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 Chapter 5: Energy Decay in Isotropic Turbulence 

Decay process of TKE by viscous dissipation is ideally studied for homogeneous 

isotropic turbulence since it contains all essential physics while yielding equations 

in their simplest forms. The results are used in many turbulence models, which are 

applied to general flows.  

 

Part 1: Energy Decay  

Idealized problem: large region far from boundaries or box with periodic boundary 

conditions. In either case region/box large enough such that BCs do not influence 

core flow and 𝑓(𝑟) and 𝑘(𝑟) decay to zero with 𝑟 well within the domain.  

 

Concept is that a complete statistical description of a homogenous isotropic 

turbulence is specified in the region/box of interest; and the GDE are solved for the 

calculation of the energy decay via the solution of the 𝑘, 𝜀 equations. 

 

Note that all variables are f(t) such that ensemble or spatial averaging is required. 
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Turbulent Kinetic Energy Equation 

 

𝜕

𝜕𝑡
(
1

2
𝑢𝑖
2) + 𝑈𝑗 (

1

2
𝑢𝑖
2)
,𝑗⏟                

𝐷𝑘
𝐷𝑡

+
𝜕

𝜕𝑥𝑗
[
1

𝜌
(𝑢𝑗𝑝

′) +
1

2
𝑢𝑖
2𝑢𝑗] = 𝜐∇

2𝑘 + 𝑃 − 𝜀̃ 

Where: 

𝑃 = − 𝑢𝑖𝑢𝑗𝑈𝑖,𝑗  

𝜀̃ =  𝜐𝑢𝑖,𝑗
2 

𝜺 Equation 

 

 

𝜕𝜀

𝜕𝑡
+ 𝑈𝑗

𝜕𝜀

𝜕𝑥𝑗
= 
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For homogenous isotropic turbulence: 

 
𝑑𝑘

𝑑𝑡
= −𝜀     (1) 

where 𝜀 = 𝜀̃ = 𝜈𝑢𝑖,𝑗𝑢𝑖,𝑗.  Clearly, the other terms in the TKE equation are zero for 

isotropic turbulence.  The governing equation for 𝜀 simplifies as 

𝑑𝜀

𝑑𝑡
= 𝛲𝜀

4 − 𝛶𝜀 = −2𝜈
𝜕𝑢𝑖
𝜕𝑥𝑙

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑙
𝜕𝑥𝑗
− 2𝜈2 (

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑙

)

2

     (2𝑎) 

Since clearly the other terms in the 𝜀 equation are zero for isotropic turbulence and 

it will be shown that both terms on RHS of Eq. (2a) are equal to a constant and 

therefore cannot be reduced to the gradient of fluctuating terms, which would be 

equal to zero. 

 

Since 𝜀̃ =  𝜈𝜁 

𝜁 = 𝜔 ∙ 𝜔 = 𝜔𝑖
2 =

𝜀

𝜈
−
𝑢𝑖,𝑗𝑢𝑗,𝑖
𝜈

=
𝜀

𝜈

̃
 

 

𝑑𝜀̃

𝑑𝑡
= 𝜈𝛲𝜁

4 − 𝜈𝛶𝜁 = +2𝜈𝜔𝑖𝜔𝑘
𝜕𝑢𝑖
𝜕𝑥𝑘

− 2𝜈2
𝜕𝜔𝑖
𝜕𝑥𝑘

𝜕𝜔𝑖
𝜕𝑥𝑘

     (2𝑏) 

 

The physics of isotropic decay is governed by the decay of 𝑘 at rate 𝜀, and the 

evolution of 𝜀 due to the balance of the RHS of Eq. (2a) or (2b).  Note that: 

 

−
𝜕𝑢𝑖
𝜕𝑥𝑙

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑙
𝜕𝑥𝑗

= 𝜔𝑖𝜔𝑘
𝜕𝑢𝑖
𝜕𝑥𝑘

 

 

𝛲𝜀
4 and 𝜈𝛲𝜁

4:  effects of vortex stretching > 0 ∴ represents production of 𝜀. Similar 

but more complex than 𝜔𝑘
𝜕𝑢𝑖

𝜕𝑥𝑘
 term in fluctuating vorticity equation (Chapter 2 Part 

4 pp. 11 -12). 

 

−𝛶𝜀  and −𝜈𝛶𝜁: effects of dissipation of dissipation 
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Vorticity Definition: 

ω𝑖 = ϵ𝑖𝑗𝑘
∂𝑢𝑘
∂𝑥𝑗

 

Product of Vorticity Components: 

ω𝑖ω𝑘 = (ϵ𝑖𝑝𝑞
∂𝑢𝑞
∂𝑥𝑝
)(ϵ𝑘𝑟𝑠

∂𝑢𝑠
∂𝑥𝑟
) 

Levi-Civita Identity: 

ϵ𝑖𝑝𝑞ϵ𝑘𝑟𝑠 = δ𝑖𝑘(δ𝑝𝑟δ𝑞𝑠 − δ𝑝𝑠δ𝑞𝑟) + δ𝑖𝑟(δ𝑝𝑠δ𝑞𝑘 − δ𝑝𝑘δ𝑞𝑠) + δ𝑖𝑠(δ𝑝𝑘δ𝑞𝑟 − δ𝑝𝑟δ𝑞𝑘) 

Contracted Form: 

ω𝑖ω𝑘
∂𝑢𝑖
∂𝑥𝑘

= ϵ𝑖𝑝𝑞ϵ𝑘𝑟𝑠
∂𝑢𝑞

∂𝑥𝑝

∂𝑢𝑠
∂𝑥𝑟

∂𝑢𝑖
∂𝑥𝑘

 

ω𝑖ω𝑘
∂𝑢𝑖
∂𝑥𝑘

= [δ𝑖𝑘(δ𝑝𝑟δ𝑞𝑠 − δ𝑝𝑠δ𝑞𝑟) + 𝛿𝑖𝑟(𝛿𝑝𝑠𝛿𝑞𝑘 − 𝛿𝑝𝑘𝛿𝑞𝑠) + 𝛿𝑖𝑠(𝛿𝑝𝑘𝛿𝑞𝑟 − 𝛿𝑝𝑟𝛿𝑞𝑘)]
∂𝑢𝑞

∂𝑥𝑝

∂𝑢𝑠
∂𝑥𝑟

∂𝑢𝑖
∂𝑥𝑘

 

1st term of RHS: 

δ𝑖𝑘(δ𝑝𝑟δ𝑞𝑠 − δ𝑝𝑠δ𝑞𝑟)
∂𝑢𝑞

∂𝑥𝑝

∂𝑢𝑠
∂𝑥𝑟

∂𝑢𝑖
∂𝑥𝑘

= (
∂𝑢𝑞

∂𝑥𝑟

∂𝑢𝑞

∂𝑥𝑟
−
∂𝑢𝑟
∂𝑥𝑝

∂𝑢𝑝

∂𝑥𝑟
)
∂𝑢𝑖
∂𝑥𝑖⏟
=0

= 0 

2nd term of RHS: 

