Chapter 4: Turbulence at Small Scales

Part 6: 1D Spatial and Time Series Spectra

We have already noted the following:

1. Most often spectra are obtained from single point time series measurements
and transformed to 1D spatial spectra via Taylors frozen turbulence
hypothesis; or in some cases 1D spatial measurements along a line.

2. In either case, the relations between 1D and 3D spectra have shown that the
Kolmogorov hypotheses are valid not only for 3D spectra as originally
hypothesized, but also for their 1D counterpart.

Herein, we review several techniques for obtaining 1D spectra:

1. Temporal using autocorrelation f(t) (or convolution integral) and Taylor
hypotheses.

2. Spatial using even autocorrelation f(r) and homogeneous isotropic
turbulence assumptions.

3. Spatial using odd autocorrelation f(r) and nonhomogeneous non-isotropic
assumptions.

4. Method 4: Energy spectrum from Fourier Transform of the time auto-
correlation coefficient R; (7).

Prior to reviewing the techniques for obtaining 1D spectra, power law and model
spectrums are discussed, as these will be used in analyzing the 1D spectra and their
3D counterparts using Kolmogorov scaling. Subsequently in Part 7, the 1D and 3D
spectra will be further analyzed using alternate scaling such as compensated
spectra, etc.



Power-law spectra

Chapter 4 Parts 0 and 4 already introduced Kolmogorov hypotheses and resulting
spectra based on dimensional analysis and its relationship to power law spectra.
In the inertial subrange, the power law spectra are of the form

E11(xy) = G Ak, 7P (1)

. . . . o, 1- .
Where (; is a constant and A is a normalization factor, e.g., A = qullp, i.e., same

units as £2/3. If E;1 (k) is given by (1), then using E(k) = f(E11(x,)) derived in
Part 5, it follows that.

E(x) = CAx7P

Where C = %p(z + p)C;. Proof in Appendix A.1

Similarly, for E,,

Eyp (k) = G, AP

Where Cll = %(1 + p)C;. Proof in Appendix A.2

Thus, the power-law exponent p is the same for the three spectra and the constants
C,C,, C, arerelated.



Recall, in the inertial subrange based on dimensional analysis

E(k) = Ce?/35/3

Where C~1.5 (from experiments).

Therefore, for E;; and E>,

— 2/3,. —5/3 _18._
Ell(Kl) = Clg / K1 / Cl—EC—OA-Q

— (' e2/3, =5/3 | . 2% _
E,, (1)) = C,'€?Puy 753 | ¢i=Zc,==c =065

A model spectrum

An analytical model spectrum is used for the evaluation of the Kolmogorov
hypotheses and the experimentally (or numerically) obtained spectrums:

E(x) = Ce*Bk=>Bf, (kL) f,(kn)  (2)

Where f; and f, are specified non-dimensional functions. The function f;
determines the shape of the energy-containing range, f; = 1 for kL — o, i.e.,
small [ = 2m/k. The function f, determines the shape of the dissipation range,
fa = 1forkn - 0,i.e, largel = 21 /k.

In the inertial subrange, both f; and f,, — 1 so that the Kolmogorov -5/3 spectrum
is obtained with the constant C recovered.



The specification of f; is

5
31Po
KL

fi(kL) = (3)

[(kL)? + ¢, ]2

Do is taken to be 2, and ¢, is a positive constant. Clearly, f; — 1 for large kL,
while the exponent g + po leads to E(k) « kPo = k2 for small kL. Orforp, = 4

leads to E (k) o« k* for small kL.

The specification of f; is

fyan = exp{=p {[on)* + ¢, =, }} - @)

Where f and c, are positive constants. For ¢, = 0: f,(kn) = exp(—fkn). In
either case, exponential decay is exhibited for large k7.

Since the velocity field u(x) is infinitely differentiable, for large k, the energy
spectrum decays more rapidly than any power of k, thus, exponential decay is used,
as suggested by Kraichnan. Experiments support exponential decay with § = 5.2.
However, the simplified exponential form with ¢, = 0 departs from unity too
rapidly for small kn and the value of f is constrained to be f = 2.1.These
deficiencies are remedied by Eq. (4).

! Chapter 4 Part 5 pg. 7: If Eij (E) is analytic at k=0 then E (k) varies as k* for small
k (Pope Ex. 6.26); however, it’s also possible that it is non-analytic with E (k)
varying as k2. DNS shows both behaviors and some grid turbulence data suggests
k2 behavior.



