Chapter 5: Energy Decay in Isotropic Turbulence

Part 3: Equation for Two-Point Correlations & Self-Preservation and

the Karman-Howarth Equation

5.5 Equation for Two-Point Correlations

The analysis of isotropic decay carried out in the previous section concentrates on
tracing the history of K and ¢ as they change in time. Only minimal information about

the flow structure was needed, in fact, just the skewness and palenstrophy coeflicient
that are related to the two-point correlation functions. To proceed to a more extensive
analysis of the decay problem that includes analyzing the time dependence of G* and
S, it is necessary to include dynamical information about multi-point correlations.
This means introducing an equation for the time history of the two-point velocity
correlation tensor R(r, ) and then considering its form during isotropic decay. From
such an analysis it is also possible to consider the spectral properties of the turbulence
during the decay process.

An equation governing R ;(x. y, f) for arbitrary incompressible flow is derived by tak-
ing the average of u,(x, f) times the jth component of the Navier-5tokes equation in Eq.
(2.2) at y and adding to this the same quantity with i and j and x and y reversed. The
result is
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Using the definition of R ; given in Eq. (2.30) it follows that the first two terms on the
left-hand side of Eq. {5.83) may be written as
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since terms such as ug-(x.r]nda}{y. t)/ot = 0. The next two terms in Eq. (5.83), coming
from the advection term, give
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The first two terms on the right-hand side of Eq. (5.85) are equal to
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Furthermore, differentiation of Eq. (2.30) gives

R, ou;
—(x,y.t) = uix, £)=—1(y. 1) (5.87)
dyy ay;

and similarly for x; derivatives, so that the third and fourth terms on the right-hand side
of Eq. (5.85) take the form of convection terms

iR, _ aR,

P5.6 Bernard

— if i E
pLL(y. UE(I-Y-“'F pL(x, f?aﬁx-‘!’- t). (5.88)

As far as the last two terms on the right-hand side of Eq. (5.85) are concerned, they
may be written using Eq. (2.31) as
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has been used as implied by incompressibility.

To treat the contribution to Eq. (5.83) from the terms containing pressure, introduce
the two-point pressure-velocity correlation vector
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and see that
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Putting the above results together it has been shown that Eq. (5.83) becomes

Time derivative of R;;
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Only hypothesis is
incompressibility.

If x = y recover Reynolds

stress equation for
incompressible flow

Convective transport of R;;
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5.5 Eguation for Two-Point Correlations

Whenx =y, R j'r-{x. xt)= R,—J;l[ x. t), and it may be shown that Eq. (5.95) becomes identical
to Eq. (3.53). This connection suggests that the first two terms on the right-hand side of
Eq. (5.95) are “production” terms. The remaining terms acquire meaning by noting their
similarity to the corresponding terms in Eq. (3.53).

The formidable complexity of Eq. (5.95) can be reduced somewhat by apply-
ing the relation to the specific case of homogeneous, isotropic turbulence. Since
U, (y.t) = U,(x.t) in homogeneous turbulence, and using results like Eq. (5.87), it
follows that the two convection terms on the left-hand side of Eq. (5.95) sum to zero.
Uniformity of U, also implies that the two production terms on the right-hand side of
Eqg. (5.95) are zero.

The simplification for homogeneous turbulence used in Eq. (4.1) can be generalized
to include the statements that

Sin(x.¥.t) = Sy —x,t) (5.96)

and

Ej':x'! Y.th= rr{Y —x,t), (5.97)

where for convenience the same symbols R, S;;, and X; on the right-hand side are
adopted; their applicability to homogeneous turbulence is implied by the appearance of
one less argument than their more general counterparts. Using these relations, it follows
that
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Putting together the various results, it is found that the two-point velocity correlation
tensor in homogeneous turbulence is governed by the equation
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Contracting the indices in Egs. (5.100) and (5.101), noting the definition of &, in Eq.
{5.92) and using the incompressibility condition gives in both cases
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No convection
or production
by the mean
flow velocity
and velocity
gradient,
respectively.




Contracting indices the
two-point pressure-
velocity correlation

Now taking a trace of Eq. (5.102) and using (5.103) gives gradient terms = 0.
IR dSy ; S ; *R;
(r,t) = ——(—r,t) + (r,t) + 2v—7—(r, £), (5.104)
ot ar, ory ar;

f
which shows that the time rate of change of the trace of the two-point velocity correla-
tion tensor depends on a balance between viscous diffusion, given in the last term, and
the two terms depending on the two-point triple velocity correlation tensor. The latter
represent the process by which vortex stretching brings energy to small dissipative
scales.

Note that the R;; and R;; equations are not closed as they contain the two-point
triple velocity correlation terms and if equations derived for S; ; they would
contain fourth order velocity correlation terms, i.e., conundrum of the RANS
turbulence closure problem and paradox.

Next impose isotropy by using isotropic tensor form of R;; and §;;; to obtain the
K-H equation.



Self-Preservation and the Karman-Howarth Equation

The R;; equation is transformed to the Karman-Howarth equation under the
assumptions of homogeneous and isotopic turbulence.
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This is a scalar equation, where each term is function of r and ¢, in the most
general case.

Combining Eq. (1) with the Chapter 4 Part 2 isotropic expressions for R;; and §;; ;

Rij(rt) = u? [(HQZI;)(;.._ﬁrﬂ

dk ririn k n 1 d(k?”z) j T;
l]l(r t) Uins [( _7”%) 273 _56”?4_; I (51.1?4-5].[7)

it is possible to analyze each term in Eq. (1) separately.
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Now, taking a derivative with respect to 7y,
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Chapter 4 Part 3 Eq. (7)
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Divide by r3

f azf Karman-Howarth

5t [qu] =ud,. [6 +— k] + 2vu? [r = (2) Equation

— 0 2vu2 0 0 Alternative
[ Zf] rms ( 4k) P (7‘4 —f> (3) version Pope 6.75
at r r or Appendix A.1

The Karman-Howarth equation relates f(r,t), k(r,t) and u,,s(t). However, as
with the R;; equation the K-H equation is not closed, as if considered an equation

for f(r,t), it contains an additional unknown, i.e., the triple velocity correlation
term k(r,t).