δir(δpsδqk − δpkδqs)
∂uq

∂xp

∂us
∂xr

∂ui
∂xk

=
∂uq

∂xp

∂up

∂xr

∂ur
∂xq⏟        

=0

−
∂uq

∂xp

∂uq

∂xr

∂ur
∂xp

= −
∂uq

∂xp

∂uq

∂xr

∂ur
∂xp

 

𝜕𝑢𝑞
𝜕𝑥𝑝

𝜕𝑢𝑝
𝜕𝑥𝑟

𝜕𝑢𝑟
𝜕𝑥𝑞

= 𝐻𝑞𝑝𝑟𝑝𝑟𝑞 = 𝐻𝑖𝑗𝑘𝑗𝑘𝑖 = 0   (see Pope Exe. 6.11;A4 pg. 32)  

3rdterm of RHS: 

δ𝑖𝑠(δ𝑝𝑘δ𝑞𝑟 − δ𝑝𝑟δ𝑞𝑘)
∂𝑢𝑞

∂𝑥𝑝

∂𝑢𝑠
∂𝑥𝑟

∂𝑢𝑖
∂𝑥𝑘

=
∂𝑢𝑞

∂𝑥𝑝

∂𝑢𝑖
∂𝑥𝑞

∂𝑢𝑖
∂𝑥𝑝

−
∂𝑢𝑞

∂𝑥𝑝

∂𝑢𝑖
∂𝑥𝑝

∂𝑢𝑖
∂𝑥𝑞

= 0 

Therefore, 

𝜔𝑖𝜔𝑘
𝜕𝑢𝑖
𝜕𝑥𝑘

= −
𝜕𝑢𝑞

𝜕𝑥𝑝

𝜕𝑢𝑞

𝜕𝑥𝑟

𝜕𝑢𝑟
𝜕𝑥𝑝

= −
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑙

𝜕𝑢𝑙
𝜕𝑥𝑗

= −
𝜕𝑢𝑖
𝜕𝑥𝑙

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑙
𝜕𝑥𝑗
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Derivation of Eq. (5-75) in Bernard’s book: 

(
∂2𝑢𝑖
∂𝑥𝑗 ∂𝑥𝑙

)

2

= (
∂ω𝑖
∂𝑥𝑗
)

2

 

The vorticity ω𝑖 is defined as:                          ω𝑖 = ϵ𝑖𝑗𝑘
∂𝑢𝑘

∂𝑥𝑗
 

The derivative of 𝜔𝑖 with respect to 𝑥𝑗 is: 

∂ω𝑖
∂𝑥𝑗

=
∂

∂𝑥𝑗
(ϵ𝑖𝑘𝑙

∂𝑢𝑙
∂𝑥𝑘
) = ϵ𝑖𝑘𝑙

∂2𝑢𝑙
∂𝑥𝑘 ∂𝑥𝑗

 

The square of this derivative is 

(
∂ω𝑖
∂𝑥𝑗
)

2

= (ϵ𝑖𝑘𝑙
∂2𝑢𝑙
∂𝑥𝑘 ∂𝑥𝑗

)

2

 

Expanding this, we get: 

(
∂ω𝑖
∂𝑥𝑗
)

2

= (ϵ𝑖𝑘𝑙
∂2𝑢𝑙
∂𝑥𝑘 ∂𝑥𝑗

)(ϵ𝑖𝑚𝑛
∂2𝑢𝑛
∂𝑥𝑚 ∂𝑥𝑗

) 

The product of Levi-Civita symbols is simplified using: 

ϵ𝑖𝑘𝑙ϵ𝑖𝑚𝑛 = δ𝑘𝑚δ𝑙𝑛 − δ𝑘𝑛δ𝑙𝑚 

Substituting this into the expression, 

(
∂ω𝑖
∂𝑥𝑗
)

2

= (δ𝑘𝑚δ𝑙𝑛 − δ𝑘𝑛δ𝑙𝑚)
∂2𝑢𝑙
∂𝑥𝑘 ∂𝑥𝑗

∂2𝑢𝑛
∂𝑥𝑚 ∂𝑥𝑗

 

Expanding the expression using the Kronecker delta properties, 

(
∂ω𝑖
∂𝑥𝑗
)

2

=
∂2𝑢𝑙
∂𝑥𝑘 ∂𝑥𝑗

∂2𝑢𝑙
∂𝑥𝑘 ∂𝑥𝑗

−
∂2𝑢𝑙
∂𝑥𝑘 ∂𝑥𝑗

∂2𝑢𝑘
∂𝑥𝑙 ∂𝑥𝑗

 

The incompressibility condition ∇ ⋅ 𝑢 = 0 implies, 

∂𝑢𝑘
∂𝑥𝑘

= 0 

Note that  

∂2𝑢𝑙
∂𝑥𝑘 ∂𝑥𝑗

∂2𝑢𝑘
∂𝑥𝑙 ∂𝑥𝑗

=
∂

∂𝑥𝑘
(
∂𝑢𝑙
∂𝑥𝑗

∂2𝑢𝑘
∂𝑥𝑙 ∂𝑥𝑗

)
⏟          

=0

−
∂𝑢𝑙
∂𝑥𝑗

∂

∂𝑥𝑘
(
∂2𝑢𝑘
∂𝑥𝑙 ∂𝑥𝑗

)
⏟          

=0

= 0 

 

This means 
∂2𝑢𝑙

∂𝑥𝑘 ∂𝑥𝑗

∂2𝑢𝑘

∂𝑥𝑙 ∂𝑥𝑗
 vanishes,   

(
∂ω𝑖
∂𝑥𝑗
)

2

=
∂2𝑢𝑙
∂𝑥𝑘 ∂𝑥𝑗

∂2𝑢𝑙
∂𝑥𝑘 ∂𝑥𝑗
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Exercise 2.10 in Pope’s book (see derivation Chapter 3 part 1) 

𝐷ω2

𝐷𝑡
= ν∇2ω2 + 2ω𝑖ω𝑗

∂𝑈𝑖

∂𝑥𝑗
− 2ν

∂ω𝑖

∂𝑥𝑗

∂ω𝑖

∂𝑥𝑗
                              (1) 

Equation 3.36 in Davidson’s Book (see derivation Chapter 3 part 1) 

𝐷

𝐷𝑡
(
ω⃗⃗⃗ 

2

2

) = ω1ω𝑗𝑆𝑖𝑗 − ν(∇ × ω⃗⃗ )
2 + 𝜈∇ ∙ [ω⃗⃗ × (∇ × ω⃗⃗ )]                                          (2) 

The sums of the two highlighted terms in both above equations are equal: Eq. (1) /2= Eq. (2) 

  ∇2
ω2

2
− ∇ω ⋅ ∇ω = −(∇ × ω)2 + ∇ ⋅ [ω × (∇ × ω)] = −ω ⋅ ∇ × (∇ × ω)⏟          

𝑃𝑎𝑙𝑖𝑛𝑠𝑡𝑟𝑜𝑝ℎ𝑦

= ω ⋅ ∇2𝜔 

For homogeneous turbulence,  

∇2
ω2

2
= ∇ ⋅ (𝜔 ⋅ ∇𝜔) = 0, and ∇ ⋅ [ω × (∇ × ω)] = 0 

which implies that ∇ω ⋅ ∇ω = (∇ × ω)2.  

