Chapter 5: Energy Decay in Isotropic Turbulence

Decay process of TKE by viscous dissipation is ideally studied for homogeneous
isotropic turbulence since it contains all essential physics while yielding equations
in their simplest forms. The results are used in many turbulence models, which are
applied to general flows.

Part 1: Energy Decay

Idealized problem: large region far from boundaries or box with periodic boundary
conditions. In either case region/box large enough such that BCs do not influence
core flow and f(r) and k(r) decay to zero with r well within the domain.

Concept is that a complete statistical description of a homogenous isotropic
turbulence is specified in the region/box of interest; and the GDE are solved for the
calculation of the energy decay via the solution of the k, € equations.

Note that all variables are f(t) such that ensemble or spatial averaging is required.



Turbulent Kinetic Energy Equation
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For homogenous isotropic turbulence:

dk

- € (1)
where € = £ = vu; ju; ;. Clearly, the other terms in the TKE equation are zero for
isotropic turbulence. The governing equation for € simplifies as
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Since clearly the other terms in the € equation are zero for isotropic turbulence and
it will be shown that both terms on RHS of Eq. (2a) are equal to a constant and
therefore cannot be reduced to the gradient of fluctuating terms, which would be
equal to zero.

Since € = v(
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The physics of isotropic decay is governed by the decay of k at rate &, and the
evolution of € due to the balance of the RHS of Eq. (2a) or (2b). Note that:
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P} and ng‘: effects of vortex stretching > 0 .. represents production of €. Similar
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but more complex than wy, ™

4 pp. 11-12).
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—Y; and —vY;: effects of dissipation of dissipation



Vorticity Definition:
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Product of Vorticity Components:
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Derivation of Eq. (5-75) in Bernard’s book:

The vorticity w; is defined as:
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The derivative of w; with respect to x; is:
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The product of Levi-Civita symbols is simplified using:

Substituting this into the expression,
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Expanding the expression using the Kronecker delta properties,
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Exercise 2.10 in Pope’s book (see derivation Chapter 3 part 1)
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Equation 3.36 in Davidson’s Book (see derivation Chapter 3 part 1)
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The sums of the two highlighted terms in both above equations are equal: Eq. (1) /2= Eq. (2)
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For homogeneous turbulence,
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The following derivation shows the terms are equal for homogeneous turbulence.
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RHS of Eq. (2a) can be expressed in terms of R;; and S;; ; via extension of identity
(see derivation Eq. (6) Chapter 4 Part 1):
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Taking a derivative with respect to x; in Eq. (4) yields
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Similarly, taking two derivatives with respect to y; and y; in Eq. (5)
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And taking the limitforr - 0, y » x
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A similar simplification of the triple velocity correlation can be obtained starting
from
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Note that il, i notation emphasizes fact that second u; component is at a different
location y than u; u; at location x.

Taking a derivative with respect to x; in Eq. (7)
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Taking an additional derivative with respect to x; in Eq. (8) yields
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Where the two crossed terms are zero due to continuity.
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Taking the limitforr - 0, y - x
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Since after using the incompressibility condition again
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Substituting Eq. (6) and (11) into Eq. (2a)
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To simplify the relation even more, recall from Chapter 4: Part 2, Eq. (9) and (11):
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Using R;; (1) and specifying for i = j and taking four derivatives of Rii(f), two
with respect to 7; and two with respect to r; yields
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To evaluate this expression at r = 0, use Taylor series of f'"'(r)
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3
(0) = 7 ufimsk”’(O) Proof in Appendix A.2

Note that k"' (0) < 0 such that P > 0 and represents production of ¢ via vortex
stretching. Thus,

de —
=7 = —35Unsk(0) = 70u2fV(0) (12)

i.e., only depends on two time-dependent scalars, along with k (U, = [% k]l/z)

and &.