Using a Taylor expansion for f and k

4
f@r.e) = £(0,8) + " (0, t) +f’V(0 t)
7‘3
k(r,t) =k'(0,t)1r + k"' (0, t)y + -

and substituting into Eq. (3) gives two equations by gathering terms depending on
like powers of 7. | Appendix A.2

The r° equation gives,
u?
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And using the definitions of turbulent kinetic energy

1 Chapter 4 Part 2 pg.9: for homogeneous turbulence.
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and Taylor microscale

B 2
f"(0,6)
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in Eqg. (4) yields
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And using the TKE equation for homogeneous isotropic turbulence
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A result obtained already in Chapter 4.
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The 72 equation gives,

Which, coupled with

de L o1/2E° €2
ac = SR e
dle
ac -~ °©

Describes the decay of homogeneous isotropic turbulence, as per Part 2. This shows
that all the isotropy information in the k and & equations is contained in the
Karman-Howart equation, for which it should be emphasized were derived from
the Navier-Stokes equations, as were the k and € equations (see Chapter 3 Parts 3

and 4).

Assuming self-similarity

£ = (g5 =)

k(rt) = E(ﬁ = n)

The Karman-Howarth equation becomes,
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Where n = r/A, is a similarity variable.
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Appendix A.3




Eq. (5) represents a single ODE for f(n) and k(1) with R, (t) acting as a parameter.

Note that Eq. (5) contains G, and Sy, which were shown in Part 2 to be constants
during self-similar decay and equal to:

G =f"(0)
—S, = k'""'(0)
For self-similarity at all times, f(r,t) = f(n) # f(t) and k(r,t) = k(1)) # f(t)
and Eq. (5) must be always satisfied regardless of how R, (t) varies. Consequently,

both Eq. (5) RHS and LHS = 0 independently, otherwise LHS multivalued for changes
in Ry (¢), since f, k, Sy, Go # f(t), i.e., LHS = a constant, which can only be zero.

LHS = 0 gives the confluent hypergeometric equation with solution

o 1 5 56G-1)
f(’?)—M<G5_1;§;_TTI2> (6)

Where M is the confluent hypergeometric function.

Integration of the RHS=0 of Eq. (5) yields
7 1 J" cdf

E(TI) = gsko 71_4

Which can be solved using f given by Eq. (6). Once G, and S, are specified so to
are f(n) and k(n) and vice versa within the constraint of complete self-similarity.
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https://en.wikipedia.org/wiki/Confluent_hypergeometric_function

Recall complete similarity not possible in isotropic decay - in reality f(n) and E(n)
must be f(t). However, still useful to examine high and low R; equilibrium
solutions.

1) For small Ry, which is still f(¢) and near Ry, = 0 = Ry ,~0.1. RHS of Eq. (5)

small such that LHS = 0, which is referred to as the separability condition. Since
G, = 7/5 for final period

2

3 55 n?
f(n)=M<5,5,—"7>=e‘"7 (8)

As used in Part 2

12

fart)=e %

Assuming that decay is self-similar near Ry = 0, then Eq. (7) holds and solving the
integral yields,

k(n) = %Sko%[(nS +5n3 + 15n)e™"1°/2 — 15\/§erf(\/l§)] (9)

Where

erf(n) = ijne‘szds
Vi Jo

is the error function.

Note that G, and Sk, are constants based on assigned values provided by EFD or
DNS (see Part 2 pg. 7).
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Fig. 5.7 shows a plot of Eq. (9), where k is seen to have a much slower decay for
large 1 than the Gaussian form of f, which shows the importance of vortex

stretching in the energy cascade process.

k() »n~* for n - oo

1.0 — k(n)

0.8
0.6

0.4
k(n), fin)
0.2

0.0 J

fin)

Energy range

Inertial sub range

-10 -8 -6 —4 ) 0 2 4 6 8
n

Dissipation range

2) For large Re equilibrium, consider R; = constant # 0. If Ry = f(t), LHS

10

would have to be multivalued to satisfy equation. If R; = constant a solution for

and f(n) and k(n) exists, but the equation is indeterminate (1 eq. 2 unknowns;
thus, unlike self-similar k and € equation, Karman-Howarth equation is not solvable

without additional assumptions, i.e., in addition to self-similarity.
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Figure 3. Unscaled (a) and scaled (b) double correlations. Increasing time corresponds to decreasing magnitude in (a), while
profiles collapse in (b) under the scaling. All data is Case 2, while Cases 1 and 3 show similar behavior.
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Figure 4. Unscaled (a) and scaled (b) triple correlations. Increasing time corresponds to decreasing magnitude in (a), while
profiles collapse in (b) under the scaling, where Case 1 is shown in dashed lines (lowest magnitude), Case 2 in solid, and Case
3 in dotted lines (highest magnitude). The scaling works by accounting for the decreasing Reynolds number in each simulation
but not the differences in Reynolds number between cases, which remains a point of ongoing investigation.

Byers, C. P., MacArt, J. F., Mueller, M. E., & Hultmark, M. (2019). Similarity
constraints in decaying isotropic turbulence. Paper presented at 11th International
Symposium on Turbulence and Shear Flow Phenomena, TSFP 2019, Southampton,
United Kingdom.
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Additional Discussion Karman-Howarth Equation (Pope pp. 202-205)

il = e B ()

a) Closure problem, i.e., one equation, two unknowns f(n) and k(1) — one
could write equation for k(n), but it would depend on fourth-order
correlation and so on.

b) Terms in k and v represent inertial and viscous processes, respectively.
c) Atr =0, k term = 0 since
k(r,t) =~ k"'r3/3! + kVr5/5!

And homogeneity shows that k’(0,t) = 0; also, f is even in r, Eq. (3) becomes,
d

— 10/ ,0f
— 2 — 5 I )
at [u f] r=0 = v [7‘4 or (T 67‘)]
= 2 ___ 37 4
2vu 2 [4r pm +7r _ar2]
r=0
= 21/?i 4r* 1of + r* _62f 2vu2 5r# —Zf
r4 ror or2 r4 072
r=0 r=0
d — o 10vu2 2 1
= _2=1 2f" = 3 N0 5 1 A(t)zz_u
fon=1| Fw =100 =-7"rm=-32 10 | % 70,0
Where the Taylor expansion for f(r) Pope Ex. 6.6

f'(r) = £40) +rf"(0) +% + o

f()

lim

r—0

= f"(0)

was used.
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. 2 .. .
Hence, for r = 0, the Karman-Howart equation reduces to 3 times the k equation,

dk
dt
d) Energy cascade for high Re hypothesis is that the energy transfer from

larger to smaller scales is an inertial process for r > 1, consequently, k
term is responsible for this process.

