Chapter 4: Turbulence at Small Scales

Part 5: Relations between 1D and 3D spectra

Recall:
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Alternatively, 1D spatial spectra can be obtained directly using f(r) or g(r), e.g.,
using the former consider the Fourier transform pair:

2 o0
Ei1(ky) = EJ R11(é111) cos(kymy) dry
0

2 0
Ri1(E171y) = ;f E;1 (k) cos(kymy) diy
0
Where Ry1(6i11) = W3 f (1) = uu(x + 1)

2uZ [
Ei1(ky) = le f(ry) cos(xyry) dry
0

Note that the Kolmogorov hypotheses are for the 3D spectra E(k, t), which is
difficult to obtain, whereas 1D spectra either point (temporal transformed to
spatial using Taylor hypothesis) or line (spatial) are readily obtained; therefore, the
relationship between 1D and 3D spectra is required.



Also recall, in homogeneous turbulence?! the velocity(energy)-spectrum tensor and

two-point velocity correlation tensor form a Fourier transom pair?
S(K) = ; R--(r)ei’”dr (D
gy\&) — (271_)3 v j\L L

Rij(r) = j\;gif (k)e ™ Tdr  (2)

;= & [m°/s?]

f(t) implied

Where k = (k4, k,, k3) is the continuous wave-number vector and independent of

x for homogeneous turbulence. £;;(k)is a complex quantity with the following

properties:

€ij(x) = & (k) = &i(—x)

ki€ij(x) = ki€y() =0 —*

ey =0 aly

Such that its trace is real and non-negative: Eii(g) = 81-1-*(5) > 0.

Due to symmetry of R;;(r) and
that Rij(l) is real: Pope Ex.3.34

Due to incompressibility:
Pope Ex, 6.20; Proof in
Appendix A.0

Positive semi-definite:
Pope Ex. 6.21

Eij (E) represents the Reynolds stress density in k space = contribution per unit V

in k space from Fourier mode e '£T to the Reynolds stress, in particular for r=20

Ri;(0) = wu; = [ €;(x)dx.

As already noted, £;; has units of uL*> = m°/s*.

! For homogeneous turbulence Rij(f) is not f(g) and the information it contains

can be re-expressed in terms of the wave number spectrum.

2 Note: dr and dk are not vectors but volumes in physical and wave number space.
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Note:
[, ] give the directions of the velocity in the physical space.
For example, &, pertains to u,(x).

The wavenumber direction k/|k| gives the direction in wave number space of the
Fourier mode.

The wavenumber’s magnitude determines the length scale (wavelength) of the

Fourier mode: | = 2m/|k]|.
\\ \
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Fig 6.8. A sketch of the Fourier mode corresponding to k = (4, 2,0). The oblique
lines show the crests, where R(e**) = cosk * x is unity.

Eij (E) also contains velocity derivative information, as per Part 1 and Pope Ex.
6.23:

IR, | -
2Ry 0 |
—_— —iK,E:: Jt —lKT d
arlark arl [_L, Hk Y (E )e E
0°R

ij _ -2 —iK'T
= | i“Kk,K;E; (K, t)e Eldk
dr; 07y, L ke ”(— ) -



0%R..
L (0) = kaKlgij(Ei t)dx
v

Lk=gl aTkaTl

0°Ri;
arkark (0)

P — b e — v — 21 _
Forj = iandl = k: &€ = VUi, = [, 2vk Eé’ii(g)@— —
The energy-spectrum function E (k) is obtained from &;;(k) by removing all
directional information, i.e., the direction of the velocities is removed by
considering%éii(g) and the information about the direction of the Fourier modes

is removed by integrating over all wavenumbers k of magnitude | k| =k, i.e.,

over S(k) which is a sphere centered at the origin with radius k. E(x) has units
m3/s2.

E(x) = 7€ %Eii(g)dS(K) (3) jgdS(;c) = 4mxc?

Alternative formulation:

1
E(x) = j Egii(ﬁ)6(|5| - K)dK 4) Proof in Appendix A.1
\4

The properties of E (k) follow from those of Eii(g): E (x) is real, non-negative.

