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Chapter 5: Energy Decay in Isotropic Turbulence 

Part 1: Energy Decay Highlights 

Decay process of TKE by viscous dissipation is ideally studied for 
homogeneous isotropic turbulence since it contains all essential physics while 
yielding equations in their simplest forms. The results are used in many 
turbulence models, which are applied to general flows.  

𝑑𝑘

𝑑𝑡
= −𝜀     (1) 

𝑑𝜀

𝑑𝑡
= 𝛲𝜀

4 − 𝛶𝜀 = −2𝜈
𝜕𝑢𝑖
𝜕𝑥𝑙

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑙
𝜕𝑥𝑗

− 2𝜈2 (
𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑙

)

2

     (2𝑎) 

𝑑𝜀̃

𝑑𝑡
= 𝜈𝛲𝜁

4 − 𝜈𝛶𝜁 = +2𝜈𝜔𝑖𝜔𝑘
𝜕𝑢𝑖
𝜕𝑥𝑘

− 2𝜈2
𝜕𝜔𝑖
𝜕𝑥𝑘

𝜕𝜔𝑖
𝜕𝑥𝑘

     (2𝑏) 

 

𝛲𝜀
4 and 𝜈𝛲𝜁

4:  effects of vortex stretching > 0 ∴ represents production of 𝜀. 

−𝛶𝜀  and −𝜈𝛶𝜁: effects of dissipation of dissipation. 
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Using definitions ℛ𝑖𝑗(𝑟) and 𝑆𝑖𝑙,𝑖(𝑟): 
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Recall Chapter 4 Part 2: 
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i.e., only depends on two time-dependent scalars, along with 𝑘 (𝑢𝑟𝑚𝑠 = [
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The skewness of 𝑢𝑥 is defined (positive due minus sign on RHS): 
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Palenstrophy coefficient of 𝑢𝑥 can be defined as 
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Using: 

ℛ11(𝑟) = 𝑢(𝑥)𝑢(𝑥 + 𝑟) 

𝑆111(𝑟) = 𝑢(𝑥)𝑢(𝑥)𝑢(𝑥 + 𝑟) 

 



3 
 

𝑑𝜀

𝑑𝑡
= 𝑆𝑘

∗𝑅𝑇
1/2 𝜀

2

𝑘
− 𝐺∗

𝜀2

𝑘
     (19) 

𝑆𝐾
∗ =

7

3√15
𝑆𝑘 

𝐺∗ =
7

15
𝐺 

𝑅𝑇 =
𝑘2

𝜈𝜀
 

This equation, along with Eq. (1) represent two equations in the four unknowns 𝑘, 

𝜀, 𝑆𝐾
∗  and 𝐺∗ , all of which are 𝑓(𝑡), i.e., not closed.   RHS term 1 = gain and term 2 

= loss.  Initial state needs to be specified, i.e., at 𝑡 = 0, 𝑘0, 𝜀0, 𝑆𝐾0
∗ , and 𝐺0

∗. 

Alternatively, using Eqs. (17) and (18), initial forms for 𝑓(𝑟) and 𝑘(𝑟) can be 

specified, from which 𝑆𝑘0 and 𝐺0 can be obtained.  

 

Turbulent Reynolds Number (𝑅𝑒𝐿 = 𝑅𝑇) 
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𝜏(𝑡) = ln(𝑘(0)/𝑘(𝑡)) 

𝑑𝑅𝑇
∗

𝑑𝜏
= 𝑅𝑇

∗ (𝐺∗ − 2 − 𝑆𝑘
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Thus, an alternative to solving the decay problem via Eqs. (1) and (19) is the option 

of solving Eq. (23).  𝐺∗ and 𝑆𝑘
∗ are 𝑓(𝑡) such that represents one equation in three 

unknowns, i.e., additional assumptions are required.  

No matter which way the decay problem is approached, solving for k and 𝜀 requires 

additional assumptions so that a closed system of equations can be deduced. 

 

turbulent Re 