Using R11(f) =u?()f(r) =u()ulx+r) and S111(£) = Wik (r) =
u()u()ulx +r):

(Uyr)? = U2 fV(0) (13) Proof in Appendix A.3

(uy)3 = ud, k"' (0) (14) Proof in Appendix A.4

The proof for Eq. (13) is done using both scalar and vector approaches, as per

Chapter 4 Part 3 for the derivation of ﬁf”(O) = —u_xz; and the proof for Eq. (14)
is done using both scalar and tensor approaches.
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The skewness of u, is defined as See Appendix A.5

So= - as)
owE

And found to be positive due minus sign on RHS.

3/2

Sk(ux)2 = _(ux)3 = —uﬁmsk’”(O)

(u)? = —uf"(0)

where Chapter 4: Part 3
' (0) = —
—15vu?
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C )2_8_15vﬁl_ﬁ 16 = 5
W ST ooz 1Y v s
Using Eq. (14) and (16), it follows that Eq. (15) becomes,
3
k' (0) = Sk _ g ( d )E (17)
A “\15u2,,.v
Palenstrophy coefficient of u,, can be defined as See Appendix A.5 and Eq. (2a) and (2b)
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u? (iyy)?
G=—FF
(uy)?
Egs. (13) and (16) show that

G £ 2
f(0) = g =G (m) (18)

Substituting Eqs. (17) and (18) into Eq. (12), gives the & equation for homogeneous
isotropic turbulence in the standard form

de _ g:p1/2 e G*g2 19
dt ~ KT g k (19)
Where: de
T =P}—Y,= (2a)
K = k 1.2
3\/15 P£4- — S;R%_
7 k
G"=—0G 2
15 Y, =G
k2 k
R =—
T ye

This equation, along with Eq. (1) represent two equations in the four unknowns k,

g, Sk and G, all of which are f(t), i.e., not closed. RHS term 1 = gain and term 2
= loss.

Initial state needs to be specified, i.e., at t = 0, kO,SO,S,’QO, and G;. Alternatively,

using Egs. (17) and (18), initial forms for f () and k() can be specified, from which
Sk, and G, can be obtained.
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Turbulent Reynolds Number (also see Chapter 4 Part 3 pg. 14 where Re; = Ry)

p K _ Vkk3/?/e
T~ e turbulentRe ~— v

Velocity scale u = vk and length scale | = k3/2 /e, where L is related to the eddy
turnover time:

k
Tt = E
Which shows that,
1 - 1dk
T, k  kdt

And can be interpreted as the fractional rate of energy dissipation and T; = time
scale of TKE dissipation.

Alternatively,
Ry = (k/e)/(v/k) = ratio of turbulent and viscous time scales = T, /T, where

T, = v/k = time scale of viscous dissipation
Large Ry = very energetic turbulence and far from being dissipated, i.e., T, < T.

Small Ry = energy in dissipation range since rate flow energy drops = rate at
which energy is dissipated = weak turbulence, i.e., T, > T;.

Therefore, R — 0 during decay of isotropic turbulence

Since Ry appears in the stretching term of de/dt, the equation indicates that
stretching is important for energetic turbulence vs. dissipative range.
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Another useful turbulence Reynolds number is,

R/1 — Aurms

v
Where A = /1g or /1f.

Using

it is possible to obtain the relationship between R and R,

2 —2. 2
k*2g" _9uZ A0 3 RZ | 3=
20 -2

kZ

Ry =—= L = 9
T ve 15v2u?2  60v2u?