For specified values of k, €, and v, the model spectrum is determined using Eq. (2),
(3) and (4) with € = 1.5 and § = 5.2. Alternatively, the non-dimensional model
spectrum is uniquely determined by a specified value of R;.

¢, and ¢, are determined by the requirement that E (k) and 2vKk?E (k) integrate

to k and ¢, respectively: at high Re their values are ¢, = 6.78 and ¢,, = 0.40.
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Fig. 6.11. Comparison of spectra in isotropic turbulence at R; = 500: solid line, E(x);
dashed line, Eq;(k,); dot-dashed line, E;;(x;). From the model spectrum, Eq. (6.246).
(Arbitrary units.)

Fig. 6.11 shows E(k), E;{,(x) and E,, (k) at Ry = 500. In the inertial subrange, all
spectra exhibit power-law behavior with p = 5/3, and their ratio is given by the
ratio of C, C;, C;.

At low wave number E (k) — 0 as k2, while one-dimensional spectra are maximum
at k = 0, which shows the effects of aliasing, i.e., the fact that the 1D specta
contain contributions from k > k;.? Also, at low wave humber

Eyy = 2E,

in accordance with the ratios of integral scales L;; and L,,, i.e., Ly, = L1 /2.

2 Also see Chapter 4 Part 5 pg. 12.
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Fig. 6.13. The model spectrum (Eq. (6.246)) for R; = 500 normalized by the Kol-
mogorov scales.

Fig. 6.13 is a log-log plot of the model spectrum (with Kolmogorov scaling) for R; =
500. The power laws E (k) ~k? at low wave number and E (k) ~x~>/3 in the inertial
subrange are shown, as is the exponential decay at large k.
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Frederick Stern, Yugo Sanada, Zachary Starman, Shanti Bhushan, Christian Milano, “4DPTV
Measurements and DES of the Turbulence Structure and VVortex-Vortex Interaction for 5415 Sonar
Dome Vortices,” 35th Symposium on Naval Hydrodynamics, Nantes, France, 7 July - 12 July

2024. Turbulence Analysis of SDVP for p=10° at x/L=0.12. 1D longitudinal velocity spectra
shown for Kolmogorov scaling using macro-scale values.
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Techniques for obtaining 1D spectra

Method 1: Energy Spectrum from spatial autocorrelation f(7): even

1. Calculate symmetric spatial autocorrelation function.

u()u(x +1r)

u?

fr) =
2. Obtain 1D energy spectrum from Fourier transform of f(r)

Ei1 (k) = %ijf(ﬁ) cos(iyr)d
0

3. Calculate the Taylor microscale and integral length scale.

1 (0] (0]
b =1=2/f" O Ay =3[ f@dr=[ far
—00 0

4. Calculate dissipation.

5. Calculate Kolmogorov scale.

6. Plot E;1(ic1)/(ev®)Y* vs k4



Method 2: Energy Spectrum from spatial autocorrelation f(7): odd

1. Calculate the antisymmetric spatial autocorrelation function.

u(@)u(x 1)

f(xr) =

u?2

2. Obtain 1D energy spectrum in space from Fourier transform of f(r)
E 1o
Ei(k) = ?j f(r1) cos(kyry)dmy

3. Calculate the Taylor microscale and integral length scale.

~f1(0) + [ () - 2" O]
= o)

1 (0]
) Ap = Ef_oof(r)dr

4. Calculate dissipation.

azuiu]'
=\t T G,
L=

5. Calculate Kolmogorov scale.

6. Plot E;1(ic1)/(ev®)Y* vs k4



Method 3: Energy spectrum from temporal autocorrelation f(7)

1. Calculate temporal autocorrelation.

u(®u(t + 1)

Rg(7) =
U2

2. Obtain Fourier transform of Ry (7).

(0]

R;(2nw) = ZJ R (1) cos(2rwr) dt
0

3. Calculate the time micro and macro/integral scales.

s = [<2/f (O], T= j F@de
0

(Note: @: Frequency [Hz])

4. Using Taylor hypothesis, calculate the Taylor microscale, dissipation, and

Kolmogorov scale.

— u? v
A = Utp, = 30—, ==
; g € VA)% n <g>

5. Calculate the 1D energy spectrum in time from the Fourier transform of

Ry (7).

Ell (C()) = ZﬁﬁE (277:(1))

6. Calculate the 1D energy spectrum in space from the 1D energy spectrum in

time.