The following derivation shows the terms are equal for homogeneous turbulence. 

(∇ × 𝐴)𝑘(∇ × 𝐴)𝑘 = (∇𝑖𝐴𝑗𝜀𝑖𝑗𝑘)(𝜀𝑘𝑝𝑞∇𝑝𝐴𝑞)

= (∇𝑖𝐴𝑗)(𝜀𝑖𝑗𝑘𝜀𝑘𝑝𝑞)(∇𝑝𝐴𝑞)

= (∇𝑖𝐴𝑗)(𝛿𝑖𝑝𝛿𝑗𝑞 − 𝛿𝑖𝑞𝛿𝑗𝑝)(∇𝑝𝐴𝑞)

= (∇𝑖𝐴𝑗)(∇𝑖𝐴𝑗) − (∇𝑖𝐴𝑗)(∇𝑗𝐴𝑖)

=  
𝜕𝐴𝑗 

𝜕𝑥𝑖

𝜕𝐴𝑗 

𝜕𝑥𝑖
−
𝜕𝐴𝑗 

𝜕𝑥𝑖

𝜕𝐴𝑖 

𝜕𝑥𝑗

 

𝜕𝐴𝑗

𝜕𝑥𝑖

𝜕𝐴𝑖
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑖
(𝐴𝑗

𝜕𝐴𝑖
𝜕𝑥𝑗
) − 𝐴𝑗

𝜕2𝐴𝑖
𝜕𝑥𝑖𝜕𝑥𝑗

 

A is divergence free, 𝐴𝑗
𝜕2𝐴𝑖

𝜕𝑥𝑖𝜕𝑥𝑗
= 0, 

𝜕𝐴𝑗

𝜕𝑥𝑖

𝜕𝐴𝑖
𝜕𝑥𝑗

=
∂

∂𝑥𝑖
(𝐴𝑗

∂𝐴𝑖
∂𝑥𝑗
) 

For homogeneous turbulence,   

                                                                  
𝜕𝐴𝑗

𝜕𝑥𝑖

𝜕𝐴𝑖

𝜕𝑥𝑗
= 0 

Therefore, for homogeneous turbulence, 

(∇ × 𝐴)𝑘(∇ × 𝐴)𝑘 =
𝜕𝐴𝑗 

𝜕𝑥𝑖

𝜕𝐴𝑗 

𝜕𝑥𝑖
 

In summary, for homogeneous turbulence: −∇ω ⋅ ∇ω = −(∇ × ω)2 = −ω ⋅ ∇ × (∇ × ω)⏟          
𝑃𝑎𝑙𝑖𝑛𝑠𝑡𝑟𝑜𝑝ℎ𝑦
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RHS of Eq. (2a) can be expressed in terms of ℛ𝑖𝑖 and 𝑆𝑖𝑙,𝑖 via extension of identity 

(see derivation Eq. (6) Chapter 4 Part 1): 

 

𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑘
𝑢𝑗 (𝑦) = −

𝜕ℛ𝑖𝑗 (𝑦 − 𝑥)

𝜕𝑟𝑘
     (3) 

 

If 𝑘 = 𝑗 and 𝑗 = 𝑖 

𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑗
𝑢𝑖 (𝑦) = −

𝜕ℛ𝑖𝑖 (𝑦 − 𝑥⏞  

𝑟

)

𝜕𝑟𝑗
     (4) 

 

Taking a derivative with respect to 𝑥𝑙 in Eq. (4) yields 

 

𝜕2𝑢𝑖(𝑥)

𝜕𝑥𝑗𝜕𝑥𝑙
𝑢𝑖 (𝑦) = −

𝜕

𝜕𝑟𝑙
(
𝜕ℛ𝑖𝑖(𝑟)

𝜕𝑟𝑗
)
𝜕𝑟𝑙
𝜕𝑥𝑙⏟
−𝟏

=
𝜕2ℛ𝑖𝑖(𝑟)

𝜕𝑟𝑗𝜕𝑟𝑙
     (5) 

 

 

 

 

Similarly, taking two derivatives with respect to 𝑦𝑗  and 𝑦𝑙  in Eq. (5)  

 

𝜕2𝑢𝑖(𝑥)

𝜕𝑥𝑗𝜕𝑥𝑙

𝜕2𝑢𝑖 (𝑦)

𝜕𝑦𝑗𝜕𝑦𝑙
=
𝜕4ℛ𝑖𝑖(𝑟)

𝜕𝑟𝑗
2𝜕𝑟𝑙

2  

 

 

𝜕(𝑦𝑙 − 𝑥𝑙)

𝜕𝑥𝑙
= −

𝜕𝑥𝑙
𝜕𝑥𝑙

= −𝛿𝑙𝑙

= −1 
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And taking the limit for 𝑟 → 0, 𝑦 → 𝑥  

 

(
𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑙

)

2

=
𝜕4ℛ𝑖𝑖(0)

𝜕𝑟𝑗
2𝜕𝑟𝑙

2      (6) 

 

A similar simplification of the triple velocity correlation can be obtained starting 

from  

𝑆𝑖𝑙,𝑖(𝑟) = 𝑢𝑖(𝑥)𝑢𝑙(𝑥)𝑢𝑖 (𝑦)     (7) 

 

Note that 𝑖𝑙, 𝑖 notation emphasizes fact that second 𝑢𝑖 component is at a different 

location 𝑦 than 𝑢𝑖  𝑢𝑙 at location 𝑥. 