—&

e) If u(x, t) were a Gaussian field then k(r, t), like all higher order moments,
would be zero — energy cascade depends on non-Gaussian aspects of the
velocity field. This fact is used in the Quasi-normal approximation method
for KH equation.

Skewness of velocity derivative

0 ou

_ 3 3/2 —
31,011 _ Uug - _ € — _i o i
u3k'’(0,t) = (_axl) Sk (_15v) o2 Wi o, Pope (6.84)
Where:
S, = (u10) P
e —y art 1 Eq. (15)
(u1.1)2

The velocity-derivative skewness includes — sign as per Bernard. Pope and Hinze
define S, without the - sign. In Bernard definition, Sj is positive, while for Hinze
and Pope it is negative. This fact does not change the physical meaning of the
equations but could require some sign changes in the derivations. Throughout
these notes, Bernard definition is used to be consistent.

. connection between S}, vortex stretching and transfer of energy between
different scales, as will be shown in Part 4.
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The Kolmogorov 4/5 law (see Chapter 4 Part 8)

The Karman-Howarth equation can be re-expressed in terms of the structure
functions D;; (1, t) and D;;; (7, t)

Dy (r,t) = [u1 (E + 1éq, t) —U (E' t)]3

As

%DLLL + %% (7'4DLLL) = i—Z% <T4 al;iLL) — ge Pope Ex. 6.3
Integrating

r% Ors“%DLLL(S, t)ds = 6v D, _ Dy — ad

For isotropic turbulence in the inertial subrange, unsteady term = 0 and viscous
term negligible leads to Kolmogorov -4/5 law

DLLL ES —EET'

Kolmogorov further argued that the structure function skewness,

S' = Dy (r,t) /Dy (1, 1) 3/
is constant, leading to

2/3

Dy =(-5g) (0

Which represents Kolmogorov hypothesis, and shows consistency between it and
the NS equations, and relates Kolmogorov constant to skewness S’.
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The Loitsyanskii integral | Appendix A.4

Multiplying Eq. (3) (K-H equation Pope form) by r* and integrating between 0 and
R, yields

d (R— —
o u2rtf(r,t)dr = u, R*k(r,t) + 2vu2r*f'(r,t) (11)
0
Loitsyanskii considered I%im Eq. (11) and assumed f(r,t) and k(r,t) decrease

rapidly with 7, such that the Loitsyanskii integral,
B, = f W2rtf (r, t)dr
0

Converges (i.e., constant value), in which case the terms in k(R, t) and f'(R, t)
vanish. With these assumptions, B, # f(t), and became known as Loitsyanskii
invariant.

However, these assumptions are incorrect, as shown by Saffman. Depending on
how the isotropic turbulence is created, B, can be finite or divergent. When it is
finite k(r, t) does not vanish as R goes to infinity and B, increases in time.
Saffman considered the following alternative invariant,

C=j r2R(r)dr
0

Where:

1 R dA
87””2f|g|=r i (r)dA(r)

R(r) =

And for isotropic turbulence, R(r) = %?(3f +rf").
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Turbulent Flows
Stephen B. Pope
Cambridge University Press (2000)

Solution to Exercise 6.10

Prepared by: Mohammad Mirzadeh Date: 2/28 /06

We begin by using the Kdrman-Howarth equation for the final period as,

d ¢ e vu? 8 ( ,0f
o () =25 (v

du”?  ,0f 2vu® 0 [ ,0f
- Iyt e T A a(fa)

du? 1 af wa [ ,of

= (dtﬁ)“a—ﬁﬂ?a
w? 1 Ex () -% 1
dt u? f ()

It is obvious that LHS of Eq.l is only a function of £. Thus Eq. (6.93)
can only satisfy Karman-Howarth equation in the case RHS is also only a
function of t. Inserting Eq. (6.93) into the RHS of Eq.1 yields,

22 (32)f) - oaf
7
S Cnr-nE)+ a4t
7
_E
— 71‘. (2)

RHS =

Thus Eq. (6.93) satisfies the Karman-Howarth equation. We also note that,

du? 1 B _St

dt u? 2

du’? —5dt
= E T2

=  u?(t)=Ct*
= k(t)=C't™"?
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Eqg. (6.93) = Eq.
(18) below

TZ
f(r,t) =e 8vt




Hinze Section 3.3

> urms 4 2vu2 9 ( 46_f)
[uf] r4 ( k)+ r 6rrar (3)
Karman-Howarth equation represents one equation in two unknowns f(r) and
k(r). Like NS equations leads to closure problem since the number of unknowns is
larger than the number of equations. Also, as with NS equations if one obtains
higher order velocity correlation equation, they lead to additional unknowns.

Truncation approximation= neglect higher order terms but leads to unphysical
solutions.

Quasi—normal approximation= neglect higher order cumulants = assume Gaussian
th order correlation. However, this implies Siji = 0, which is unacceptable .- again
Ieads to unphysical solutions.

+ The n-order cumulant tensor of n velocity components is obtained by subtracting from the
n-order mean velocity product the various mean products of lower order that can be formed
from the n velocity components. For a turbulence with zero mean velocity the cumulant
tensor of lowest order is four:

Uil jupUyp — Uildj Ugldp — Uil Uil — Uity UjUy

It is zero when the joint probability distribution is normal.

Direct-interaction approximation= considers interaction of eddies of different
sized, including their randomness.

Before these approaches, closure problem also attacked based on physical
assumptions for the inertial term.

21



Consider Eq. (1), i.e., R;; transport equation for homogeneous turbulence, using

the simplification Sy, ;(r,t) = =Sy (=7, t), i.e,, odd function for isotropic
turbulence:
R 0Six,i 0°Ry;
,t)— 2 ~(—1,t) =2v——(1,t 12
o (Lt) =25, ~(n) =voam(ne) (12)

In Hinze, the following notation is used.