U .
Ei1(k1) = %En(w)

7. Plot E;1 (1) /(ev®)Y* vs ki
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Details Method 3

Taylor’s frozen turbulence hypothesis relates time sequence of streamwise velocity
data to data distributed along a straight line in the flow direction as if the turbulent
velocity field at a given instant in time convects downstream at the local mean
velocity, i.e., as if it were frozen.

u(x,t+1) =u(x—Ut,t) (1)

Where x — Ut represents the upstream point, so that

u(x, Hulx, t + 1) =uleulx—Unt) (2)

Combining with f(r) and Rg(7) definitions

u(x)u(x +r)

= 3
f====— ©®
Ro(e) = u(t)uét + 1) @
u
Takingr = —Utin Eq. (3)
F(=T7) = u(x)u(x — Ut)

u?(x)

Comparing with Eqg. (4) and adding t dependence to Eq. (3) and x dependence to
Eq. (4)

ulx, ulx,t +71) tu(x — U, t)

(5)

uz uz

Ry (2) &

11



Assuming zero separation (x + r = 0,) and zero time-delay (t + 7 = 0) and

using the symmetry of R (1) and f(r) yields

x = *r, t=+r7

Using these relations in Egs. (3) and (4), including their t and x dependence

Fr=x) = u(x, t)_z:(O, t) ©)
u

Ro(r = t) = u(x, ti_zzt(x, 0) 7

Comparing the RHS of Eq. (5) and (6), shows that

x=Ur>1=

(8)

Sl =

Substituting Eq. (8) into (7) and equating to (6) yields

. (T . i) _ u(x,%)u(x, 0)

) =) = u(x, t)u(o,t)
u? uz

R (%) — f(x)
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Using the definitions of E;;(k;) and Rz (w")

u? [ .
Fulk) == [ e/ (ax

X

() =Ry (U)
— v

uz (. X
= —f e tkaxXR. (:) dx
T J_» U ¢

dx = Udt

" v

2 o . _
= ?f e tkUTR (T)Udt

uy <«

0w =2nw

Ry (w") =J e~ "' R (7)dz

From the comparison of the exponentials
highlighted in yellow, the following relationship
is obtained:

k,Ut = 2nwt = w = k,U/2m.

u2

=—— | e 'R (*)dr = TﬁE(w') 9)

T

— 00

Recall (Chapter 2)

E (w) = 2u?R;(2nw) (10)

Combining Egs. (9) and (10), obtain a relation between E;; (w) and E;4 (k;):

WU E,(0) U

Ei1(ky) = I V2 = %Ell(w)
u
Or equivalently
N 21 21w
Ej(w) = 75'11 (7)

Thus, E;1(k;) can be determined from measurements of £, (w) = E;; (kl—U)

21

Measured time spectra via Taylor hypothesis provide E;; (k;)
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Taylor micro-scale
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Method 4: Power Spectral Density (PSD) approach for the Fourier transform of

the temporal autocorrelation

1. Definition of Ry (1)

Alternative derivation using definition of convolution in Appendix A.3

Rg(7) =

uz

2. Fourier transform of R (1)

u(@u(t+1) l

1T
Tll_)n.}oﬁ f_Tu(t)u(t + 7)dt

1
y2 T-o 2T

. * 1 (T -
F{Ry(1)} = Rp(w') = J [— lim — j u(t)u(t + T)dt] e 't

Rp(w") = j I: lim —— u(t)u(t + r)dtl e~iw'Tgr

3. Change of variable:s =17+ t,ds = dt

1 T .y *® -
Ry(w) == llm u(t)e“" tdtj u(s)e '®sds
u2 T 2T o
4. Definition of £, (w)
I 1 1 1 2 _ i (w)
Rp(w') = ;Thm T (w)i*(w) = ; lim n - |[ti(w)|” = i

15




Where the following definition was used
1 s _ 8
Jim [ti(w)|* = E11(w)

And the limit is evaluated numerically based on time series interval u(t) used to
obtain F{u(t)} either experimentally or DES.

Solving for E;;(w) yields
E11(w) = Zﬁﬁls(w’)
This shows that E;; (w) represents the PSD of the velocity signal.

5. Calculate the 1D energy spectrum in space from the 1D energy spectrum in
time.

U .
Ei1(k1) = %Eu(w)

6. Plot E;;(x1)/(ev®)Y* vs kyn
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Figure 4.7 Experimental tests of the —5/3 law [3]. Reprinted with the permission of Cambridge
University Press.

