Chapter 4: Turbulence at Small Scales

Part 7: Analysis of Kolmogorov spectra

(1) 1D Dissipation spectra
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Fig. 6.14. Measurements of one-dimensional longitudinal velocity spectra (symbols),
and model spectra (Eq. (6.246)) for R, = 30,70, 130,300, 600, and 1,500 (lines). The
experimental data are taken from Saddoughi and Veeravalli (1994) where references
to the various experiments are given. For each experiment, the final number in the

key is the value of R;.
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Scaled Kolmogorov spectrum log-log plot®: ¢, (k1) = Eq1 (k1) /(ev®)* vs. k41

Universal f (k1) for high Re and for k; > Kkg;: universal equilibrium range.

Data lie on a single curve for k1 > 0.1: exponential decay.

Power law for k;1 < 0.1 and extent of region increases with R;: inertial subrange

(k1) ™3,

The model spectrum is accurate.

1 See Chapter 4 Part 4 for universal equilibrium and inertial subrange scaling.
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Fig. 6.15. Compensated one-dimensional velocity spectra. Measurements of Comte-
Bellot and Corrsin (1971) in grid turbulence at R; = 60 (triangles), and of Saddoughi
and Veeravalli (1994) in a turbulent boundary layer at R; = 600 (circles). Solid
line, model spectrum Eq. (6.246) for R; = 600; dashed line, exponential spectrum
Eq. (6.253); dot—dashed line, Pao’s spectrum, Eq. (6.254).

213,53 vs. kym

Scaled compensated spectrum log-linear plot?: W;; = E;,(k;)e”
Emphasizes dissipation range.

For k;n > 0.1, agreement different flows support universality of large k spectra.
Straight line behavior for k;n > 0.3 indicates exponential decay for highest k.

Model spectrum represents the data accurately.

2 A log-linear (sometimes log-lin) plot has the logarithmic scale on the y-axis, and
a linear scale on the x-axis; a linear—log (sometimes lin—log) is the opposite. The
naming is output—input (y—x), the opposite order from (X, y).
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Alternative models for f;, (kn) (Pope Ex. 6.33):
fo(kn) = exp(=Pokn)

fo (k) = exp [— ; C(Kn)4/3]

Not as good as model spectrum.
3D Dissipative spectrum
£=2 vfooo K2E (k,t)dx  (m2/s3)

D(x) = 2vk?E(k) (m?/sxm?xm3/s?=m3/s3)

Cumulative dissipation

K
E(0.6) Ej D(k")dk'
0

2.0
1.8

1.6
D)

no1.2
1.0
0,08
€ 06
0.4

0.2 /
00/ | ] - -
00 02 04 06 08 1.0 1.2 14 1.6
Kn

50 20 10 ' 5 Ef_
H
Fig. 6.16. The dissipation spectrum (solid line) and cumulative dissipation {dashed

line) corresponding to the model spectrum Eq. (6.246) for R, = 600. f = 2n/k is the
wavelength corresponding to wavenumber x.



Table 6.1. Characteristic wavenumbers and lengthscales of the dissipation
spectrum (based on the model spectrum Eq. (6.246) at R; = 600)

Defining wavenumbers kn  £/n
Peak of dissipation spectrum 0.26 24
gk = 0.1e 0.10 63
T (.5¢ 0.34 18
Ejow) = 0.9¢ 0.73 8.6

Peak of dissipation spectrum kn = 0.26, corresponding to [/n = 24, while the

centroid (where £ ) = %e) occurs at kn = 0.34, corresponding to [/n = 18.

Thus, most of € occurs for 0.1 < kn < 0.75, or 60 > [/n > 8 which is > 7.

Therefore, dissipative motions scale with 7, but are not equal ton. The boundary
between the inertial subrange and the dissipation range is taken to be [,; = 601.
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Fig. 6.1. Eddy sizes £ (on a logarithmic scale) at very high Reynolds number, showing
the various lengthscales and ranges.



(2) 1D Spectra Inertial Subrange®
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Fig. 6.17. Compensated one-dimensional spectra measured in a turbulent boundary
layer at R; =~ 1,450. Solid lines, experimental data Saddoughi and Veeravalli {1994);
dashed lines, model spectra from Eq. (6.246); long dashed lines, C, and C| correspond-
ing to Kolmogorov inertial-range spectra. (For E;|, Ez and Ex the model spectra are
for R; = 1,450, 690, and 910, respectively, corresponding to the measured values of
{ui}, (u3), and (u3).)