0Sik,i
Ri=0Q;; 2 ar. (=r,t) = S;;

1. Taking the second moment of each term in Eq. (12) Saffman invariant

(00]

a (~ °° 0S;ki 0%R;;
a] dr r®R;; — 2f dr r? alk'l = 2v (r2 5 2”)
0 0 Tk Tk

0

Applying incompressibility yields

fooo dr r*R;; = 0 and Zfooo dr r2 Biki =

ark

Consequently

_,0%Ry
rlgrglor 372 =0 (13)

. . . 0%Ry . -
Which shows how fast R;; decreases as r increases, i.e., ?2” decreases like 3.
k

2. Taking the fourth moment of each term in Eq. (3) Loitsyanskii integral

0 ([— (% — ,0f
— 4,2 420\ _ (1,3 ALY 2 (42
5% <u JO drr f) (UpmsT R |5 + 2vu (r ar)

0

With certain assumptions concerning large-scale structure of turbulence, it is
reasonable to expect that,
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d
lim <T4 —f> =0 (14) See Hinze pp. 207, 216-218

r—00 or

ie. —decreasellker 5,

R;; and f have same asymptotic behavior. If we assume that f (1) behaves like r="

for large r, the behavior of R;; will be:

u? a u? 9
Rip = =[] = = [°r "]
u? (3 u? —
3-n7 _ 2-n _ -
rzar[r "l _ﬁr = U
Therefore, Eq. (13) requires:
0%R..
lim r? =0
r—00 ory;
— _9%*r™n
- lim u?r?———=0
r—00 ory;
> lim u2r?n(n + Dr2=0- 11m u?n(n + Dr=0
T—00

i.e..,n > 1. Eq. (14), instead, would require:

0
hm(r —f>—0—>11m( —rinr—n- 1)—>11m( —nr3 ™) =0
T—00 or r—0o0

i.e., n > 3, which is a stronger requirement than Eq. (13). Conclusion: Saffman
invariant requires f(r) decay like 7=2, whereas Loitsyanskii invariant requires f(r)
decay like =%, which is a stronger requirement.

The term r*k has usually been assumed to approach zero for increasing r, and this
assumption has been used by Loitsyanskii to obtain,

B, =f W2rtf(r, t)dr
0

must be invariant (i.e., constant value) and not function of time— Loitsyanskii
invariant. However, this is not true and depends on IC of the turbulence (see
Saffman).
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Consider now limiting case of Eq. (12), where the viscosity effects become
predominant — characteristic of final decay,

29 .
2 (1) » 258 ()
ory;

9%R; %Ry
This hypothesis allows to treat the vector r as a scalar r, such that —- > L= 7”
k

a:Ru

10 0R;;
_ 2 i
(r,t) =2v el [ e (r,t)] (15)
Where the identity

VR, 10 a:Ru
orz ¥ Vi 2or

)]

was used.

Assume
Rii(r,t) = ()Y (x)
Where y = r/v8vt, i.e., separation of variables

Substituting into Eq. (15) leads to two differential equations,

ldp «a
pdt t
With solution ¢ = ¢ X t~% and
d? . dy
)(d—+2()( +1)—X+4C()(IIJ— 0

Assuming a = (2p + 1)/2 with p integer, the solution is

1
Y, = )_( eXp(_XZ)HZp—l(X)

Where H, () is the Hermite polynomial
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n

d
H,(x) = (D" exp()(z)d—)(nexp(—)(z)

HO = 1, Hl == 2)(, HZ == 4)(2 - 2, H3 = 8)(3 - 12){

General solution of Eq. (15) is:

Rii(r,t) = (DY (x)

V8v = r
= ——exp(—12/8vt Z—”H _ (—) 154
r p( / ) 4 tD 2p—-1 \/m ( )
Where the constants A, must be chosen such that the series converges and that

R;;(0,8) = u? 3f(0)+rd]; 0) | = 3u?

. nd oy
Applying 2" moment condition Appendix A7

f dr TZRl'i =0
0

We find that all the terms of Eq. (15A) satisfy this condition except the term where
p = 1; so A; must be zero.

Applying 4" moment condition

Appendix A.8

J dr r4Rii =0
0

We find that only p = 2 term # 0.

Therefore, solution of Eq. (15) for p = 2 may be reduced to

Ri(r £) = — 22 (3 r2> ( r2> (16)
i(rt)=——75 33— |exXp| —o
3 4vt 8vt
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And applying the condition R;;(0,t) = 3u2 yields:

2
R;(0,t) = 3u? = i ¥ PN P (—0%/8vt) = — 124,
ii\Y £5/2 4vt p t5/2

i 5 5
W= 4A,tI=cxt2 (17)
uZ s

A, =——1tZ (1
»=——t2 (18)

And, consequently, from Eq. (16) and (18)

4u? s r? r?
fRii(T t) _——§th 3—m exp —%
t2

R;i(r,t) = I <3 ——)e_fir_vzt (19)

Combining the relation between R;;(r, t) and f(r,t)

— 0 u? 9
Ru(r,0) = (3,00 + 722 (r,0) ) = 2 [, )

With Eg. (19) gives the following differential equation

a T.Z r2
— — 3 —_— —_— — “8vt
5 P (D) (3 m)e ave

With boundary conditions

f0,t)=1
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And by integration

5 5 7”2 72 5 72
rof(r,t) = | r“|3—— e 8t =re 8vt +(C
f(r,t) f o
Or equivalently

f(rt) = e_8r_vzt (20)

Where C = 0 from the application of BCs.