 

Taking a derivative with respect to 𝑥𝑗  in Eq. (7) 

 

𝜕𝑢𝑖(𝑥)𝑢𝑙(𝑥)𝑢𝑖 (𝑦)

𝜕𝑥𝑗
=
𝜕𝑆𝑖𝑙,𝑖
𝜕𝑥𝑗

 

 

𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑗
𝑢𝑙(𝑥)𝑢𝑖 (𝑦) + 𝑢𝑖(𝑥)

𝜕𝑢𝑙(𝑥)

𝜕𝑥𝑗
𝑢𝑖 (𝑦) =

𝜕𝑆𝑖𝑙,𝑖
𝜕𝑟𝑗

𝜕𝑟𝑗
𝜕𝑥𝑗⏟
−𝟏

= −
𝜕𝑆𝑖𝑙,𝑖
𝜕𝑟𝑗

     (8) 

 

 

 

 

𝑟 = 𝑦 − 𝑥 
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Taking an additional derivative with respect to 𝑥𝑙 in Eq. (8) yields 

 

𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑙

𝜕𝑢𝑙(𝑥)

𝜕𝑥𝑗
𝑢𝑖 (𝑦) + 𝑢𝑖(𝑥)

𝜕2𝑢𝑙(𝑥)

𝜕𝑥𝑗𝜕𝑥𝑙
𝑢𝑖 (𝑦) +

𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑗

𝜕𝑢𝑙(𝑥)

𝜕𝑥𝑙
𝑢𝑖 (𝑦)

+
𝜕2𝑢𝑖(𝑥)

𝜕𝑥𝑗𝜕𝑥𝑙
𝑢𝑙(𝑥)𝑢𝑖 (𝑦) = −

𝜕

𝜕𝑟𝑙
(
𝜕𝑆𝑖𝑙,𝑖
𝜕𝑟𝑗
)
𝜕𝑟𝑙
𝜕𝑥𝑙⏟
−𝟏

=
𝜕2𝑆𝑖𝑙,𝑖
𝜕𝑟𝑗𝜕𝑟𝑙

 

 

Where the two crossed terms are zero due to continuity. 

 

Finally, taking a derivative with respect to 𝑦𝑗  in Eq. (9) yields 

 

𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑙

𝜕𝑢𝑙(𝑥)

𝜕𝑥𝑗

𝜕𝑢𝑖 (𝑦)

𝜕𝑦𝑗
+
𝜕2𝑢𝑖(𝑥)

𝜕𝑥𝑗𝜕𝑥𝑙
𝑢𝑙(𝑥)

𝜕𝑢𝑖 (𝑦)

𝜕𝑦𝑗
=
𝜕

𝜕𝑟𝑗
(
𝜕2𝑆𝑖𝑙,𝑖
𝜕𝑟𝑗𝜕𝑟𝑙

)
𝜕𝑟𝑗
𝜕𝑦𝑗⏟
𝟏

 

 

Or equivalently 

 

𝜕3𝑆𝑖𝑙,𝑖

𝜕𝑟𝑗
2𝜕𝑟𝑙

(𝑟) =
𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑙

𝜕𝑢𝑙(𝑥)

𝜕𝑥𝑗

𝜕𝑢𝑖 (𝑦)

𝜕𝑦𝑗
+
𝜕2𝑢𝑖(𝑥)

𝜕𝑥𝑗𝜕𝑥𝑙
𝑢𝑙(𝑥)

𝜕𝑢𝑖 (𝑦)

𝜕𝑦𝑗
     (10) 

 

 

 

 

(9) 



11 
 

Taking the limit for 𝑟 → 0, 𝑦 → 𝑥 

 

𝜕3𝑆𝑖𝑙,𝑖(0)

𝜕𝑟𝑗
2𝜕𝑟𝑙

=
𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑙

𝜕𝑢𝑙(𝑥)

𝜕𝑥𝑗

𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑗
     (11) 

 

Since after using the incompressibility condition again 

 

𝜕2𝑢𝑖(𝑥)

𝜕𝑥𝑗𝜕𝑥𝑙
𝑢𝑙(𝑥)

𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑙
(
𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑗
)
𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑗
𝑢𝑙(𝑥) =

1

2

𝜕

𝜕𝑥𝑙
(
𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑗
)

2

𝑢𝑙(𝑥) 

 

                                  =
1

2
{
𝜕

𝜕𝑥𝑙
[(
𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑗
)

2

𝑢𝑙(𝑥)] − (
𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑗
)

2
𝜕𝑢𝑙(𝑥)

𝜕𝑥𝑙
} 

 

=
1

2

𝜕

𝜕𝑥𝑙
[(
𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑗
)

2

𝑢𝑙(𝑥)] = 0 

 

in homogeneous turbulence. 

 

Substituting Eq. (6) and (11) into Eq. (2a) 

 

𝑑𝜀

𝑑𝑡
= −2𝜈

𝜕3𝑆𝑖𝑙,𝑖(0)

𝜕𝑟𝑗
2𝜕𝑟𝑙

− 2𝜈2
𝜕4ℛ𝑖𝑖(0)

𝜕𝑟𝑗
2𝜕𝑟𝑙

2  
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To simplify the relation even more, recall from Chapter 4: Part 2, Eq. (9) and (11): 

ℛ𝑖𝑗(𝑟) = 𝑢
2 [(𝑓 +

𝑟

2

𝑑𝑓

𝑑𝑟
) 𝛿𝑖𝑗 −

𝑟𝑖𝑟𝑗
𝑟2
𝑟

2
 
𝑑𝑓

𝑑𝑟
] 

𝑆𝑖𝑗𝑙(𝑟) = 𝑢𝑟𝑚𝑠
3 [(𝑘 − 𝑟

𝑑𝑘

𝑑𝑟
)
𝑟𝑖𝑟𝑗𝑟𝑙
2𝑟3

−
𝑘

2
𝛿𝑖𝑗
𝑟𝑙
𝑟
+
1

4𝑟

𝑑(𝑘𝑟2)

𝑑𝑟
(𝛿𝑖𝑙

𝑟𝑗
𝑟
+ 𝛿𝑗𝑙

𝑟𝑖
𝑟
)] 

Using ℛ𝑖𝑗(𝑟) and specifying for 𝑖 = 𝑗 and taking four derivatives of ℛ𝑖𝑖(𝑟), two 

with respect to 𝑟𝑗 and two with respect to 𝑟𝑙 yields 

 

𝜕ℛ𝑖𝑖
𝜕𝑟𝑗

(𝑟) = 𝑢2 (4𝑓′
𝑟𝑗
𝑟
+ 𝑟𝑗𝑓

′′) 

𝜕2ℛ𝑖𝑖

𝜕𝑟𝑗
2 (𝑟) = 𝑢

2 (7𝑓′′ +
8𝑓′

𝑟
+ 𝑟𝑓′′′) 

𝜕3ℛ𝑖𝑖

𝜕𝑟𝑗
2𝜕𝑟𝑙

(𝑟) = 𝑢2 (8𝑓′′
𝑟𝑙
𝑟2
+ 8𝑓′′′

𝑟𝑙
𝑟
+ 𝑟𝑙𝑓

𝐼𝑉 − 8𝑓′
𝑟𝑙
𝑟3
) 