Measured spectra clearly show the universal equilibrium range and inertial
subrange Kolmogorov -5/3 spectrum, which extends over several decades of wave
number. The extent of the inertial subrange increases with R;. Data show C;~.5
such that C~1.4. Recent estimates Re; = 1000, C = 1.58.
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Figure 4.8 Compensated energy
spectrum as given in [21]. With
increasing R, the simulations used
5123,1024%,2048%, and 4096° meshes.

i e J Scales on the left and right are for the
slope =0.10 i

upper and lower curves, respectively.
Reproduced from Physics of Fluids, Vol.
15, pp. L21-1L24, 2003, with the
permission of AIP Publishing.

’{;5!3 E(k)/{e)af‘?'

Compensated spectrum E(k)/€2/3k1_5/3 for R; = 1201 DNS should be constant,
but small negative slope ~.1 suggests that a more appropriate spectrum for the

5
inertial range might be ~k 73~ 1,

This plot also shows the bottleneck effect, which is represented by the pronounced
peak that is formed for wave numbers just larger than those in the inertial range.
One explanation for this phenomenon is that in this range there is insufficient

small-scale vortices to efficiently dissipate energy so that it accumulates to form a
bump. This effect vanishes for high Re.

One explanation for the departure of small-scale turbulence from the -5/3 law is
the fact that ¢ is highly intermittent in space and time.
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Figure 4.9 Dissipation rate on a plane showing intermittency within a region of isotropic turbulence
computed in a vortex filament simulation of flow in a periodic box.
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Fig. 6.2. A schematic diagram of the energy cascade at very high Reynolds number.
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Clearly Kolmogorov -5/3 spectrum fully supports important turbulence concepts of
Richardson cascade, Kolmogorov hypotheses, theory of isotropic turbulence and
dimensional analysis; albeit with issues of backscatter suggesting energy transfer is
a two-way equilibrium process including intermittency of dissipation.
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Taylor Frozen Turbulence Hypothesis
For small At, assume turbulence frozen as it convects past probe at x such that
changes U;(t) « changes U;(x), i.e.,

dv;  1dU;
dx U, dt

Where U, = convection velocity of frozen turbulence.

Requires assumption a = 0 at x (i.e., pressure and viscous forces =0)

aU; aU; oY o
-+ U ‘+U/%+94?=0 Ue=U,

Jt Lox  # oy z

That is, for the last 2 terms = 0 [i.e., 1-axis is aligned with the direction of the
mean flow Ui = (Uj, 0, 0)]
dU; 1 dU;

dx U, dt

Must be far from boundaries and other sources VP + V?u. More detailed analysis

shows that actual requirement is that: /(u;u;)/U; < 1, p~u?, and Re large
enough viscous effects negligible (Kundu et al. Ex. 12.11). Also see Pope pp. 223-
224,
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Fig. 3.5 Comparison of time-series signals determined from Taylor’s hypothesis [Egs. (3.30) — and
(3.32) +++] and from the continuity equation (- - -) using mixing-layer data from a 12-sensor probe. (From
[31].)
Reasonable agreement channel flow above buffer layer. Used to transform 1D f

spectra to streamwise k spectra:

Journal of Fluid Mechanics ocus

—
Revisiting Taylor’s
hypothesis

P. MOIN

Center for Turbulence Research, Stanford University,
Stantord, CA 94305, USA

Taylor’s hypothesis, relating temporal to spatial fluctuations in turbulent flows is
investigated using powerful numerical computations by del Alamo & Jimeénez (J. Fluid
Mech., 2009, this issue, vol. 640, pp. 5-26). Their results cast doubt on recent
interpretations of bimodal spectra in relation to very large-scale turbulent structures
in experimental measurements in turbulent shear flows.
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Revisiting Taylor’s hypothesis in homogeneous turbulent shear flow

Frank G. Jacobitz®'" and Kai Schneider®*"
' Mechanical Engineering Department, Shiley-Marcos School of Engineering, University of San Diego,
5998 Alcald Park, San Diego, California 92110, USA
2Aix-Marseille Université, CNRS, Institut de Mathématiques de Marseille,
3 place Victor Hugo, 13331 Marseille cedex 3, France

M (Received 28 September 2023; accepted 14 March 2024; published 3 April 2024)