Thus, for dominating viscosity effects, Eq. (12) shows the decay law for the

turbulence = —5/2 decay as shown in Chapter 5 Part 2.

f (r,t) has shape Gaussian curve and remains self-preserving during decay. Shows
good agreement with EFD. Moreover, using Egs. (17) and (20) to evaluate
Loitsyanskii integral proves that itis an exact invariant with respect to time, in these

conditions.
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Letk = Ju/uand e = v%%. For isotropic turbulence in the moving frame,
(3.15) simplifies to

dk

dr
We need a closure assumption for &, which must be expressed in terms of the
two variables at hand, k and . Since k and ¢ respectively have dimensions
I?/T? and I?/T3, we may use dimensional arguments to model the temporal
evolution of ¢ as follows:

= —¢. (3.29)

ds &
- %%
where o is a constant to be determined later. We now have two ordinary
differential equations for k(f) and (), which can be solved by assuming

power-law solutions of the forms
k=ko(l+ectyf  and

where ko and &g are the initial values of % and &, respectively, and ¢, B,
and y are constants. Substitution into the differential equations leads to the
following relations for the undetermined coefficients (o, y, and ¢) in terms of
B and the initial data:

(3.30)

e =go(l + ct)?,

B—1 —&0

y=p-1, o I c s

The experimental data of Comte-Bellot and Corrsin (1966) suggests that

TKE decays at the rate B in the range —1.1 to —1.3. By choosing 8 = —6/5

in the middle of this range, we obtain the remaining coefficients, & = 11/6,
= —11/5, and ¢ = (5¢e0)/(6ko).

'Using k and ¢, and dimensional arguments, we can estimate the evolution
of the turbulent time and spatial scales as turbulence decays in time (or as flow
moves downstream in a wind tunnel). For example, the turbulent length scale,
defined as I ~ k32 /g, evolves in time (or downstream in a wind tunnel) as

/2 k3/2
I~ .IES_.. =0 (14?5,
€0

In the absence of turbulence production, the TKE decays, but the
average large-eddy length scale grows.

A plausible explanation for the increase of the average turbulent length scale
is that smaller large eddies with faster time scales are short-lived and decay
faster, leaving the larger ones to contribute to the average large-eddy length
scale or correlation length scale. (The correlation, or integral, length scale was
introduced in Section 2.3.1.) The large-eddy Reynolds number, or turbulent
Reynolds number, Re;, can be determined from
Re; = L x 5-(1 +ety 15,
v &V

If I ~ k37 /¢ as suggested earlier, and the characteristic time scale 7 ~ k/e,
then we can define another expression for the turbulent Reynolds number
based on the velocity, //z, and length scale of the large eddies:

Rer = —. (3.31)

&v
This is typically smaller than the flow Reynolds number by a factor of 20-100.
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ile the mean and large-scale flow features vary from flow to flow, the
* small scales are largely independent of the large scales in
high-Reynolds-number turbulent flows, and thus exhibit statistical %

universality.
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Laws of Turbulence Decay

Self-similarity fixed-point/equilibrium solutions.

1. Final period/low Rer: Ry, < 0.1, Ry, =0,

PIELUNS
2Ty,

. 5¢&p -7/
2T,

k
k=—2¢1
Tto
&
£=—2¢2
Tto

As already mentioned, for High Rer: Saffman theory, imposing the invariance of C,
obtained

u? = KC¥5¢76/5 (1.2)

Where K is a constant that depends upon the structure of the turbulence. To obtain
this result, differently from Kolmogorov, Saffman only required self-similarity, not
isotropy (Appendix A.6). Also obtained when discussing implications for turbulence

modeling (Part 2) and Example 3.2 Moin and Chan (2025) Fundamentals of
Turbulent Flows, Cambridge Press.

During the final decay predictions of the —5/2 (—2.5) law using different
approaches agree such as Pope Ex. 6.10 and Hinze Section 3.3.
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However, for high Rer approaching or including the inertial sub range, there is no
consensus many approaches, as vortex stretching, cannot be neglected and
complex mathematical physics required leading to a large range of decay laws.

Kolmogorov, starting from the invariance of the Loitsyanskii integral, obtained

that for isotropic turbulence u? o t=1°/7 (1.43) during decay (Appendix A.6).

Bachelor, Decay of turbulence in the initial period (1948) based on quasi-
equilibrium/similarity, as also shown by Bernard: t~ 1,
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Inspection of available data on the decay exponent
for the kinetic energy of homogeneous and isotropic
turbulence (HIT) shows that it varies by as much
as 100%. Measurements and simulations often show
no correspondence with theoretical arguments, which
are themselves varied. This situation is unsatisfactory
given that HIT is a building block of turbulence
theory and modelling. We take recourse to a large
base of direct numerical simulations and study
decaying HIT for a variety of initial conditions.
We show that the Kolmogorov decay exponent
and the Birkhoff-Saffman decay are both observed,
albeit approximately, for long periods of time if the
initial conditions are appropriately arranged. We also
present, for both cases, other turbulent statistics such
as the velocity derivative skewness, energy spectra
and dissipation, and show that the decay and growth
laws are approximately as expected theoretically,
though the wavenumber spectrum near the origin
begins to change relatively quickly, suggesting that the
invariants do not strictly exist. We comment briefly on
why the decay exponent has varied so widely in past
experiments and simulations.

This article is part of the theme issue ‘Scaling the
turbulence edifice (part 1)".
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Figure 1. Histogram of decay exponents from the literature: (a) experiments, {5) simulations. Data in (a) are from | [5], 11 [6-91,
NITI0T, IV [11-14], V 15197, VI[200, VI {211, VI [22—24], X [10,14,22,23,25-28]. The data points X correspond to fractal or active
grids. In (b), the initial spectrum with E(x’) oc &* near the origin correspond to: & *-1 [29-32], i *-11 [33], & *-1ll [34-37], & *-IV
[38]. The initial spectrum with F{x) oc &* for small x corresponds to cases: x2-1 [39,40], & 2-11 [31], 211 [33], s -1V [35,36,41]
an-1[42] corresponds to decay of an anisotropically forced turbulence. For the case [37], the simulations were compressible.
Simulations here include DNS, LES using different numerical methods, and EDONM. 5ome experiments and simulations are no
doubt more thorough than others, but we cannot @ prigrf discard any of them on the basis of available information. It should
not be inferred that the ‘correct’ exponent is necessarily the most frequently observed one. (Online version in colour.)
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a huge difference to our conclusions. (Online version in colour.)
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Appendix A

Note: To avoid confusion between k(r, t) and TKE, a capital K will be used for the
TKE, in this Appendix.