𝜕4ℛ𝑖𝑖

𝜕𝑟𝑗
2𝜕𝑟𝑙

2 (𝑟) = 𝑢
2 [
24

𝑟
𝑓′′′(𝑟) + 11𝑓𝐼𝑉(𝑟) + 𝑟𝑓𝑉(𝑟)] 

 

To evaluate this expression at 𝑟 = 0, use Taylor series of 𝑓′′′(𝑟) 

𝑓′′′(𝑟) = 𝑟𝑓𝐼𝑉(0) +
𝑟3

3
𝑓𝑉𝐼(0) + ⋯ 

Since 𝑓 is an even function of 𝑟. Consequently,  

lim
𝑟→0

𝑓′′′(𝑟)

𝑟
= 𝑓𝐼𝑉(0) 

Such that  

𝜕4ℛ𝑖𝑖

𝜕𝑟𝑗
2𝜕𝑟𝑙

2
(0) = 𝑢2[35𝑓𝐼𝑉(0) + 𝑟𝑓𝑉(0)] 

Similarly, it can be shown that, 

Proof in Appendix A.1 

Chapter 4: Part 3, Eq. (7) 

Chapter 4: Part 3, Eq. (6) 
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𝜕3𝑆𝑖𝑙,𝑖

𝜕𝑟𝑗
2𝜕𝑟𝑙

(0) =
35

2
𝑢𝑟𝑚𝑠
3 𝑘′′′(0) 

 

Note that 𝑘′′′(0) < 0 such that 𝛲𝜀
4 > 0 and represents production of 𝜀 via vortex 

stretching. Thus,  

 

𝑑𝜀

𝑑𝑡
= −35𝑢𝑟𝑚𝑠

3 𝑘′′′(0) − 70𝑢2𝑓𝐼𝑉(0)    (12) 

 

i.e., only depends on two time-dependent scalars, along with 𝑘 (𝑢𝑟𝑚𝑠 = [
2

3
𝑘]1/2) 

and 𝜀. 

 

Using ℛ11(𝑟) = 𝑢
2(𝑥)𝑓(𝑟) = 𝑢(𝑥)𝑢(𝑥 + 𝑟) and 𝑆111(𝑟) = 𝑢𝑟𝑚𝑠

3 𝑘(𝑟) =

𝑢(𝑥)𝑢(𝑥)𝑢(𝑥 + 𝑟): 

 

(𝑢𝑥𝑥)
2 = 𝑢𝑟𝑚𝑠

2 𝑓𝐼𝑉(0)    (13) 

 

(𝑢𝑥)
3 = 𝑢𝑟𝑚𝑠

3 𝑘′′′(0)    (14) 

 

The proof for Eq. (13) is done using both scalar and vector approaches, as per 

Chapter 4 Part 3 for the derivation of 𝑢2𝑓′′(0) = −𝑢𝑥
2; and the proof for Eq. (14) 

is done using both scalar and tensor approaches. 

 

 

 

Proof in Appendix A.3 

 

Proof in Appendix A.4 

Proof in Appendix A.2 
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The skewness of 𝑢𝑥 is defined as  

 

𝑆𝑘 = −
(𝑢𝑥)

3

(𝑢𝑥)
2
3/2
     (15) 

And found to be positive due minus sign on RHS. 

 

𝑆𝑘(𝑢𝑥)
2
3/2
= −(𝑢𝑥)

3 = −𝑢𝑟𝑚𝑠
3 𝑘′′′(0) 

 

 

(𝑢𝑥)
2 = −𝑢2𝑓′′(0) 

where  

𝑓′′(0) =
𝜀

−15𝜈𝑢2
 

 

 

Therefore 

(𝑢𝑥)
2 =

𝜀

15𝜈
=
15𝜈𝑢2

𝜆𝑔
2

1

15𝜈
=
𝑢2

𝜆𝑔
2
     (16) 

 

Using Eq. (14) and (16), it follows that Eq. (15) becomes, 

 

𝑘′′′(0) = −
𝑆𝑘

𝜆𝑔
3 = −𝑆𝑘 (

𝜀

15𝑢𝑟𝑚𝑠
2 𝜈

)

3
2
     (17) 

Palenstrophy coefficient of 𝑢𝑥 can be defined as  

𝑢2 = 𝑢𝑟𝑚𝑠
2  

Chapter 4: Part 3 

See Appendix A.5 

 

See Appendix A.5 and Eq. (2a) and (2b) 
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𝐺 =
𝑢2 (𝑢𝑥𝑥)

2

(𝑢𝑥)
2
2  

Eqs. (13) and (16) show that 

 

𝑓𝐼𝑉(0) =
𝐺

𝜆𝑔
4
= 𝐺 (

𝜀

15𝑢𝑟𝑚𝑠
2 𝜈

)
2

     (18) 

 

Substituting Eqs. (17) and (18) into Eq. (12), gives the 𝜀 equation for homogeneous 

isotropic turbulence in the standard form 

𝑑𝜀

𝑑𝑡
= 𝑆𝑘

∗𝑅𝑇
1/2 𝜀

2

𝑘
− 𝐺∗

𝜀2

𝑘
     (19) 

Where: 

𝑆𝐾
∗ =

7

3√15
𝑆𝑘 

𝐺∗ =
7

15
𝐺 

𝑅𝑇 =
𝑘2

𝜈𝜀
 

This equation, along with Eq. (1) represent two equations in the four unknowns 𝑘, 

𝜀, 𝑆𝐾
∗  and 𝐺∗ , all of which are 𝑓(𝑡), i.e., not closed.   RHS term 1 = gain and term 2 

= loss. 

 

Initial state needs to be specified, i.e., at 𝑡 = 0, 𝑘0, 𝜀0, 𝑆𝐾0
∗ , and 𝐺0

∗. Alternatively, 

using Eqs. (17) and (18), initial forms for 𝑓(𝑟) and 𝑘(𝑟) can be specified, from which 

𝑆𝑘0  and 𝐺0 can be obtained.  

𝑑𝜀

𝑑𝑡
= 𝛲𝜀

4 − 𝛶𝜀 =   (2𝑎) 

𝛲𝜀
4 = 𝑆𝑘

∗𝑅𝑇

1
2
𝜀2

𝑘
 

𝛶𝜀 = 𝐺
∗
𝜀2

𝑘
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Turbulent Reynolds Number (also see Chapter 4 Part 3 pg. 14 where 𝑅𝑒𝐿 = 𝑅𝑇) 

 

𝑅𝑇 =
𝑘2

𝜈𝜀
=                            =

√𝑘𝑘3/2/𝜀

𝜈
 

 

Velocity scale 𝑢 = √𝑘 and length scale 𝑙 = 𝑘3/2/𝜀, where 𝑙 is related to the eddy 

turnover time: 

𝑇𝑡 =
𝑘

𝜀
 

Which shows that, 

1

𝑇𝑡
=
𝜀

𝑘
= −

1

𝑘

𝑑𝑘

𝑑𝑡
 

And can be interpreted as the fractional rate of energy dissipation and 𝑇𝑡 = time 

scale of TKE dissipation.  

