝑢2

𝜕𝑡
+
𝑟2

2!

𝜕

𝜕𝑡
(𝑢2𝑓′′(0, 𝑡)) +

𝑟4

4!

𝜕

𝜕𝑡
(𝑓𝐼𝑉(0, 𝑡))

=
7

6
𝑢𝑟𝑚𝑠
3 𝑟2𝑘′′′(0, 𝑡) + 10𝜈𝑢2𝑓′′(0, 𝑡) +

7

3
𝜈𝑢2𝑟2𝑓𝐼𝑉(0, 𝑡) 

 

Now, gather terms according to power of 𝑟 

 

𝒓𝟎 : 
𝜕𝑢2

𝜕𝑡
= 10𝜈𝑢2𝑓′′(0, 𝑡)     (2𝐴) 

𝒓𝟐 : 
𝑟2

2!

𝜕

𝜕𝑡
(𝑢2𝑓′′(0, 𝑡)) =

7

6
𝑢𝑟𝑚𝑠
3 𝑟2𝑘′′′(0, 𝑡) +

7

3
𝜈𝑢2𝑟2𝑓𝐼𝑉(0, 𝑡)     (3𝐴) 

 

Only one term on the LHS for 𝑟4, no need to consider it for this analysis. 

 

Focus on Eq. (2A) 

𝜕𝑢2

𝜕𝑡
= 10𝜈𝑢2𝑓′′(0, 𝑡) 

 

Using the definitions of turbulent kinetic energy 

 

𝐾 =
3

2
𝑢2 
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And Taylor microscale 

 

𝜆𝑓
2 = −

2

𝑓′′(0, 𝑡)
 

 

In Eq. (2A) yields 

 

𝑑𝐾

𝑑𝑡
=
3

2
10𝜈𝑢2 (−

2

𝜆𝑓
2) = −30

𝜈𝑢2

𝜆𝑓
2  

 

And using the TKE equation for homogeneous isotropic turbulence 

 

𝑑𝐾

𝑑𝑡
= −𝜀 

Gives  

𝜀 = 30
𝜈𝑢2

𝜆𝑓
2 = 15

𝜈𝑢2

𝜆𝑔
2

 

 

Focus on Eq. (3A) 

 

𝑟2

2!

𝜕

𝜕𝑡
(𝑢2𝑓′′(0, 𝑡)) =

7

6
𝑢𝑟𝑚𝑠
3 𝑟2𝑘′′′(0, 𝑡) +

7

3
𝜈𝑢2𝑟2𝑓𝐼𝑉(0, 𝑡) 

 

𝑟2

2
(
𝜕𝑢2

𝜕𝑡
𝑓′′(0, 𝑡) + 𝑢2

𝜕𝑓′′(0, 𝑡)

𝜕𝑡
) =

7

6
𝑢𝑟𝑚𝑠
3 𝑟2𝑘′′′(0, 𝑡) +

7

3
𝜈𝑢2𝑟2𝑓𝐼𝑉(0, 𝑡)    (4𝐴) 
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Now focus on term in parenthesis on LHS 

 

𝜕𝑢2

𝜕𝑡
𝑓′′(0, 𝑡) + 𝑢2

𝜕𝑓′′(0, 𝑡)

𝜕𝑡
=
2

3

𝜕𝐾

𝜕𝑡
𝑓′′(0, 𝑡) +

2

3
𝐾
𝜕𝑓′′(0, 𝑡)

𝜕𝑡
     (5𝐴) 

 

Substituting  

𝑑𝐾

𝑑𝑡
= −𝜀 

Into Eq. (5A) 

−
2

3
𝜀𝑓′′(0, 𝑡) +

2

3
𝐾
𝜕𝑓′′(0, 𝑡)

𝜕𝑡
     (6𝐴) 

And using 

 

𝑓′′(0, 𝑡) = −
𝜀

15𝜈𝑢2
= −

𝜀

10𝜈𝐾
 

 

Into Eq. (6A) gives 

 

2

3

𝜀2

10𝜈𝐾
−
2

3
𝐾
𝑑

𝑑𝑡
(
𝜀

10𝜈𝐾
) =

𝜀2

15𝜈𝐾
−
𝐾

15𝜈
(
1

𝐾

𝑑𝜀

𝑑𝑡
−
𝜀

𝐾2
𝑑𝐾

𝑑𝑡⏟
−𝜀

) 

=
𝜀2

15𝜈𝐾
−
𝐾

15𝜈
(
1

𝐾

𝑑𝜀

𝑑𝑡
+
𝜀2

𝐾2
) =

𝜀2

15𝜈𝐾
−

1

15𝜈

𝑑𝜀

𝑑𝑡
−

𝜀2

15𝜈𝐾
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Therefore, it was proved that, 

