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Part 6: 1D Spatial and Time Series Spectra: Highlights 
 

1. Most often spectra are obtained from single point time series 
measurements and transformed to 1D spatial spectra via Taylors frozen 
turbulence hypothesis; or in some cases 1D spatial measurements along 
a line. 
 

2. In either case, the relations between 1D and 3D spectra have shown that 
the Kolmogorov hypotheses are valid not only for 3D spectra as originally 
hypothesized, but also for their 1D counterpart. 

Herein, we review several techniques for obtaining 1D spectra: 

1. Temporal using autocorrelation 𝑓(𝑡) (or convolution integral) and Taylor 
hypotheses. 

2. Spatial using even autocorrelation 𝑓(𝑟) and homogeneous isotropic 
turbulence assumptions. 

3. Spatial using odd autocorrelation 𝑓(𝑟) and nonhomogeneous non-
isotropic assumptions. 

4. Power Spectral Density (PSD) approach for the Fourier transform and 
then invert to get the temporal autocorrelation. 
 

A model spectrum 

An analytical model spectrum is used for the evaluation of the Kolmogorov 
hypotheses and the experimentally (or numerically) obtained spectrums: 
 

𝐸(𝜅) = 𝐶𝜀2/3𝜅−5/3𝑓𝐿(𝜅𝐿)𝑓𝜂(𝜅𝜂)     (2) 
 
Where 𝑓𝐿  and 𝑓𝜂  are specified non-dimensional functions. The function 𝑓𝐿  
determines the shape of the energy-containing range, 𝑓𝐿 → 1 for 𝜅𝐿 → ∞, i.e., 
small 𝑙 = 2𝜋/𝜅. The function 𝑓𝜂  determines the shape of the dissipation range, 
𝑓𝜂 → 1 for 𝜅𝜂 → 0, i.e., large 𝑙 = 2𝜋/𝜅.  
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In the inertial subrange, both 𝑓𝐿  and 𝑓𝜂  → 1 so that the Kolmogorov -5/3 
spectrum is obtained with the constant C recovered. 
 
The specification of 𝑓𝐿  is 

𝑓𝐿(𝜅𝐿) = (
𝜅𝐿

[(𝜅𝐿)2 + 𝑐𝐿]
1
2

)

5
3
+𝑝0

     (3) 

 
𝑝0 is taken to be 2, and 𝑐𝐿 is a positive constant. Clearly, 𝑓𝐿 → 1 for large 𝜅𝐿, 

while the exponent 5
3
+ 𝑝0 leads to 𝐸(𝜅)  ∝  𝜅𝑝0 = 𝜅2 for small 𝜅𝐿.  Or for 𝑝0 =

4 leads to 𝐸(𝜅)  ∝  𝜅4 for small 𝜅𝐿.1 
 
The specification of 𝑓𝜂  is 

 

𝑓𝜂(𝜅𝜂) = 𝑒𝑥𝑝 {−𝛽 {[(𝜅𝜂)
4 + 𝑐𝜂

4]
1/4
− 𝑐𝜂}}     (4) 

 
Where 𝛽 and 𝑐𝜂 are positive constants.  For 𝑐𝜂 = 0: 𝑓𝜂(𝜅𝜂) = exp(−𝛽𝜅𝜂).  In 
either case, exponential decay is exhibited for large 𝜅𝜂.   
 
Since the velocity field 𝑢(𝑥) is infinitely differentiable, for large 𝜅, the energy 
spectrum decays more rapidly than any power of 𝜅, thus, exponential decay is 
used, as suggested by Kraichnan.  Experiments support exponential decay with 
𝛽 = 5.2. However, the simplified exponential form with 𝑐𝜂 = 0 departs from 
unity too rapidly for small 𝜅𝜂 and the value of 𝛽 is constrained to be 𝛽 =
2.1. These deficiencies are remedied by Eq. (4).  
 