Rr or R; can be used to characterize degree of turbulence for homogeneous flow:

e R; > 100 turbulence not weak
e R; > 1000 strong turbulence
e R; < 1 veryweak turbulence, final period decay before it relaminarizes

Interest is in decay process from initial state R > 1to Ry < 1.
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Egs. (1) and (19) can be combined into a single equation for R. Starting from

kZ
Ry =—
T VE

dRy 2kdk k? de

dt  vedt veldt

Substituting Egs. (1) and (19)

dR; 2k S
dt v

k k
- ;,/RT; +G'= (20)

Since k and ¢ are always positive, a dimensionless time can be defined as (t' = %r)

L (te)
(t) = fo o @

Where it is assumed that 7(0) = 0. Note that T — o as t - oo. This can be
integrated exactly using Eq. (1), to obtain,

7(t) = In(k(0)/k(t))

It is also possible to obtain the inverse mapping of T to t.

Defining

R7(7) = Ry (t(1))

Or equivalently

Rr(z(t)) = Rr(¢)
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Such that,

dRr dRpdt edRp 29
dt  dt dt k dr (22)

using Eq. (21).

Substituting Eq. (22) into (20) yields

dR7
d_‘[T = R;‘,(G* —2— S;\/R;) (23) See Appendix A.6

Thus, an alternative to solving the decay problem via Egs. (1) and (19) is the option
of solving Eq. (23).

G* and S; are f(t) such that represents one equation in three unknowns, i.e.,
additional assumptions are required.

No matter which way the decay problem is approached, solving for k and € requires
additional assumptions so that a closed system of equations can be deduced.

20
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A3
Scalar approach

Define

R11(r) = w2 () = u()ux) = ulxulx + 1)

x+r=x'

Where x, 1, x" represent scalar quantities and x, r are two independent variables.

w? () f(r) = u@ulx +71)

Taking two derivatives with respect to r, we have shown that (Chapter 4 Part 3)

d0%u(x)

ox'?

u?(0)f"(r) = u(x)

Where the following rules were used

af_ .
g—f

dx’ 3
or

Taking two additional derivatives with respect to r yields

—_ d [0%u(x)
ur()f"'(r) = u(@g( )

dx'?

B d (0*u(x')\ox" d23u(x"
= v 50\ Tox @_u(x) 9x'3
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ZEOF () = u(x)— (agu(x')>

ar dx'3
B d (d3u(x)\ox" o*u(x)
=50\ o7 Jar T i

Therefore

d*u(x"

dx'*

w?()f" (r) = ux)

Taking the limit forr - 0,x" - x

ZE(0) = u() o)

Focus on the RHS

0%u(x) 0 7 0327 | ou(x) d3u(x)
u(x) ox*  oxl> d0x3 dx  0x3

Where the first term on the RHS is zero due to hypothesis of homogeneous
turbulence (gradient of fluctuating quantity).

Apply same step one more time

) Pu) _ %ﬁ(/xwl , () 0%u()
X X

dx  0x3 dx?2 d0x?2 dx?2

Therefore

0*u(x)  0%u(x) 0%u(x)

u?()f"(0) = uy (x)

ax* — 0x2  0x?
— 0%u(x) 0?u(x) —
WRWY0) = o =
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Vector approach

R11(£) = ;f(réi) = u1(£)u1(£’) = U (E)ul(ﬁ + réi)

y=x+r
where
r=ré
And
Vi=x+11

Taking a first derivative with respect to r

au(x + rel) 6u(x)

w2f'(r) = u(x) u(x +ré)

0 0 0 0
_ u(x) u(x + rel) a);l N u(g) X

dx; -

o

_ au(g + ré}) an au@ + ré]) T
- u(g) 9y ar u(x) dy; ;l

ou(x + rel) r
dy; n

W2 f'(r) = u(x)
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Taking a second derivative with respect to r

) = Iu () au(x = rel) ]

%J’l dy; /é"/z/ or \n
[0]

6(1") 1 10, 1 1r

_ Ou(x) 6u(xy€’)/ ruln) 2 X <6u(x + rel)> u(x) ou(x + réj)/if>

n ror 1 rn

0%u(x +ré)

W) = ul)—7

Taking a third derivative with respect to r

— d d0%u(x + ré;
utf"(r) = - u(x) (gyz )
]
6u(x) d0%u 7/—b/r/e{) u(x) 0%u(x +ré;)| dy,
or a0y}t dyt or
AT