 

𝜕𝑢2

𝜕𝑡
𝑓′′(0, 𝑡) + 𝑢2

𝜕𝑓′′(0, 𝑡)

𝜕𝑡
= −

1

15𝜈

𝑑𝜀

𝑑𝑡
     (7𝐴) 

 

Substituting Eq. (7A) into Eq. (4A) gives  

 

−
𝑟2

2
(
1

15𝜈

𝑑𝜀

𝑑𝑡
) =

7

6
𝑢𝑟𝑚𝑠
3 𝑟2𝑘′′′(0, 𝑡) +

7

3
𝜈𝑢2𝑟2𝑓𝐼𝑉(0, 𝑡) 

 

And isolating 𝑑𝜀/𝑑𝑡 

 

𝑑𝜀

𝑑𝑡
= −35𝜈𝑢𝑟𝑚𝑠

3 𝑘′′′(0, 𝑡) − 70𝜈2𝑢2𝑓𝐼𝑉(0, 𝑡) 

 

Which is equivalent to  

 

𝑑𝜀

𝑑𝑡
= 𝑆𝑘

∗𝑅𝑇
1/2 𝜀

2

𝑘
− 𝐺∗

𝜀2

𝑘
 

 

As shown in Chapter 5 Part 1. 
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A.3 

𝜕

𝜕𝑡
[𝑢2𝑓] =

𝑢𝑟𝑚𝑠
3

𝑟4
𝜕

𝜕𝑟
(𝑟4𝑘) +

2𝜈𝑢2

𝑟4
𝜕

𝜕𝑟
(𝑟4

𝜕𝑓

𝜕𝑟
)     (8𝐴) 

 

Self-similarity 

𝑓(𝑟, 𝑡) = 𝑓(𝑟/𝜆(𝑡)) = 𝑓(𝑟/𝐿(𝑡)) = 𝑓(𝜂) 

𝑘(𝑟, 𝑡) = 𝑘̃(𝑟/𝜆(𝑡)) = 𝑘̃(𝜂) 

 

𝜂 =  𝑟/𝜆 
𝜕𝜂

𝜕𝜆
=
𝜕

𝜕𝜆
(
𝑟

𝜆
) = −

𝑟

𝜆2
= −

𝜂

𝜆
     (9𝐴) 

 

Focus on LHS of Eq. (8A) 

 

𝜕

𝜕𝑡
[𝑢2𝑓] =

2

3

𝑑𝐾

𝑑𝑡
𝑓 +

2

3
𝐾
𝜕𝑓

𝜕𝑡
 

=
2

3

𝑑𝐾

𝑑𝑡
𝑓 +

2

3
𝐾
𝜕𝑓

𝜕𝑡
     (10𝐴) 

 

 

 

 
𝜕𝑓

𝜕𝑡
=
𝜕𝑓

𝜕𝜆

𝜕𝜆

𝜕𝑡⏟

𝜆̇

=
𝜕𝑓

𝜕𝜂

𝜕𝜂

𝜕𝜆⏟

−
𝜂
𝜆

𝜆̇ = −𝜆̇
𝜂

𝜆

𝑑𝑓

𝑑𝜂
 

 

Therefore, Eq. (10A) becomes, 

 

𝜕

𝜕𝑡
[𝑢2𝑓] =

2

3

𝑑𝐾

𝑑𝑡
𝑓 −

2

3
𝐾𝜆̇
𝜂

𝜆

𝑑𝑓

𝑑𝜂
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Now, focus on RHS Eq. (8A) 

 

𝑢𝑟𝑚𝑠
3

𝑟4
𝜕

𝜕𝑟
(𝑟4𝑘) +

2𝜈𝑢2

𝑟4
𝜕

𝜕𝑟
(𝑟4

𝜕𝑓

𝜕𝑟
) 

 

Assuming Self-similarity: 𝑟 = 𝜂𝜆𝑔 

 

𝑢𝑟𝑚𝑠
3

(𝜂𝜆𝑔)
4

𝜕

𝜕𝑟⏟
1
𝜆𝑔

𝑑
𝑑𝜂

((𝜂𝜆𝑔)
4
𝑘̃) +

2𝜈𝑢2

(𝜂𝜆𝑔)
4

𝜕

𝜕𝑟⏟
1
𝜆𝑔

𝑑
𝑑𝜂

((𝜂𝜆𝑔)
4 1

𝜆𝑔

𝑑𝑓

𝑑𝜂
) 

 