A.l

0 r— ok 4
15zl —-.3 |22 2|2 L)
at[u f]—urms[ar+rk]+2vu +

rdr 0r?

of azf]
Multiply and divide by r*

0 dk — d 02
[ Zf] rms [ 4§+ 4r3k] + 2vu? [47‘36—]; +rt a—rjzc]

3 a 4k 2 2 2
=“;TS[ (gr )—M+M] = 4r3%+r a—ré]
9 (.0
37(r5)
d 2vu? 9 L 0f
) rms 4
6t[ wrf| = RGO R 6r<r ar)
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A.2

ud .0
) rms 4
at[ f] r* or a7 (o + 1t or

2vu2 d (r %) (14)

Taylor series for f(r,t) and k(r, t)

T'Z T'4
f@r,t) =f(0,t) + (0, t)i + fv(o, t)z + ..

3
k(r,t) = K'(0,0) 7 + k" (0, ) % o
|

Substitute into Eqg. (1A)

d
5% [uz (1 + (0, t)

ouz 129
_+__

at 2ot

2

+f’V(0 t) 4)]

_urms 0 41,1101 r3
=—3 ar(r k"' (0,t) |>

2vu? 9
+ ( <f”(0 Or + fV(0,t) >>

rt or

Frao) hamon
3
_ @<%T6k’”(0, t)) + ZZZZ (5T4f,,(0, t) + %T6fIV(O, t))

r4
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Simplify powers of r

ou? rza

B o (Fr00) + 5 @)

7 —_ 7
= guﬁmsrzk”’(O, t) + 10vu2f"(0,t) + §vu2rzf”’(0, t)

Now, gather terms according to power of r

ou? —
ro: 7 = 10vu2f”(0, t) (ZA)

r? o 7 7
o at(qu"(o t)) Sl k" (0,0) + 3VUIrAfV(0,6)  (34)

Only one term on the LHS for 7%, no need to consider it for this analysis.

Focus on Eq. (2A)

au2—10_2"0t
at_ Vuf(r)

Using the definitions of turbulent kinetic energy

K = =u?
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And Taylor microscale

B 2
f"(0,)

In Eg. (2A) yields

And using the TKE equation for homogeneous isotropic turbulence

dK _
dc . °
Gives
30 E 15vu2
£ = i -
)Lf /15

Focus on Eq. (3A)

2

r< d 7 ;
2' ot (quH(O t)) _urmsrzk’”(o t) Ll vuz szV(O t)

r? [ du? —af"(0,t) 7 7 —
" 2 — _ 3 27,111 - 2..2 IV
) <_6t 0,t) +u TR < UrmsT k'"'(0,t) + ZVur £7(0,t)
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Now focus on term in parenthesis on LHS

ou? —adf"(0,t) 20K 2 _df"(0,t)
_ rn 2 — _ " - - -
5t f700,t) +u 5% 3 atf (0,t)+3K 5% (54)
Substituting
dK B
TR
Into Eq. (5A)
2 2 df"(0,¢t)
—§€f (0,t)+§KT (614)
And using

&

&
r 0, t — — = —
0.0 15vu2 10vK

Into Eq. (6A) gives

2 &2 ZKd(e)_ g2 K [1de € dK
310vK 3 dt\10vK’/ 15vK 15v| K dt Kzgz

g2 K (1 de 82) ey 1 de g2

S 15wk 1sv\Kdt K2) T 18K 1svdr  Z%vK
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Therefore, it was proved that,

du? —3f"(0,t 1 d
a_utf”(o,t)+u2 a8 :

ot ~ 15vdt Ay

Substituting Eqg. (7A) into Eq. (4A) gives

r2, 1 de\ 7 7 —
(=N L3 2 L T2 2 IV
> (151/ dt) 6urmsr k"' (0,t) +3vu r<f"(0,t)

And isolating de/dt

de -
- = —35vulk(0,£) = 70v*uf (0, )

Which is equivalent to

de 12 E° L€
at = SeRr e

As shown in Chapter 5 Part 1.
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A3

A= o s 2E L () o

Self-similarity

fr,©) = f@/Aa®) = f@r/LE) = f()
k(r,t) = k(r/A(t)) = k(n)

n=r/A
677 a r r n
a2 ﬁ(a) =y O
Focus on LHS of Eqg. (8A)
2dK~ 2 of
u? —K =~
6t[ fl=3% f+3K5¢
24K . 2K6f {04
=33 T35 % (104)
af afor _of oy . indf
ot 019t dn dA Adn

_n

A

=

Therefore, Eq. (10A) becomes,

91— 2dK. 2 .ndf
_i2fl = 222
at[u fl 3dt! 3 Aldn
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Now, focus on RHS Eq. (8A)

3 212
Urms 0, 2vu? 0 ( 46f>
r* or (k) + r* or

Assuming Self-similarity: v = ni,

ud,.. 0 4 2vuz 0 s 1df
oo D05 & (05 5)

[N
QU
[EEY
QU

ud o d ) + 2vu? d 4df
n*g dn

2K3%d , ... 4K d [ ,df
3t _(774k)+ 4 2_<n4_f>
3n*Ay dn 3n*Ag; dn dn

Therefore, Eq. (8A) becomes,

3

2dK . 2. ndf_(2>3/2K3/2 4vK d (n“—

sa! "3 a " e G dwry e

And multiplying by 31% /2vK

A2 dK . . ndf 2/1K2d . 2d df
g 4

97 F_ Ut B) + ——

vK dt Ag 9vdn (3) vn* dn 1)+ <
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Term 1:

Term 2:

A /1 ndf 10vK d 10vK r)df 1d <1OVK>77df
vdr/ e dt € vdn 2dt\ ¢ Jvdn

dK1 K de df < Kdg)df
7 dt e e2dt dn ~ 7 dn

g2 dt

Now substitute decay equation for ¢

Axlnf . - K 7 e 7G df
9% dn 7 g2 3\/_"0Tk 15 7% ) )y

df 35 Laf 7 df
f L 7

2 ln6, 2L (124

Recall relation between Ry and R,

And substitute into Eq. (12A)

ndef+755 df7Gdf
9y dn ndn 3vVE nk" B- 22 Adr) 37 % dn

_ f 7 df 7 _ df
Snd 6nSkOR/1d 37760%

1/1
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Term 3:

1 1 —
AL Vaz d LR
(3) vn* dn 1 ) vn*t dn " B 4 dn (77 )
Therefore, Eq. (11A) becomes,
7 df 7 df Ry d df
-1 R - = n*k
0f+ 775k0 Adn (5 G) dn 4 dn( ) < dn