Second Kolmogorov hypothesis predicts a -5/3 spectrum in the inertial subrange,
which is best examined using a linear-log compensated spectrum plot.

Lpll = Ell(Kl)/82/3K1—5/3 = Cl = 0.4‘9

Data is within 20% of the predicted value over two decades of k, over which range
of x,°/3 increases by a factor of 2000.

K = 1073 - (11)%3 = 107°
- 2.2-1072/107>~2000
ki =10"1 > (,;n)5/3 =2.2-1072

Fori;n > 2% 1073, E,, = E33, i.e., “locally” isotropic behavior.

3 Also see discussion Chapter 4, Part 6, pg.18.
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(3) 3D Spectra energy-containing range

Examination of E(x) in the energy containing range unlike universal equilibrium
range is a function of flow at hand.
E(k) is better than E;;(k;) since E;;(x;) only depends on |k| > k;. E(k) is

difficult to obtain from E,; (k) as requires differentiation: E (k) = %K3 % E dg:]-

Appropriate scales for normalization are the turbulent kinetic energy k and L,;.

For isotropic turbulence:

k = jooE(K)dK
0

©EM) g & k=2u2
fo —dic=——kL;; (Chapter 4 Part5A.8;k=-u?)
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Fig. 6.18. The energy-spectrum function in isotropic turbulence normalized by &

and Ly;. Symbols, grid-turbulence experiments of Comte-Bellot and Corrsin (1971):
O,R; = 71:0,R; = 65; A, R; = 61, Lines, model spectrum, Eq. (6.246): solid, po = 2,

R; = 60; dashed, po = 2, R; = 1,000; dot—dashed pp = 4, R; = 60,

Model spectrum accurate and kL;; scaling small changes with Re. po =4 vs. 2
mainly affects small kL;; and show 10% difference peak value, which is likely within
Up. Note po =2 is used in model spectrum, although po = 4 appears better overall
fit the data.*

4 See discussion Chapter 4 Part 6 pg. 4.
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Fig. 6.19. The cumulative turbulent kinetic energy ki, against wavenumber x and
- wavelength £ = 27/x for the model spectrum.

The cumulative kinetic energy is given by: k) = fOKE(K’)dk'

Table 6.2. Characteristic wavenumbers and lengthscales of the energy
spectrum ( based on the model spectrum Eq. (6.246) at R; = 600)

Defining wavenumber kL, £/Ly
Peak of energy spectrum 1.3 5.0
ks = 0.1k 1.0 6.1
ko = 0.5k . 3.9 1.6
k(U,NJ = USk 15 042
ko) = 0.9k 38 0.16

The centroid of the spectrum is at kL,; = 4 (LL ~ 1.5) and 80% of the energy is
11

contained in motions of length scale %Ln <l < 6L1;. On this basis Pope takes the
length scales characterizing the energy-containing motions to be [, = L,; and lg; =
%Ln- However, it will be shown later that [, = 2L, IS a more appropriate choice
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Fig. 6.1. Eddy sizes £ (on a logarithmic scale) at very high Reynolds number, showing
the various lengthscales and ranges.



(4) 3D Spectra Effects of the Reynolds number
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Fig. 6.20. The model spectrum for various Reynolds numbers, scaled by (a) k and L,
and (b) Kolmogorov scales.

(a): model spectrum normalized by k and L, for a range of Re shows that energy-
containing ranges of the spectra (0.1 < kL,; < 10) are very similar, whereas for
increasing R;, the extent of the -5/3 region increases, and the exponential decay
region moves to higher values of kL.

(b): same spectra normalized by k7, shows dissipation ranges (k1 > 0.1) are very
similar, whereas the -5/3 region and the energy range move to lower values of kn
for increasing R;.
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Fig. 6.21. Model energy and dissipation spectra normalized by the Kolmogorov scales
at R; = 1,000 (solid lines) and R; = 30 (dashed lines). (Note the scaling of E(x).)

Contrast between high Re and low Re energy and dissipation spectra.