Turbulent kinetic energy (Chapter 2):

k = jooE(;c)d;c
0

Dissipation (Chapter 4 Part 1):

€= fZVKZE(K)dK
v



E (x)dxk represents the contribution to k from all wavenumbers k in the
infinitesimal shell k < |E| < k + dk.

In general, 81-]-(5) has more information than E(x) but for isotropic
turbulence £;;(k) is completely determined by E (k) and directional information
can only depend on k and within scalar multiples. The only second order tensors
that can be formed from k are (Sij and k;k;; consequently,

A(x) and B(k) are determined using (1) incompressibility and (2) properties of
¢ dS(k) and § k;k;dS (k).
(1) Apply incompressibility condition k;€;;(k) = 0 to Eq. (5).
KiEij(E) = K;A(K)6;j + 1;B()K;k; = 0
ki A()6;; = —K;B(K)K;K;
A()K;0;j = —B (1) KKK,
A(K)k; = —B(K)K°K;
A(k) = =B(1)K?
B(k) = —A(x)/x* (6)

(2) Calculate the surface area of a sphere with a radius of |E| = K:

T

de(K) = j 2mksin(0)kd6

0
= —2mKk2cos(0)|F
= 2nk? — (—2nKk?) = 4mK?
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Alternately, the area element can be written as dS(k) = k?sin@pdfd¢ according
to the following figure.

t rsing de

dA = rsingd0 rd¢ = r?singpddpdo

dk = dk;dk,dk3=dV (not vector)

" =k2dQd k
dQ = singdepdb
dS(k) = k?dQ

T 2T T
%dS(K) = j f k2sinpdedl = f 2nK?sinpde = —2mK?cos@|T = 4K
o Jo 0

Note that for isotropic second order tensor, it can be written as a scalar multiple
of 6;; (https.//farside.ph.utexas.edu/teaching/336L/Fluid/node252.html),

1 2
Kin = ai]- = §K 611

T

n 1 4
jgrcircde(K) = jo Kik;j2mksin(0)kdo = jo §K25ij27TKZSiTL(9)d9 = §mc46ij

E(x) = Sﬁ%gii(ﬁ)ds(’f) = %Sii(ﬂ) $dS(x) = %gii(ﬁ)‘m’fz = 2&(1)mi®  (8)

dS (k) represents the surface of a sphere of

radius |E| =K- Sii(g) = constant



https://farside.ph.utexas.edu/teaching/336L/Fluid/node252.html

Apply equation (5)

E(k) = 2nk?(A(K)8; + B(1)Kix;) = 2 [A(k) (1 + 1 + 1) + B(r)k?]

E(k) = 6mk?A(k) + 2nk*B(k) (9)

From Eq. (6) and (9), the coefficients A(x) and B(x) can be obtained,

E _E
A) = 4752 BG<) = 4n§c’f‘)

Substitute the coefficients A(k) and B (k) into equation (5),

e )_E(K)( Kin) E( )

4mrKc? K2

Pi;(1)  (10)

Where P;;(k) = 6;; — % is referred to as the projection tensor and used later to

write the Navier-Stokes equations in wavenumber space.

If Eij(g) is analytic at k=0 then E (k) varies as k* for small k (Pope Ex. 6.26);
however, it’s also possible that it is non-analytic with E (k) varying as k?. DNS
shows both behaviors and some grid turbulence data suggests x? behavior.



Recall definitions longitudinal and transverse correlation coefficients f(r) and
g)

Riq (é\lrl’ t) = u_%f(rD t) (1 1) Longitudinal auto-correlation function

:RZZ (é\lT'l, t) = u%g(rl, t) (12) Transverse auto-correlation function

One-dimensional spectra E;;(k;) are defined as two times the one-dimensional
Fourier transform of R;;(é;71). E;;(x;) has units m?/s?, i.e., same as E (k).

1r® ,
Eij(K1)=Ef Rij(ére ™ dry  (13) | f(¢) implied; m¥/s?

Consider i =j =1 as an example. R;,(éiry) is real and an even function of
r; such that E;; (k) is also real and an even function of r;.