Reordering the term yields

2 d df df 7 af d , .
_ 4 —4 _ 4
4 <77 dn) n=- dn \3 ( Go ) + 10f R; 6775k0 dn dn (7’ k)
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A4

Loitsyanskii integral

B, :j w2rtf(r, t)dr
0

Using (from Hinze)

— _5 _5
u?=—4A,t 2=cxt 2

T'Z
fr,t) = e 8%
And substituting into the expression for B,

o8] TZ

5
B, =c¢X t_fj rte svtdr (134)
0

Assuming full self-similarity, since the solution is in the final decay region, the
variable 1 can be used to describe f (7, t) such that,

0= f(5m=1)

Where A(t) represents the Taylor microscale, that varies with time:

A(t) x+/t

as shown in Chapter 5 Part 2.
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Substituting r = nA, dr = Adn in Eq. (13A) yields

5 e} 2).2

B, =c¢ X t_if n*Ate 8vt Adn
0
(e0) 22'2

5
B, =c X ASt_?J n*e " svidn (14A4)
0

Evaluating the integral in Eq. (14A) gives

4q?

o 5 3Vmerf(Va 2an® + 3n)e~a|"
f e~ dny =[ Ve Eﬂ) _ Lan” + 31) (154)
O 8az 0

Where:
/12
T 8wt
Evaluating Eq. (15A) at 0 and oo gives
[y
0 8az
And substituting back into Eq. (13A)
5
5 3Vm A5t72
B, =cx APt 2———==cX ==c#f(t)
A% \2 APtz
8 (3ve)
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ASTR/ATOC-5410: Fluid Instabilitics, Waves, and Turbulence November 16, 2016, Axel Brandenburg

Handout 18: Decaying turbulence

In the absence of forcing, turbulence can only decay. The energy dissipation rate still plays an
important role, but it is no longer constant, but it determines nor the decay of the mean squared velocity,
specifically §(u?) = £(t). We use here £(t) to denote the mean energy density and to distinguish it from
the energy spectrum E(k, t). The two are of course related via

Eit)= f E(k,t)dk. (1)
[
In decaying turbulence, both functions are decaying, and this is governed just by ¢, so we have
d
—E(t) = —e(t). 2
SE() = <t @

Using dimensional arguments, we have ¢ ~ [73/£, where U is the typical velocity and £ some typical
length scale of the turbulence. Both are time-dependent; U7 can be related to £(t) ~ U2 and £(t) o t7
15 as yet undetermined, but in decaying turbulence, the small scales will die out, so only large eddies
remain, so we expect £(f) to grow, so g > (). Once we know g, we can proceed and write

d o 3/2,—q -
aE{t) = £ (3)
This can be integrated
d
=32 _ —_ |t
/E' th{t) ff dt, (4)
so £Vl op
Eoct™ with p=2(1—gq). (5)

1 Relation to conservation laws

Conflicting results about the decay can be found in the literature. The results depend on the governing
physical processes involved and the initial conditions.

Kolmogorov made predietions under the assumption that the so-called Loitsianskii' integral is con-
served. This integral is related to the angular momentum, ® x u. The actual Loitsianskil integral is
defined in terms of a two-point correlation function as

L= frz{u[:r) culx 4+ r))dir, (6)

=0 1t has dimensions
L oc Puf oc LT3, (7)

This suggests that g = 2/7. With such an assumption, one finds from Equation (5)
p=2(1-2/T)=2x=5/7T=10/T = 1.43. (3)

This did not agree too well with the available experiments.
Later, Saffman (1967) proposed that the linear momentum might be “more conserved”. The debate
is ongoing (Davidson, 2000), but according to Saffman the relevant integral is

5= f{u[m) cufz + 1)) dir, (9)

which has the dimension L*T~?, so g = 2/5 and therefore

p=2(1-2/5)=2x3/5=6/5~12. (10)

1Different spellings can be found, depending on who translated first into which language. Alternative spellings include:
Loitsyanskii, Loitsiansky, and Loitsyansky
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Tahble 1: Scaling exponents and relation to physical invariants and their dimensions.

r q mnv. dim.
10/7 = 1.43 2/7 == 0.286 C [=][t] 2
8/6~1.33 2/6 = 0.333
6/5=1.20 2/5=0.400
4/4=1.00 2/4 = 0.500 (AZn) [x]*[t] 2
2/3 = 0.67 2/3 = 0.667 (A-B) [z]*[t]?
0/2 =0.00 2/1 =1.000

—_ e bD L | R

2 Relation to initial conditions

A completely different 1dea 1s to assume a connetion with the initial spectrum, so let us write

E(k,t) oc k®, (11)
up to some cutoff scale, so we better write
E(k,t) oc k™ kE(t), (12)
Integrating over k yields
&0 = [ Etkoak = [7hemulhe, 0 ake (13)
. 0 0
E(t) oc g7lmr1) (14)

The Navier-Stokes equations are invariant under rescaling, © — Zf and t — /9, which implies corre-
sponding rescalings for velocity u — t£'71/9 and viscosity v — 0£2~1/7. However, 1 should be universal,
but since it has dimensions,

[¥] = [E][L]™ = L**°T~%, (15)
we can determine g; see Table 1 for a summary and Figure 1 for numerical results for o close to 4.
o’
—_— - L
< 1w’ 10_'
E D ot 10
10 ~ 107
= =
£ 1071 g
"E:Ji 10"
107 107
0.1 1.0 10.0 10® Lo Lo° 10
k/ky [
Figure 1: Spectra at different times (left) and collapsed spectra (right).
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RESEARCH NOTES

Note on Decay of Homogeneous Turbulence

P. G. SAFFMAN

California Institute of Technology, Pasadena, California
(Received 23 February 1967)

The assumption of self-similarity and the existence of an
exact invariant are combined to predict the decay rate of
homogeneous turbulence,

ON the assumptions that turbulence remains self-
similar during decay and that the “‘Loitsianskii
integral”

u j;. r'f(r) dr

remains invariant, Kolmogorov' predicted for iso-
tropic turbulence that «* « ¢"'*“" and L « 7
during decay. Here, u = < u} >!is the root-mean-
square velocity, f(r) is the longitudinal correlation
function®, and L is an integral length scale. An
alternative deriviation of the Kolmogorov decay
law based on equivalent assumptions has been
given recently by Comte-Bellot and Corrsin®, who
have also discussed extensively the comparison with
experiment.