The energy in the wave number range (x4, kj)

Kp Kp
ke ne,) = j E(k)dk = f kE (r)dInk
K

a Ka
High Re spectrum contains more energy.

Low Re, energy and dissipation spectra overlap (no clear separation of scales),
whereas for high Re there is a significant separation of scales.
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Fig. 6.22. The fraction of the energy at wavenumbers greater than k  (k..)/k) and
the fraction of the dissipation at wavenumbers less than x  (ggq,)/¢) for the model
spectrum at R; = 1,000 (solid line) and at R; = 30 (dashed line). For the two Reynolds
numbers, the horizontal bars identify the ‘decade of wavenumbers of most overlap’
between the energy and dissipation spectra.

Quantification of the overlap between the energy and dissipation spectra.

k x,0)/k = fraction of energy due to wave number > k
E(0,x)/ € = fraction of dissipation due to wave number < k

If there were a complete separation of scales then, with increasing k, k(. «)/k
would decrease to zero before g /¢ rises from zero.

For large R, small overlap, but large overlap for small R;.
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Fig. 6.23. The fraction f; of the energy and dissipation contributed by the wavenumber
decade of maximum overlap as a function of R; for the model spectrum.

Overlap fraction for decade of wavenumber (k,,,, 10x,,)
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Very large R, required for there to be a decade of wave numbers in which both

energy and dissipation are negligible.

Energy cascade:

U

=1,

&

Where u, and [, are characteristic velocity and length scales of energy containing
eddies. Taking ug = k*/? and I, = L; = € = k3/?/L,; vs. using the definition

L = k3/? /& (Chapter 4 Part 3 pg. 14; Pope pg. 200)

k3/2
E=——=¢

L

L11

=1

L11

k3/2 (

L11)
=
L

L

That is, scaling € = k3/2/L,is equivalent only if % = 1.
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Fig. 6.24. The ratio of the longitudinal integral lengthscale Ly, to L = k3%/¢ as a
function of the Reynolds number for the model spectrum.

Fig. 6.25. Turbulence Reynolds numbers Re;. (solid line) and Rer (dashed line) as
functions of R; for the model spectrum.

However, Fig. 6.24 shows that L, /L only approaches 1 for small R; < 10%, which

is the requirement for turbulent flow and L;; /L — 0.43 as R, increases. Therefore,
3/2

is the proper definition of the length scale for large

eddieS.; and L11 =~ lo/z such that lEI = %Lll = i lo.

12

k
for turbulent flow, [, = L = —

Fig. 6.25: Shows relation between different turbulent Reynolds numbers.

Re; = —=—= %RAZ (Chapter 4 Part 3 A.3)

and

_Lnu’ 2L 1 )
Rer =—/—= /§TR9L~%RA
1/2
Zk]

which is an alternate turbulent Re using Luand u’' = U, = [5
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In turbulent flows, Pope proposes (based geometric scales)

Re =—~10R
e=— er

' Lqq
~ 0.2, —=0.5
L

R; = V2Re

However, considering [, = L~2L;4, and L as the characteristic length scale of the
flow (usually based on the geometry of the problem), it is more reasonable to
estimate L~6L,4, since 80% of the flow energy is contained in motions of length

scaIe%Lll < | < 6L44, as discussed previously.
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(5) The shear-stress spectrum (see Pope Ex. 6.35)
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Fig. 6.1. Eddy sizes £ (on a logarithmic scale) at very high Reynolds number, showing
the various lengthscales and ranges.
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Fig. 6.12. Wavenumbers (on a logarithmic scale) at very high Reynolds number
showing the various ranges.

Dissipation + inertial subrange: E (k) = £%/3k~>/3¥ (kn)
Inertial subrange: E (k) = Ce?/3k~5/3
Dissipation range: D (k) = 2vk?E (k)

Locally isotropic turbulence, i.e., isotropy only at small scales: w;u, =0, 812(5) =
0, ElZ(Kl) - O

. . U, . .
For simple shear flows, e.g., with§ = a_xl >0 E] = non-isotropic turbulence, e.g.,
2
. oU,
homogeneous shear flow (Chapter 6 Part 3): Production P = —u u, a_xl’ a =
2
u U, /k = —0.3, and g ~ 1 such that Sk /e = % ~ 3. Inview of the relation
o _ug [m?
UgUy; = j Ey5 (k) diq T [
0

E;,(x,) must be anisotropic at least over part of the wave number range.
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Therefore, it is important to determine the contributions to u,;u, from various
scales of motion. The picture that emerges is that wave numbers in the energy
containing range primarily contribute to u;u, such that for higher wave numbers
E;,(kx,) decays more rapidly than E;; (k;), which is consistent with local isotropy.