 

Alternatively,  

𝑅𝑇 = (𝑘/𝜀)/(𝜈/𝑘) = ratio of turbulent and viscous time scales = 𝑇𝑡/𝑇𝜇, where  

𝑇𝜇 = 𝜈/𝑘 = time scale of viscous dissipation 

 

Large 𝑅𝑇 = very energetic turbulence and far from being dissipated, i.e., 𝑇𝜇 ≪ 𝑇𝑡. 

 

Small 𝑅𝑇 = energy in dissipation range since rate flow energy drops = rate at 

which energy is dissipated = weak turbulence, i.e., 𝑇𝜇 ≫ 𝑇𝑡. 

 

Therefore, 𝑅𝑇 → 0 during decay of isotropic turbulence 

 

Since 𝑅𝑇 appears in the stretching term of 𝑑𝜀/𝑑𝑡, the equation indicates that 

stretching is important for energetic turbulence vs. dissipative range.  

 

 

 

turbulent Re 
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Another useful turbulence Reynolds number is, 

 

𝑅𝜆 =
𝜆𝑢𝑟𝑚𝑠
𝜈

 

Where 𝜆 = 𝜆𝑔 or 𝜆𝑓. 

Using  

𝜀 =
30𝜈𝑢2

𝜆𝑓
2 =

15𝜈𝑢2

𝜆𝑔
2  

 

it is possible to obtain the relationship between 𝑅𝑇 and 𝑅𝜆 

 

𝑅𝑇 =
𝑘2

𝜈𝜀
=
𝑘2𝜆𝑔

2

15𝜈2𝑢2
=
9𝑢2

2
𝜆𝑔
2

60𝜈2𝑢2
=
3

20
𝑅𝜆
2 

 

𝑅𝑇 or 𝑅𝜆 can be used to characterize degree of turbulence for homogeneous flow:  

• 𝑅𝜆 > 100 turbulence not weak 

• 𝑅𝜆 > 1000 strong turbulence 

• 𝑅𝜆 < 1 very weak turbulence, final period decay before it relaminarizes 

 

Interest is in decay process from initial state 𝑅𝑇 ≫ 1 to 𝑅𝑇 < 1. 

 

 

 

 

 

𝑘 =
3

2
𝑢2 
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Eqs. (1) and (19) can be combined into a single equation for 𝑅𝑇. Starting from  

 

𝑅𝑇 =
𝑘2

𝜈𝜀
 

𝑑𝑅𝑇
𝑑𝑡
=
2𝑘

𝜈𝜀

𝑑𝑘

𝑑𝑡
−
𝑘2

𝜈𝜀2
𝑑𝜀

𝑑𝑡
  

 

Substituting Eqs. (1) and (19) 

 
𝑑𝑅𝑇
𝑑𝑡
= −

2𝑘

𝜈
− 𝑆𝑘

∗√𝑅𝑇
𝑘

𝜈
+ 𝐺∗

𝑘

𝜈
     (20) 

 

Since 𝑘 and 𝜀 are always positive, a dimensionless time can be defined as (𝑡′ =
𝜀

𝑘
𝜏) 

 

𝜏(𝑡) = ∫
𝜀(𝑡′)

𝑘(𝑡′)
𝑑𝑡′

𝑡

0

     (21) 

 

Where it is assumed that 𝜏(0) = 0. Note that 𝜏 → ∞ as 𝑡 → ∞. This can be 

integrated exactly using Eq. (1), to obtain, 

 

𝜏(𝑡) = ln(𝑘(0)/𝑘(𝑡)) 

 

It is also possible to obtain the inverse mapping of 𝜏 to 𝑡. 

 

Defining  

 

𝑅𝑇
∗ (𝜏) = 𝑅𝑇(𝑡(𝜏)) 

 

Or equivalently 

 

𝑅𝑇
∗ (𝜏(𝑡)) = 𝑅𝑇(𝑡) 
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Such that, 

 

𝑑𝑅𝑇
𝑑𝑡
=
𝑑𝑅𝑇

∗

𝑑𝑡

𝑑𝜏

𝑑𝑡
=
𝜀

𝑘

𝑑𝑅𝑇
∗

𝑑𝜏
    (22) 

 

using Eq. (21).  

 

Substituting Eq. (22) into (20) yields 

 

𝑑𝑅𝑇
∗

𝑑𝜏
= 𝑅𝑇

∗ (𝐺∗ − 2 − 𝑆𝑘
∗√𝑅𝑇

∗ )     (23) 

 

Thus, an alternative to solving the decay problem via Eqs. (1) and (19) is the option 

of solving Eq. (23).  

 

𝐺∗ and 𝑆𝑘
∗ are 𝑓(𝑡) such that represents one equation in three unknowns, i.e., 

additional assumptions are required.  

 

No matter which way the decay problem is approached, solving for k and 𝜀 requires 

additional assumptions so that a closed system of equations can be deduced. 

 

 

 

 

 

 

See Appendix A.6 
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Appendix A  

A.1 
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A.2 
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A.3 

Scalar approach 

Define 

ℛ11(𝑟) = 𝑢
2(𝑥)𝑓(𝑟) = 𝑢(𝑥)𝑢(𝑥′) = 𝑢(𝑥)𝑢(𝑥 + 𝑟) 

 

𝑥 + 𝑟 = 𝑥′ 

Where 𝑥, 𝑟, 𝑥′ represent scalar quantities and 𝑥, 𝑟 are two independent variables.  

 

𝑢2(𝑥)𝑓(𝑟) = 𝑢(𝑥)𝑢(𝑥 + 𝑟) 

 

Taking two derivatives with respect to 𝑟, we have shown that (Chapter 4 Part 3) 

 

𝑢2(𝑥)𝑓′′(𝑟) = 𝑢(𝑥)
𝜕2𝑢(𝑥′)

𝜕𝑥′2
 

 

Where the following rules were used 

𝜕𝑓

𝜕𝑟
= 𝑓′ 

𝜕𝑥′

𝜕𝑟
= 1 

Taking two additional derivatives with respect to 𝑟 yields 

𝑢2(𝑥)𝑓′′′(𝑟) = 𝑢(𝑥)
𝜕

𝜕𝑟
(
𝜕2𝑢(𝑥′)

𝜕𝑥′2
) 

= 𝑢(𝑥)
𝜕

𝜕𝑥′
(
𝜕2𝑢(𝑥′)

𝜕𝑥′2
)
𝜕𝑥′

𝜕𝑟⏟
1

= 𝑢(𝑥)
𝜕3𝑢(𝑥′)