2 oo
FuGe) == | Ru@n)costar)dn (14)
0

With the inversion formula

(0.0)

Ruy(Giry) = j E1r () cos(ryry) diey (15)
0

The factor 2 in Eq. (13) is introduced so that (setting r; = 0 in Eq. (15)) we obtain

R11(0) = u_f = f E;q1(ry)dry
0



Recall Eq. (2) where &;; (E)is the (3D) energy spectrum tensor

Rij(r) = L Eij(K)e ®Tdk di = dx; drcdics

Fori=j=1

R (61 = j.on:)Ell(E) drczdrc3] cos(xiry) dri;  (16)

=Oj Uf_ngn(g) drczdrcg,] cos(xy1y) diy

= f E;1 (k1) cos(kqmy) dicy
0

Where

Eyy(iy) = 2 j f " () dicydics (A7)

E1, (1) (1D spatial spectra) has contribution from all wavenumbers k in the
plane é; - k = Ky, such that |E| > K4, i.e., only greater than k; but Fourier modes
contributing to E;;(x;) can be appreciably larger than k.

The one-dimensional spectrum E;;(x,) is related to the longitudinal auto-
correlation function by

2 _ 0
Ei1(x1) = Eu%f f(ry) cos(kymy) dry
0

Which is obtained from the combination of Eq. (11) and (14).



Note that for k; = 0:

2—
E;(0) = —u1 J f)dr = u1L11

Where L, represents the longitudinal integral scale

°° E;1(0
L4 =j f(ry) dry =Tt1—1—§)
0

2ug

Similar results can be obtained for E,, using the transverse auto-correlation
function g(ry).

The relation between E;; (x,) and 811(5) shown in Eq. (17) can also be written as

K1

Ei1(k) =2 .U 4mc2< — K—) dr,dks; (18)

Where use is made of Eq. (10) for i = j = 1. The integration is over the plane of
fixed K¢, and the integrand is radially symmetric about the k; axis.

K3 L7 K2 *"‘r )

K

Fig. 6.10. A sketch of wavenumber space showing the definition of the radial coordi-
nate K.
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Double Integrals in Polar Coordinates

https://tutorial.math.lamar.edu/classes/calciii/dipolarcoords.aspx

r, AG
niad
My
X = rcosf, y = rsiné, r? =x? + y?

dA = rdrd@

jf f(x,y)dA = ﬂ f(rcos0,rsin0)rdrdd

E11(xy) =2 jj EG) < ’;12 ) drydks  (18)

Area element:

dS = dk,dx; = k,dk,d0

* E(x) Ky
ﬂ_w 21K 2 < k2 dicydics =
ﬂ 2 E (i) % B
00 2TK? K2 a
©  FE(k K?
f 2T ( 2 (1 ;>K dx,
0 27K K
* E(x) Ki
jo - (1 ) 21K, dK,,
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https://tutorial.math.lamar.edu/classes/calciii/dipolarcoords.aspx

Since k2 = k? — k?, changing variables for integration over k instead of k,, and
letting i, = 0 such that k = k; and k,-dk, = kdk. Then Eq. (18) becomes:

© E(k K2
f ( 3 <1 — —;) 2mrdK
K, 2TK K

E11(xy) = foo E’(CK) (1 - K—%> de  (19)

2
K1 K

Therefore, E;4 (k) contains contribution from x > k;, which is a phenomenon
called aliasing.®> Furthermore, E;;(x;) is a monotonically decreasing function of
K1, so that E; is maximum at zero wavenumber, irrespective of the shape of E (k).

Proof in Appendix A.3

Recall

2__ (®
Ers(ry) = — 2 j fFr)cos(am)dr,  (20a)
0

(0e]
ra0e) = =37 [ gGi)cosCaan)dr (200
Note that both (17) [or (18)] and (19) are equivalent, i.e., representations in
different coordinate systems and (19) is radially symmetric about the k; axis. A
statistically homogenous field is statistically invariant under translation. If the field
is also statistically invariant under rotations and reflections of the coordinate
system, then it is also statistically isotropic. Therefore, (19) is equivalent to (20a).
Furthermore, inverting Eq. (19) to get Eq. (21), shows E;; also obeys a -5/3 law in
the inertial range with different Kolmogorov constant.