Bu(x+ré)r
oy} n

ﬁf”l(r) — u(&)

Taking a fourth derivative with respect to r (like the second derivative) yields

0*u(x +1éy)
oy}

W2V (r) = u(x)

Taking the limit forr —» 0, y; = x;

2fIV(0) — u(x) a4u(x)

And applying homogeneity follows same steps as scalar proof.
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A4

Scalar approach
5111(7"é\1 = Z) = ugmsk(r)

5111(1) = u()u(x)ulx + 1)

x+r=x

Where x, 1, x" represent scalar quantities and x, r are two independent variables.

Urmsk (r) = u()u()ulx +r)

Taking three derivatives with respect to r yields (same procedure as f'''(r))

. 23u(x")
urmsk (r) = u()u(x) 9x'3
Taking the limit forr - 0,x" - x
3U(x)

urmsk”,(o) = u(x)u(x)

Focus on the RHS

) W 2 2,y )
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Where the first term on the RHS is zero due to hypothesis of homogeneous
turbulence (gradient of fluctuating quantity).

6x 0x u(x)

_ 0%u(x) ou(x) ou(x)ou(x)ou(x) ou(x) 0%u(x)
~ Ox2 u(x) dx * dx Ox 0Ox * dx u(x) 0x?
ou(x) 0%u(x) N ou(x) du(x) ou(x)

=2 0x u(x) dx?2 dx Ox Ox

Therefore, multiplying the last relation by -1 and isolating the first term on the
RHS

[ou (%) ou (x)‘

6u(x) 62u(x) 0 au(x) x)- du(x) du(x) du(x)
e ox x 0x T dx Ox 0x

Or equivalently

03u(x) au(x) ou(x) au(x)

u?mskm(o) = u;
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6" order tensor approach

o5 pope o 6 -

W .
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Hijkpqr is a sixth order tensor,

> _ aui au] auk
Lkpar = 0x, 0x, 0x,
And we have shown that,
Juy Quq Ouy

Hi11111 = a_xla_xla_xl = Uy =a4

And

" _ Ou; 0u; Ouy 35
Hkaa ™ gy dxg xg 2

aq

If we make the following change of indices: k = [ and q = j, we obtain,

du; 0u; 0wy 35

iiljj = a_xl%a_x] —5 %
And comparison with Eq. (11), results in,
3 1
iy = —22 (0
iilljj aTjZaT‘l ( )
Similarly,
" _ 038114 ©) = Ouy (x) duy (x) Ouy (x) _=
111111 —6r13 dx; %, %, x
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A.5

Definition Skewness and Palinstrophy (related to Palenstrophy?)

The skewness is the third moment of v/, normalized by the variance:

23

skewness = ﬁ (3.5)
A PDF which is symmetric about the mean < v > will have zero skewness. All higher
odd moments of such a symmetric PDF will also be identically zero. The skewness
reveals information about the asymmetry of the PDF. Positive skewness indicates
that the PDF has a longer tail for v — (v) > 0 than for v — (v) < 0. Hence a positive
skewness means that variable v is more likely to take on large positive values than
large negative values. A time series with long stretches of small negative values and
a few instances of large positive values, with zero time mean, has positive skewness
(Fig. 3.1).

> c

| 8
N A
| I~ 1.

>t

Figure 3.1: Signal with a positive skewness.

Davidson, Turbulence, Chapter 10, Two-Dimensional Turbulence, 2004.

? Palinstrophy is defined as ! (V x @)’, which in two-dimensions is L{Vw)*. The
etymology of the word is given in Lesieur (1990). It was introduced by Pougquer et al.
(1975) and is constructed from palin and strophy, which are the Greek for again and
rotation respectively. Thus Palinstrophy is ‘again rotation’ or ‘curl curl’.
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