𝜕𝑥′3
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𝑢2(𝑥)𝑓𝐼𝑉(𝑟) = 𝑢(𝑥)
𝜕

𝜕𝑟
(
𝜕3𝑢(𝑥′)

𝜕𝑥′3
) 

= 𝑢(𝑥)
𝜕

𝜕𝑥′
(
𝜕3𝑢(𝑥′)

𝜕𝑥′3
)
𝜕𝑥′

𝜕𝑟⏟
1

= 𝑢(𝑥)
𝜕4𝑢(𝑥′)

𝜕𝑥′4
 

Therefore 

𝑢2(𝑥)𝑓𝐼𝑉(𝑟) = 𝑢(𝑥)
𝜕4𝑢(𝑥′)

𝜕𝑥′4
 

Taking the limit for 𝑟 → 0, 𝑥′ → 𝑥 

𝑢2(𝑥)𝑓𝐼𝑉(0) = 𝑢(𝑥)
𝜕4𝑢(𝑥)

𝜕𝑥4
 

Focus on the RHS 

𝑢(𝑥)
𝜕4𝑢(𝑥)

𝜕𝑥4
=
𝜕

𝜕𝑥
[𝑢(𝑥)

𝜕3𝑢(𝑥)

𝜕𝑥3
] −
𝜕𝑢(𝑥)

𝜕𝑥

𝜕3𝑢(𝑥)

𝜕𝑥3
 

Where the first term on the RHS is zero due to hypothesis of homogeneous 

turbulence (gradient of fluctuating quantity). 

 

Apply same step one more time 

−
𝜕𝑢(𝑥)

𝜕𝑥

𝜕3𝑢(𝑥)

𝜕𝑥3
= −

𝜕

𝜕𝑥
[
𝜕𝑢(𝑥)

𝜕𝑥

𝜕2𝑢(𝑥)

𝜕𝑥2
] +
𝜕2𝑢(𝑥)

𝜕𝑥2
𝜕2𝑢(𝑥)

𝜕𝑥2
 

 

Therefore 

 𝑢2(𝑥)𝑓𝐼𝑉(0) = 𝑢1(𝑥)
𝜕4𝑢(𝑥)

𝜕𝑥4
=
𝜕2𝑢(𝑥)

𝜕𝑥2
𝜕2𝑢(𝑥)

𝜕𝑥2
 

𝑢2(𝑥)𝑓𝐼𝑉(0) =
𝜕2𝑢(𝑥)

𝜕𝑥2
𝜕2𝑢(𝑥)

𝜕𝑥2
= 𝑢,𝑥𝑥

2  
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Vector approach 

ℛ11(𝑟) = 𝑢
2𝑓(𝑟𝑒1̂) = 𝑢1(𝑥)𝑢1(𝑥′) = 𝑢1(𝑥)𝑢1(𝑥 + 𝑟𝑒1̂) 

 

𝑦 = 𝑥 + 𝑟 

where  

𝑟 = 𝑟𝑒1̂ 

And  

𝑦𝑙 = 𝑥𝑙 + 𝑟𝑙 

 

Taking a first derivative with respect to 𝑟 

𝑢2𝑓′(𝑟) = 𝑢(𝑥)
𝜕𝑢(𝑥 + 𝑟𝑒1̂)

𝜕𝑟
+
𝜕𝑢(𝑥)

𝜕𝑟
𝑢(𝑥 + 𝑟𝑒1̂) 

 

= 𝑢(𝑥)
𝜕𝑢(𝑥 + 𝑟𝑒1̂)

𝜕𝑦𝑙

𝜕𝑦𝑙
𝜕𝑟
+
𝜕𝑢(𝑥)

𝜕𝑥𝑙

𝜕𝑥𝑙
𝜕𝑟⏟
0

𝑢(𝑥 + 𝑟𝑒1̂) 

 

= 𝑢(𝑥)
𝜕𝑢(𝑥 + 𝑟𝑒1̂)

𝜕𝑦𝑙

𝜕𝑟𝑙
𝜕𝑟
= 𝑢(𝑥)

𝜕𝑢(𝑥 + 𝑟𝑒1̂)

𝜕𝑦𝑙

𝑟

𝑟𝑙
 

 

𝑢2𝑓′(𝑟) = 𝑢(𝑥)
𝜕𝑢(𝑥 + 𝑟𝑒1̂)

𝜕𝑦𝑙

𝑟

𝑟𝑙
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Taking a second derivative with respect to 𝑟 

𝑢2𝑓′′(𝑟) =
𝜕

𝜕𝑟
[𝑢(𝑥)

𝜕𝑢(𝑥 + 𝑟𝑒1̂)

𝜕𝑦𝑙

𝑟

𝑟𝑙
] 

=
𝜕𝑢(𝑥)

𝜕𝑟⏟  
0

𝜕𝑢(𝑥 + 𝑟𝑒1̂)

𝜕𝑦𝑙

𝑟

𝑟𝑙
+ 𝑢(𝑥)

𝜕

𝜕𝑟
(
𝜕𝑢(𝑥 + 𝑟𝑒1̂)

𝜕𝑦𝑙
)
𝑟

𝑟𝑙
 𝑢(𝑥)

𝜕𝑢(𝑥 + 𝑟𝑒1̂)

𝜕𝑦𝑙

𝜕

𝜕𝑟
(
𝑟

𝑟𝑙
)

⏟    
0

 

𝜕

𝜕𝑟
(
𝑟

𝑟𝑙
) =

1

𝑟𝑙
−
1

𝑟

𝜕𝑟𝑙
𝜕𝑟
=
1

𝑟𝑙
−
1

𝑟

𝑟

𝑟𝑙
= 0 

 

𝑢2𝑓′′(𝑟) = 𝑢(𝑥)
𝜕2𝑢(𝑥 + 𝑟𝑒1̂)

𝜕𝑦𝑙
2   

Taking a third derivative with respect to 𝑟 

𝑢2𝑓′′′(𝑟) =
𝜕

𝜕𝑟
[𝑢(𝑥)

𝜕2𝑢(𝑥 + 𝑟𝑒1̂)

𝜕𝑦𝑙
2 ] 

=
𝜕𝑢(𝑥)

𝜕𝑟⏟  
0

𝜕2𝑢(𝑥 + 𝑟𝑒1̂)

𝜕𝑦𝑙
2 +

𝜕

𝜕𝑦𝑙
[𝑢(𝑥)

𝜕2𝑢(𝑥 + 𝑟𝑒1̂)

𝜕𝑦𝑙
2 ]

𝜕𝑦𝑙
𝜕𝑟

 

𝑢2𝑓′′′(𝑟) = 𝑢(𝑥)
𝜕3𝑢(𝑥 + 𝑟𝑒1̂)