𝑢𝑟𝑚𝑠
3

𝜂4𝜆𝑔

𝑑

𝑑𝜂
(𝜂4𝑘̃) +

2𝜈𝑢2

𝜂4𝜆𝑔
2

𝑑

𝑑𝜂
(𝜂4

𝑑𝑓

𝑑𝜂
) 

 

√
2

3

𝐾3/2

𝜂4𝜆𝑔

𝑑

𝑑𝜂
(𝜂4𝑘̃) +

4𝜈𝐾

3𝜂4𝜆𝑔
2

𝑑

𝑑𝜂
(𝜂4

𝑑𝑓

𝑑𝜂
) 

 

Therefore, Eq. (8A) becomes, 

 

2

3

𝑑𝐾

𝑑𝑡
𝑓 −

2

3
𝐾𝜆𝑔̇

𝜂

𝜆𝑔

𝑑𝑓

𝑑𝜂
= (

2

3
)
3/2 𝐾3/2

𝜂4𝜆𝑔

𝑑

𝑑𝜂
(𝜂4𝑘̃) +

4𝜈𝐾

3𝜂4𝜆𝑔
2

𝑑

𝑑𝜂
(𝜂4

𝑑𝑓

𝑑𝜂
) 

 

 

And multiplying by 3𝜆𝑔
2/2𝜈𝐾 

 

 

𝜆𝑔
2

𝜈𝐾

𝑑𝐾

𝑑𝑡
𝑓

⏟    
1

− 𝜆𝑔𝜆𝑔̇
𝜂

𝜈

𝑑𝑓

𝑑𝜂⏟      
2

= (
2

3
)

1
2 𝜆𝑔𝐾

1
2

𝜈𝜂4
𝑑

𝑑𝜂
(𝜂4𝑘̃)

⏟            
3

+
2

𝜂4
𝑑

𝑑𝜂
(𝜂4

𝑑𝑓

𝑑𝜂
)     (11𝐴) 
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Term 1: 

𝜆𝑔
2

𝜈𝐾

𝑑𝐾

𝑑𝑡
𝑓 = −

𝜆𝑔
2

𝜈𝐾
𝜀𝑓 = −

𝜆𝑔
2

𝜈𝐾

10𝜈𝐾

𝜆𝑔
2
𝑓 = −10𝑓 

 

 

Term 2: 

 

−𝜆𝑔𝜆𝑔̇
𝜂

𝜈

𝑑𝑓

𝑑𝜂
= −√

10𝜈𝐾

𝜀

𝑑

𝑑𝑡
(√
10𝜈𝐾

𝜀
) 
𝜂

𝜈

𝑑𝑓

𝑑𝜂
= −

1

2

𝑑

𝑑𝑡
(
10𝜈𝐾

𝜀
)
𝜂

𝜈

𝑑𝑓

𝑑𝜂
 

= −5𝜂(
𝑑𝐾

𝑑𝑡⏟
−𝜀

1

𝜀
−
𝐾

𝜀2
𝑑𝜀

𝑑𝑡
)
𝑑𝑓

𝑑𝜂
= −5𝜂 (−1 −

𝐾

𝜀2
𝑑𝜀

𝑑𝑡
)
𝑑𝑓

𝑑𝜂
 

 

Now substitute decay equation for 𝜀 

 

−𝜆𝑔𝜆𝑔̇
𝜂

𝜈

𝑑𝑓

𝑑𝜂
= −5𝜂 (−1 −

𝐾

𝜀2
(
7

3√15
𝑆𝑘0𝑅𝑇

1
2
𝜀2

𝑘
−
7

15
𝐺0
𝜀2

𝑘
))
𝑑𝑓

𝑑𝜂
 

 

= 5𝜂
𝑑𝑓

𝑑𝜂
+

35

3√15
𝜂𝑆𝑘0𝑅𝑇

1
2
𝑑𝑓

𝑑𝜂
−
7

3
𝜂𝐺0

𝑑𝑓

𝑑𝜂
    (12𝐴) 

 

Recall relation between 𝑅𝑇 and 𝑅𝜆 

 

√𝑅𝑇 = √
3

20
𝑅𝜆 

 

And substitute into Eq. (12A) 

−𝜆𝑔𝜆𝑔̇
𝜂

𝜈

𝑑𝑓

𝑑𝜂
= 5𝜂

𝑑𝑓

𝑑𝜂
+

7 ∙ 5

3√5 ∙ 3
𝜂𝑆𝑘0√

3

5 ∙ 22
𝑅𝜆
𝑑𝑓

𝑑𝜂
−
7

3
𝜂𝐺0

𝑑𝑓

𝑑𝜂
 

= 5𝜂
𝑑𝑓

𝑑𝜂
+
7

6
𝜂𝑆𝑘0𝑅𝜆

𝑑𝑓

𝑑𝜂
−
7

3
𝜂𝐺0

𝑑𝑓

𝑑𝜂
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Term 3: 