Taylor’s hypothesis of frozen flow is revisited in homogeneous turbulent shear flow by
examining the cancellation properties of Eulerian and convective accelerations at different
flow scales. Using results of direct numerical simulations, vector-valued flow quantities,
including the Lagrangian, Eulerian, and convective accelerations, are decomposed into
an orthogonal wavelet series and their alignment properties are quantified through the
introduction of scale-dependent geometrical statistics. Joint-probability density functions
of the Eulerian and convective accelerations show antialignment at small scales of the
turbulent motion, but this observation does not hold at large scales. Similarly, the angles
of the scale-wise contributions of the Eulerian and convective accelerations were found
to prefer an antiparallel orientation at small scales. Such antialignment, however, is not
observed at the largest scales of the turbulent motion. The results suggest that Taylor’s
hypothesis holds at small scales of homogeneous turbulent shear flow, but not for large-
scale motion. The Corrsin scale is proposed as a measure for the applicability of Taylor’s
hypothesis in such flows.
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Appendix A
A.l
Ei1(ky) = GAK, 7P (14)

— .3
E(K)_ZK dx

Kk dk

1 .d (1 dEll(K)> 24)
Substitute (1A) into (2A)

_ - 3%
E(K)—ZK T

K dx

1 .d (1 d(ClAK_p)>

1
E(k) = §K3(p + 2)pC,Ak™P3

1
E(k) = E(p + 2)pC; Ax™P

C

1
C= E(p + 2)pCy

E(k) = CAk™P

23



A.2

dE; (k)
dK,

1
Eyp(Kq) = E33(xy) = E(En(’ﬁ) — Kq ) (34)
Substituting Eqg. (1A) into (3A) (k = k;)
1
Ey, (k) = E(CIAK"’ + kC,Apx™P™1)

1
E,, (k) = 5 (C1Ak™P + C,Apk7P)

1
Eyp (1) =761 +p) AP

R ——

C,'

Eyp (k) = G, AP

, 1
¢, = 5(1 +p)C;
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A.3 Method 4: Definitions

The Fourier transform of f(t) is:

f(w) =J f(t)e 2mot d¢ =J f(De @'t gt

Where w' = 2mw. The inverse Fourier transform is:

fO= | f@errdo= | fwe do
The Fourier transform of its complex conjugate f*(t) is:

= | foerrde= [ e ar
The convolution of two functions, f(t) and g(t) is:

h(e) = f f(t - 5)g(s)ds = j f(s — g (s)ds

The temporal autocorrelation coefficient R (7) is defined as:

u()u(t + 1)

Rg(7) =

The Fourier transform pair for R (1) is:

z
FRe(1)} = Ry(a) = j " Re(r) e-9'7dr

~ 1 (* . o
FHRe@N) = Re@ =5 | Re(@) et dor
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A.3 Method 4: Convolution approach for the Fourier transform of the temporal
autocorrelation

1. The temporal autocorrelation Rz (7) can be written as:

Ro(0) = u(t)uizt + 1) _ u(t)uLZt —7)
u u

Where the second equality is a consequence of the symmetry of any
autocorrelation. Using the definition of time average:
T

Ro@ = 2 [ woue — ot
(1) === —T
U2 2T )

Taking the limit for T — oo

R 2 li L dt (A.2
¢ ==Jim = | u(Ou(e-de @A2)

Shows that Rz () represents the convolution of the velocity field with itself.

2. Taking the Fourier transform of R (1) :

T
F{R: (1)} = Rz (w") = j [: lim — f u(t)u(t — T)dt] eiw'Tgr

uz T—oo 2T

3. And using the following substitution of variables:

. B dt dr_ds:>1_ds:>d _dt
T=S=% "4t at T dt 5=

Rp(w") = joo l lim i JTu(t)u(s)dt A GOF R
E u2 Tooo 2T
4. Separating the integrals gives:
T

. 1 1 oy @ -
R ! =—li _ t)e @ tdtf lw's
g(w") = Jim 7 u( e _Oou(s) e s
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And using the definition of Fourier transform

~ 1 1 (T o *® .
Rp(w") = =lim — f u(t)e™'® tdtj u(s)e'® sds

w2 T~ 2T J_ ¢
- 1 1 1 1 E (o)
! — L N A x — . N Py 2 — 11
Rp(@) = = lim Z72(0)8" (@) = = Jim 7 [2(w)]? ===

5. Calculate the 1D energy spectrum in space from the 1D energy spectrum in
time.

U .
E11(k1) = %Eu(w)

6. Plot E;;(ic1)/(ev®)Y* vs kyn
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