T = time scale (of motions of wavenumber k) = eddy turnover time.

ST = non-dimensional mean shear (rate of strain) characterizes influence S, i.e., if
small ST then level of anisotropy created by § is also small.

Dissipation range 7 = 7,, = (v/e)Y/2: 8T, < 1forlocal isotropy at K

= 3Re, " 1/?
ES 9R/1_1

Which shows that a high Re is required.

Inertial sub range t(k) = (k?¢)~/3

0 pg. 8) and for local isotropy at k

(formed from k and &, as per Chapter 4 Part

St(k) = S(Kk?e) V3 « 1

1 3
with length scale (formed from e and ) Ls = €28 2 = L/6 (L = k3/?/¢); thus,
for local isotropy

1 _3
Lse 2 =82[m]

(kLs)?/® =~ kLg » 1 s=1L 53 [ ]

Or equivalently

S T(x?e)Y3 » 1

For high Re, Ls~! « k « n~! for the wave number range within the inertial
subrange wherein anisotropy for the present circumstances is only a small
perturbation due § on background isotropy characterized by f(¢). Therefore,

Eio(k)) = f(ky,68) xS = L;2/351/3

14



and since small perturbation assumed linear f(§). From dimensional analysis

(note units E1> are m3/s?)

Eq15(Kq)

L, E1,(kqLs) = nondimensional function

us = velocity scale (formed from € and §) = (¢/8)'/? ~ k'/?2/2

The linearity of E;, with S determines E,:

Eyp(Ky) _ -7/3
T —Cy2(k1Ls) /3 or
ShLS
1/3,. ~7/3 :
E,(ky) = —C1,8e° Ky where C;, is a constant.
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Fig. 6.26. Shear-stress spectra scaled by us and Lg: line, Eq. (6.277) with C» =
0.15; symbols, experimental data of Saddoughi and Veeravalli (1994) from turbulent
boundary layers with R; =~ 500 to 1,450.
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Fig. 6.27. The spectral coherency measured in a turbulent boundary layer at R; =
1,400 (Saddoughi and Veeravalli 1994).

Agrees data for k;Lg > 0.5 with C;, = 0.15.
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Shows that E;, (k;) decays more rapidly than E;;(k,), i.e., —7/3 vs. —5/3, so that
anisotropy decreases rapidly with ;.

Based on Fig. 6.27 it is proposed that
KlLS >3

for the locally isotropic region of the spectrum, which is consistent with lg = L11/6
marking the start of the inertial sub range, since (with assumption, i.e., L = L11)

(2r/la) Ls =6 vs.~ 12 (for L = 2L11)

Major conclusion: dominant contribution u;u, is from k in the energy containing
range, and at higher k, E;,(k;) decays more rapidly than E;;(x;), which is
consistent with local isotropy.

Another demonstration of the concept of Reynolds-number similarity at
large Re is the contrast between the TKE and shear stress spectra. As seen
in Figure 5.10, the shear stress spectrum decays more quickly than the
energy spectrum, implying that the influence of large-scale anisotropy on
small scales is minimal, especially in high-Re flows. In particular, at large
frequencies, the shear stress spectrum is effectively zero, supporting the idea
of local isotropy at small scales.
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Fig. 5.10 The W2 and WV frequency spectra from experimental channel
measurements. (Image credit: Laufer (1950), figure 12)
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Appendix A
A.1: E{, dimensional analysis

Eip(k1) = f(r1,6,8) x §

— a.f m3
Ei5(ky) = —Cyp Skie <z
Ciz [—]

1
s [
S
m?]
& S_3
[1
1 m)
By dimensional analysis:
{L —a+ 20 =
T:—1-3=-2
1
k=3
N 2 3 7
—_ — - [
“73 “=73

Therefore,

Eip(k1) = _C12551/3K1_7/3
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