Now, it has been known for some time"’ that the
Loitsianskii integral is not invariant, so that the
Kolmogorov decay law is of particularly doubtful
significance unless it can be shown that the change
in the Loitsianskii integral is slow compared with
the energy decay. However, a more important
objection is that recent work by the author’ has
confirmed the speculation by Birkhofi” that the
Loitsianskii integral is in general divergent, and
that it is only for a restricted type of isotropic
turbulence that the Loitsianskii integral exists.®

On the other hand, for general homogeneous
turbulence it was found that another invariant
exists, namely

f i rR@) dr = C, (1)

where

RO) = g [ Ru®) 4405

R ;;(r) is the velocity covariance tensor, and dA(r)
is the element of area on a sphere of radius r. The
equivalent statement to (1) for the energy spectrum
function is that E(k) ~ (2C/x) k* as k — 0, where
C is a constant which will not in general be zero.
For isotropic turbulence, R(r) = 3 u* (3f + rf');
and the condition for the Loitsianskii integral to
exist is C = 0, since from (1) f(r) ~ (6C/u*)r™® as
r— o,

If we now follow Kolmogorov', or Comte—Bellot
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and Corrsin’, but replace the invariance of the
Loitsianskii integral by the invariance of (1) or the
equivalent condition on E(k), we find for the decay
rate

“, = Kcz/s’-a/a' L= K;cl/stus' (2)

where K, K' are constants that depend upon the
structure of the turbulence. A simple way of deriving
these results is to write R(r) = «’y(r/L) from the
assumption of self-similarity and du’/dt = — Au*/L
from the further assumption of Reynolds number
independence (this is basically equivalent to the
assumption"* that an inertial subrange exists). The
results (2) follow immediately with K, K’ related to
A and [3p° Y(p)dp.

Notice that there is no need to assume that the
turbulence is isotropie, but the assumption of
self-similarity is of course crucial. Comparison with
the experimental data® shows that the results (2) fit
the measurements for the initial period of decay at
least as well and probably better than the
Kolmogorov decay law. Indeed, the agreement is
much closer than the nature of the assumptions
would entitle one to expect.

' A. N. Kolmogorov, C. R. Akad. Sci. SSSR 30, 301 (1941).

* (. K. Batchelor, Homog T'urbul (Cambridge
University Press, London, 1953).
& 9:“% Comte-Bellot and 8. Corrsin, J. Fluid Mech. 25, 657
¢ I. Proudman and W, H. Reid, Phil. Trans. Roy. Soc.
A247, 163 (1954).

¢ G. K. Batchelor and 1. Proudman, Phil. Trans. Roy.
Soc. A248, 369 (1956).

¢ P. G. Saffiman, J. Fluid Mech. 27, 581 (1967).

7 G. Birkhoff, Commun. Pure Appl. Math. 7, 19 (1954).

® Similar conclusions have been reached independently
by Professor O. M. Phillips.

Turbulent Flow Measurements Utilizing
the Doppler Shift of Scattered
Laser Radiation

R. J. GorpsTemN axp W. F. Hagen
Mechanical Engineering Department, University of Minnesota,
) inneapolis, Minnesota
(Received 12 December 1966; final manuseript
received 3 April 1967)

The probability function for the turbulent velocity in &
duct flow is determined from the frequency shift of laser
illumination scattered by small particies contained in the
flow. From this, the mean turbulent velocity and the intensity
of turbulence are obtained.

THE feasibility of measuring steady fluid velocities
from the Doppler shift of scattered laser radia-
tion was first demonstrated by Yeh and Cummins.!



A.7

We start with the given general solution:
Rii(r,t) = o(t)v(x) (1)
= xp(—r? /8ut “PH,, | —— 2
- exp(—r</8v )Z 7 2p-1 (\/ST’f) (2)

p=1

where Ha,_; are the Hermite polynomials.
We impose the second moment condition:

[ dr r2Ry(r,t) = 0. (3)
S

Substituting the general solution,

> B = A r
I P N
/0 rrt— exp(—r /’V}Z w Ho-1 | 2 0 (4)

p=1
Rewriting:

1 T;J /ﬂ drr ex[)(—'f‘Qfot)Hzp—l (\/%‘) = 0. (5)

Due to the orthogonality of Hermite polynomials, the integral vanishes for all
p # 1, but the term for p = 1 does not satisfy the condition, forcing A; = 0.

P=
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A.8

The fourth moment condition states:

L 4]
I, = f drv*R;;{r.1) = constant (1)
1]

where Iy is known as the Loitsyanskii integral, which is conserved in
certain turbulence models.
From the general solution:

Rii(r,t) = xff_p EEXI}{—'F'QI.I"HUF}Z %'ng_l ( ;ut:) (2)

=1

Substituting this into the fourth moment integral:

> VR = A r
I = dr vt 2 exep( —r? [ 8ut L Hs, ( ) 3
=~ (/a3 Gt (o ®)

e A, ™ . T
= V@Zf_ljj; dr r"g{z:-cp[—rij'ﬁut}ﬂgp_l( Huf)l [4)

p=1
Let:
T .

= = dr = VButdy. 5
X= Fm o vtdy (5)

Rewriting the integral:

oA [ 52, 3 2

L= VRS 2 [ v s/ exp(—x?) Hapes (1) ®)

=1

Factoring out the time dependence;

ad o
I, = {Hyjiifﬂt{n,-'E]_HZAPf d,( }Léi “xP{_XQJIIE;.r—I{'f}- {?}l
]

p=1
Using the orthogonality properties of Hermite polynomials and known inte-
oral results:

[=4]
i 2
[ o exp(x)Hapa(x) #0 (s)
[

only if 2p — 1 = 3, which implies:
p=2 {9
For I to remain constant, the exponent of ¢ in the prefactor must be zero:

o

E}—J=“=&p=2. (10

Thus, only the p = 2 term contributes to the fourth moment integral, while
all other terms vanish, Therefore, the condition implies that only Az can be
notzero, ensuring consistency with the conservation of Iy,
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