 

(
2

3
)

1
2 𝜆𝑔𝐾

1
2

𝜈𝜂4
𝑑

𝑑𝜂
(𝜂4𝑘̃) =

𝜆𝑔√𝑢
2

𝜈𝜂4
𝑑

𝑑𝜂
(𝜂4𝑘̃) =

𝑅𝜆
𝜂4
 
𝑑

𝑑𝜂
(𝜂4𝑘̃) 

 

 

Therefore, Eq. (11A) becomes, 

 

 

−10𝑓 +
7

6
𝜂𝑆𝑘0𝑅𝜆

𝑑𝑓

𝑑𝜂
+ (5 −

7

3
𝐺0) 𝜂

𝑑𝑓

𝑑𝜂
=
𝑅𝜆
𝜂4
 
𝑑

𝑑𝜂
(𝜂4𝑘̃) +

2

𝜂4
𝑑

𝑑𝜂
(𝜂4

𝑑𝑓

𝑑𝜂
) 

 

 

Reordering the term yields 

 

 

2

𝜂4
𝑑

𝑑𝜂
(𝜂4

𝑑𝑓

𝑑𝜂
) + 𝜂

𝑑𝑓

𝑑𝜂
(
7

3
𝐺0 − 5) + 10𝑓 = 𝑅𝜆 (

7

6
𝜂𝑆𝑘0

𝑑𝑓

𝑑𝜂
− 𝜂−4  

𝑑

𝑑𝜂
(𝜂4𝑘̃)) 
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A.4 

Loitsyanskii integral 

 

𝐵2 = ∫ 𝑢2𝑟4𝑓(𝑟, 𝑡)𝑑𝑟
∞

0

 

 

Using (from Hinze) 

𝑢2 = −4𝐴2𝑡
−
5
2 = 𝑐 × 𝑡−

5
2 

 

𝑓(𝑟, 𝑡) = 𝑒−
𝑟2

8𝜈𝑡 

 

And substituting into the expression for 𝐵2 

 

𝐵2 = 𝑐 × 𝑡
−
5
2∫ 𝑟4𝑒−

𝑟2

8𝜈𝑡𝑑𝑟
∞

0

     (13𝐴) 

 

Assuming full self-similarity, since the solution is in the final decay region, the 

variable 𝜂 can be used to describe 𝑓(𝑟, 𝑡) such that, 

 

𝑓(𝑟, 𝑡) =  𝑓 (
𝑟

𝜆(𝑡)
= 𝜂 ) 

 

Where 𝜆(𝑡) represents the Taylor microscale, that varies with time:   

𝜆(𝑡) ∝ √𝑡 

as shown in Chapter 5 Part 2. 
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Substituting 𝑟 = 𝜂𝜆, 𝑑𝑟 = 𝜆𝑑𝜂 in Eq. (13A) yields 

 

𝐵2 = 𝑐 × 𝑡
−
5
2∫ 𝜂4𝜆4𝑒−

𝜂2𝜆2

8𝜈𝑡 𝜆𝑑𝜂
∞

0

 

𝐵2 = 𝑐 × 𝜆
5𝑡−

5
2∫ 𝜂4𝑒−

𝜂2𝜆2

8𝜈𝑡 𝑑𝜂
∞

0

     (14𝐴) 

 

Evaluating the integral in Eq. (14A) gives 

 

∫ 𝜂4𝑒−𝑎𝜂
2
𝑑𝜂

∞

0

= [
3√𝜋 erf(√𝑎𝜂)

8𝑎
5
2

−
(2𝑎𝜂3 + 3𝜂)𝑒−𝑎𝜂

2

4𝑎2
]

0

∞

     (15𝐴) 

 

Where: 

 

𝑎 =
𝜆2

8𝜈𝑡
 

 

Evaluating Eq. (15A) at 0 and ∞ gives 

∫ 𝜂4𝑒−𝑎𝜂
2
𝑑𝜂

∞

0

=
3√𝜋

8𝑎
5
2

 

 

And substituting back into Eq. (13A) 

𝐵2 = 𝑐 × 𝜆
5𝑡−

5
2

3√𝜋

8 (
𝜆2

8𝜈𝑡)

5
2

= 𝑐 ×
𝜆5𝑡−

5
2

𝜆5𝑡−
5
2

= 𝑐 ≠ 𝑓(𝑡) 
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A.5 
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A.6 
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A.7 
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A.8 

 