 
1 Chapter 4 Part 5 pg. 7: If ℰ𝑖𝑗(𝜅) is analytic at 𝜅=0 then 𝐸(𝜅) varies as 𝜅4 for 
small 𝜅 (Pope Ex. 6.26); however, it’s also possible that it is non-analytic with 
𝐸(𝜅) varying as 𝜅2.  DNS shows both behaviors and some grid turbulence data 
suggests 𝜅2 behavior. 
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Method 3: Energy spectrum from temporal autocorrelation 𝒇(𝝉) 

1. Calculate temporal autocorrelation. 
 

𝑅𝐸(𝜏) =
𝑢(𝑡)𝑢(𝑡 + 𝜏)

𝑢2
 

 

2. Obtain Fourier transform of 𝑅𝐸(𝜏). 
 

𝑅̂𝐸(2𝜋𝜔) = 2∫ 𝑅𝐸(𝜏)
∞

0

cos(2𝜋𝜔𝜏)𝑑𝜏 

 

3. Calculate the time micro and macro/integral scales. 
 

𝜏𝐸 = [−2/𝑓′′(0)]
1/2, 𝑇 = ∫ 𝑓(𝜏)𝑑𝜏

∞

0

 

 

4. Using Taylor hypothesis, calculate the Taylor microscale, dissipation, 
and Kolmogorov scale. 
 

𝜆𝑓 = 𝑈𝜏𝐸 , 𝜀 = 30𝜈
𝑢2

𝜆𝑓
2 , 𝜂 = (

𝜈3

𝜀
)

1/4

 

5. Calculate the 1D energy spectrum in time from the Fourier transform of 
𝑅𝐸(𝜏). 
 

𝐸̂11(𝜔) = 2𝑢
2𝑅̂𝐸(2𝜋𝜔) 

 
6. Calculate the 1D energy spectrum in space from the 1D energy spectrum 

in time. 

𝐸11(𝜅1) =
𝑈

2𝜋
𝐸̂11(𝜔) 

 

7. Plot 𝐸11(𝜅1)/(𝜀𝜈5)1/4 vs 𝜅1𝜂 

(Note:  : Frequency 
[Hz]) 
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Details Method 3 

Taylor’s frozen turbulence hypothesis relates time sequence of streamwise 
velocity data to data distributed along a straight line in the flow direction as if 
the turbulent velocity field at a given instant in time convects downstream at 
the local mean velocity, i.e., as if it were frozen. 

𝑢(𝑥, 𝑡 + 𝜏) = 𝑢(𝑥 − 𝑈𝜏, 𝑡)    (1) 

Where 𝑥 − 𝑈𝜏 represents the upstream point, so that 

 

1𝑢(𝑥, 𝑡)𝑢(𝑥, 𝑡 + 𝜏) = 𝑢(𝑥, 𝑡)𝑢(𝑥 − 𝑈𝜏, 𝑡)     (2) 

 

Combining with 𝑓(𝑟) and 𝑅𝐸(𝜏) definitions  

 

𝑓(𝑟) =
𝑢(𝑥)𝑢(𝑥 + 𝑟)

𝑢2(𝑥)
     (3) 

𝑅𝐸(𝜏) =
𝑢(𝑡)𝑢(𝑡 + 𝜏)

𝑢2
     (4) 

Taking 𝑟 = −𝑈𝜏 in Eq. (3) 

𝑓(−𝑈𝜏) =
𝑢(𝑥)𝑢(𝑥 − 𝑈𝜏)

𝑢2(𝑥)
 

 

Comparing with Eq. (4) and adding 𝑡 dependence to Eq. (3) and 𝑥 dependence 
to Eq. (4) 

,
 𝑢(𝑥, 𝑡)𝑢(𝑥, 𝑡 + 𝜏)

𝑢2⏟          
=
𝑢(𝑥, 𝑡)𝑢(𝑥 − 𝑈𝜏, 𝑡)

𝑢2⏟            
     (5) 

 𝑅𝐸(𝜏) 𝑓(−𝑈𝜏) 
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Assuming zero separation (𝑥 + 𝑟 = 0, ) and zero time-delay (𝑡 + 𝜏 = 0) and 
using the symmetry of 𝑅𝐸(𝜏) and 𝑓(𝑟) yields  

𝑥 = ±𝑟, 𝑡 = ±𝜏 

 

Using these relations in Eqs. (3) and (4), including their 𝑡 and 𝑥 dependence 

 

𝑓(𝑟 = 𝑥) =
𝑢(𝑥, 𝑡)𝑢(0, 𝑡)

𝑢2
     (6) 

𝑅𝐸(𝜏 = 𝑡) =
𝑢(𝑥, 𝑡)𝑢(𝑥, 0)