𝜕𝑦𝑙
3

𝑟

𝑟𝑙
 

Taking a fourth derivative with respect to 𝑟 (like the second derivative) yields 

𝑢2𝑓𝐼𝑉(𝑟) = 𝑢(𝑥)
𝜕4𝑢(𝑥 + 𝑟𝑒1̂)

𝜕𝑦𝑙
4  

Taking the limit for 𝑟 → 0, 𝑦𝑙 → 𝑥𝑙 

𝑢2𝑓𝐼𝑉(0) = 𝑢(𝑥)
𝜕4𝑢(𝑥)

𝜕𝑥𝑙
4  

And applying homogeneity follows same steps as scalar proof.  
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A.4 

Scalar approach 

𝑆111(𝑟𝑒1̂ = 𝑟) = 𝑢𝑟𝑚𝑠
3 𝑘(𝑟) 

𝑆111(𝑟) = 𝑢(𝑥)𝑢(𝑥)𝑢(𝑥 + 𝑟) 

 

𝑥 + 𝑟 = 𝑥′ 

Where 𝑥, 𝑟, 𝑥′ represent scalar quantities and 𝑥, 𝑟 are two independent variables.  

 

𝑢𝑟𝑚𝑠
3 𝑘(𝑟) = 𝑢(𝑥)𝑢(𝑥)𝑢(𝑥 + 𝑟) 

 

Taking three derivatives with respect to 𝑟 yields (same procedure as 𝑓′′′(𝑟)) 

 

𝑢𝑟𝑚𝑠
3 𝑘′′′(𝑟) = 𝑢(𝑥)𝑢(𝑥)

𝜕3𝑢(𝑥′)

𝜕𝑥′3
 

 

Taking the limit for 𝑟 → 0, 𝑥′ → 𝑥 

𝑢𝑟𝑚𝑠
3 𝑘′′′(0) = 𝑢(𝑥)𝑢(𝑥)

𝜕3𝑢(𝑥)

𝜕𝑥3
 

 

Focus on the RHS  

 

 𝑢(𝑥)𝑢(𝑥)
𝜕3𝑢(𝑥)

𝜕𝑥3
=
𝜕

𝜕𝑥
[𝑢(𝑥)𝑢(𝑥)

𝜕2𝑢(𝑥)

𝜕𝑥2
] − 2

𝜕𝑢(𝑥)

𝜕𝑥
𝑢(𝑥)

𝜕2𝑢(𝑥)

𝜕𝑥2
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Where the first term on the RHS is zero due to hypothesis of homogeneous 

turbulence (gradient of fluctuating quantity). 

 

𝜕

𝜕𝑥
[
𝜕𝑢(𝑥)

𝜕𝑥
𝑢(𝑥)

𝜕𝑢(𝑥)

𝜕𝑥
]

=
𝜕2𝑢(𝑥)

𝜕𝑥2
𝑢(𝑥)

𝜕𝑢(𝑥)

𝜕𝑥
+
𝜕𝑢(𝑥)

𝜕𝑥

𝜕𝑢(𝑥)

𝜕𝑥

𝜕𝑢(𝑥)

𝜕𝑥
+
𝜕𝑢(𝑥)

𝜕𝑥
𝑢(𝑥)

𝜕2𝑢(𝑥)

𝜕𝑥2

= 2
𝜕𝑢(𝑥)

𝜕𝑥
𝑢(𝑥)

𝜕2𝑢(𝑥)

𝜕𝑥2
+
𝜕𝑢(𝑥)

𝜕𝑥

𝜕𝑢(𝑥)

𝜕𝑥

𝜕𝑢(𝑥)

𝜕𝑥
 

Therefore, multiplying the last relation by -1 and isolating the first term on the 

RHS 

 −2
𝜕𝑢(𝑥)

𝜕𝑥
𝑢(𝑥)

𝜕2𝑢(𝑥)

𝜕𝑥2
= −

𝜕

𝜕𝑥
[
𝜕𝑢(𝑥)

𝜕𝑥
𝑢(𝑥)

𝜕𝑢(𝑥)

𝜕𝑥
] +
𝜕𝑢(𝑥)

𝜕𝑥

𝜕𝑢(𝑥)

𝜕𝑥

𝜕𝑢(𝑥)

𝜕𝑥
 

Or equivalently 

𝑢(𝑥)𝑢(𝑥)
𝜕3𝑢(𝑥)

𝜕𝑥3
=
𝜕𝑢(𝑥)

𝜕𝑥

𝜕𝑢(𝑥)

𝜕𝑥

𝜕𝑢(𝑥)

𝜕𝑥
= 𝑢𝑟𝑚𝑠

3 𝑘′′′(0) 

 

𝑢𝑟𝑚𝑠
3 𝑘′′′(0) = 𝑢𝑥

3 
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6th order tensor approach 
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ℋ𝑖𝑗𝑘𝑝𝑞𝑟  is a sixth order tensor, 

ℋ𝑖𝑗𝑘𝑝𝑞𝑟 ≡
𝜕𝑢𝑖
𝜕𝑥𝑝

𝜕𝑢𝑗
𝜕𝑥𝑞

𝜕𝑢𝑘
𝜕𝑥𝑟

 

And we have shown that, 

ℋ111111 =
𝜕𝑢1
𝜕𝑥1

𝜕𝑢1
𝜕𝑥1

𝜕𝑢1
𝜕𝑥1

= (𝑢𝑥)
3 = 𝑎1 

And 

ℋ𝑖𝑖𝑘𝑘𝑞𝑞 =
𝜕𝑢𝑖
𝜕𝑥𝑘

𝜕𝑢𝑖
𝜕𝑥𝑞

𝜕𝑢𝑘
𝜕𝑥𝑞

=
35

2
𝑎1 

If we make the following change of indices: 𝑘 = 𝑙 and 𝑞 = 𝑗, we obtain, 

ℋ𝑖𝑖𝑙𝑙𝑗𝑗 =
𝜕𝑢𝑖
𝜕𝑥𝑙

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑙
𝜕𝑥𝑗

=
35

2
𝑎1 

And comparison with Eq. (11), results in, 

ℋ𝑖𝑖𝑙𝑙𝑗𝑗 =
𝜕3𝑆𝑖𝑙,𝑖

𝜕𝑟𝑗
2𝜕𝑟𝑙

(0) 

Similarly,  

ℋ111111 =
𝜕3𝑆11,1

𝜕𝑟1
3
(0) =

𝜕𝑢1(𝑥)

𝜕𝑥1

𝜕𝑢1(𝑥)

𝜕𝑥1

𝜕𝑢1(𝑥)

𝜕𝑥1
= 𝑢𝑥

3 
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A.5 

Definition Skewness and Palinstrophy (related to Palenstrophy?) 

 

 

Davidson, Turbulence, Chapter 10, Two-Dimensional Turbulence, 2004. 
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A.5 

 

 