𝑢2
     (7) 

 

Comparing the RHS of Eq. (5) and (6), shows that 

 

𝑥 = 𝑈𝜏 ⇒ 𝜏 =
𝑥

𝑈
    (8) 

 

Substituting Eq. (8) into (7) and equating to (6) yields  

 

𝑅𝐸 (𝜏 = 𝑡 =
𝑥

𝑈
) =

𝑢 (𝑥,
𝑥

𝑈
)𝑢(𝑥, 0)

𝑢2
= 𝑓(𝑟 = 𝑥) =

𝑢(𝑥, 𝑡)𝑢(0, 𝑡)

𝑢2
 

 

𝑅𝐸 (
𝑥

𝑈
) = 𝑓(𝑥) 
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Using the definitions of 𝐸11(𝑘1) and 𝑅̂𝐸(𝜔′) 

𝐸11(𝑘1) =
𝑢2

𝜋
∫ 𝑒−𝑖𝑘1𝑥𝑓(𝑥)𝑑𝑥
∞

−∞

                        𝑅̂𝐸(𝜔′) = ∫ 𝑒−𝑖𝜏𝜔
′
𝑅𝐸(𝜏)𝑑𝜏

∞

−∞

 

 

                     =
𝑢2

𝜋
∫ 𝑒−𝑖𝑘1𝑥𝑅𝐸 (

𝑥

𝑈
)𝑑𝑥

∞

−∞

 

 

                     =
𝑢2

𝜋
∫ 𝑒−𝑖𝑘1𝑈𝜏𝑅𝐸(𝜏)𝑈𝑑𝜏
∞

−∞

 

 

                     =
𝑢2𝑈

𝜋
∫ 𝑒−𝑖𝜏𝜔

′
𝑅𝐸(𝜏)𝑑𝜏

∞

−∞

=
𝑢2𝑈

𝜋
𝑅̂𝐸(𝜔′)     (9) 

 

Recall (Chapter 2) 

𝐸̂11(𝜔) = 2𝑢
2𝑅̂𝐸(2𝜋𝜔)     (10) 

 

Combining Eqs. (9) and (10), to obtain a relation between 𝐸̂11(𝜔) and 𝐸11(𝑘1): 

𝐸11(𝑘1) =
𝑢2𝑈

𝜋

𝐸̂11(𝜔)

2𝑢2
=
𝑈

2𝜋
𝐸̂11(𝜔) 

Or equivalently  

𝐸̂11(𝜔) =
2𝜋

𝑈
𝐸11 (

2𝜋𝜔

𝑈
) 

 

Thus, 𝐸11(𝑘1) can be determined from measurements of 𝐸̂11(𝜔) = 𝐸̂11 (
𝑘1𝑈

2𝜋
). 

Measured time spectra via Taylor hypothesis provide 𝐸11(𝑘1) 

𝑑𝑥 = 𝑈𝑑𝜏 

𝜔′ = 2𝜋𝜔 
 𝜔 Hz 
𝜔′ 𝑟𝑎𝑑/𝑠 

 

From the comparison of the exponentials 
highlighted in yellow, the following 

relationship is obtained:                                                   
𝑘1𝑈𝜏 = 2𝜋𝜔𝜏 ⇒ 𝜔 = 𝑘1𝑈/2𝜋. 

 

𝑓(𝑥) = 𝑅𝐸 (
𝑥

𝑈
) 
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Taylor micro-scale 

 

𝑓(𝑥) = 𝑅𝐸 (𝜏 =
𝑥

𝑈
) 

𝑓′ = 𝑅𝐸,𝜏
𝑑𝜏

𝑑𝑥
= 𝑅𝐸

′/𝑈 

𝑓′′ = 𝑅𝐸
′′ 𝑈

2
⁄  

𝜆𝑓
2 = −

2

𝑓′′
= −

2𝑈
2

𝑅𝐸
′′ = 𝑈

2
𝜆𝑡
2 

 

Taylor macro-scale 

𝛬𝑓 = ∫ 𝑓(𝑥)𝑑𝑥
∞

0

 

              = ∫ 𝑅𝐸(𝜏)
∞

0

𝑈𝑑𝜏 

𝛬𝑓 = 𝑈𝛬𝑡  

 