3 Aliasing in sampling is a type of measurement error that occurs when a signal is
sampled at an insufficient rate, which results in a false lower frequency component,
or alias, in the sampled data. In present context, i, is affected by wave number
> K.

12



Figure 1: Representation in the wave number space of the different integrals:

e (16) integral over R3, equivalent to integration over sphere as k — oo.

e (17) and (18) integral over dk,dk5 plane intersecting k,, equivalent to
integration over intersection between sphere and k; plane as k — oo.

e (19)integral over k (black vector), when the radius of the sphere k is < k4,
the integral is not defined (i.e., no intersection of the radius of the sphere
and the dk,dk; plane intersecting k;); once k = k; the integral is defined
from K, to oo.

e (20a) integral over k; axis from 0 to co.

Animation Play the animation for the parameter r to visualize
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https://www.geogebra.org/m/xwarakgs

Inverting Eq. (19), gives the relation

E(K) — % K3 % (% dEleK(K)) (2 1) Proof in Appendix A.2

Similarly, since (Proof Chapter 4, Part 2, A.6)

_ 1 of(r)
90) = f@) 4575
then
_ 21 dE;q1 (k1) : )
E;y (1) = E33(ky) = E Ei1(k1) — K4 T Proof in Appendix A.4
1

And as per R,, = R33, E;, = E33; and are related to E (k) as follows:

1 (®E(k) K2 . ,
E,,(ky) = E33(ky) = —j 1+ — dk Proof in Appendix A.5
2)., K K
E(k) = —«k [dE(Zi—ZK(K) n JOOKldEZZ—K(Kl)dKl] Proof in Appendix A.6
K 1 1
1 dl
E(k) = —«k dr [EEii(K)] = —Ka [E Ei;(k)+ EZZ(K)] Proof in Appendix A.7
T (“E(k) _ :
L, = = - Proof in Appendix A.8
2u“Jo
“1
K =f {EEii(K)} dx Proof in Appendix A.9
0



Appendix A
A.O (also see Chapter 4 Part 2 A.5)

63’211 _ au](x]’) ax]" _
aT] _ui(x) axjr ar] =0
V-u 1

(vector = divergence 2" order tensor)

Rij(r) = Lgij(ﬂ)e_iﬂ@

OR;; . i

ar;] = [, —ir;€;j(x)e ™ TdK = 0
;€45 (xc) = 0
K 1= KjTj

A.l

The equivalency of equations (3) and (4) is shown as follows. Triple Integrals in
Spherical Coordinates:

(https://tutorial.math.lamar.edu/classes/calciii/tisphericalcoords.aspx)

4

x = psin @cos 6, y = psin @sin 8, z = pcos @
x% 4+ y? + z2% = p?

15


https://tutorial.math.lamar.edu/classes/calciii/tisphericalcoords.aspx

dV = p?%sin @dpdfde
jfff(x,y,z)dV = ffjpz sing f(psing cos0,psingsiné,pcos @)dpdfde

Using Spherical Coordinates, rewrite Eq. (4) as,

T 2T 0 1
E(k) = f f f E&‘ii(E)S( p —K)p?sin@ dpdfde
o Jo Yo
Apply

f 5(x — )g(X)dx = g(a)

T (2T 1
E(k) = j j =&;i(k)K?sinpd0de
0o Jo 2 7
with |E| = K.
Note the area dS(k) = k?sinpdfdgp

A

& Si/\qD ole
rsing . —
/// \\z \ //

)

/
v

\\

.4 | . \ . .

< ‘ ———-dA = =72
ai# | L dA = rsingd6 rd¢ = r°singpdfd¢p
e . ?6/ o
Vsl
3 -l", X T| ‘.: Y >
yarutts
v _

/// [ !

///_ _ 4o

1
E(x) = fzgii(ﬂ)ds(’()

16



A.2

Ei1(xy) = JOOE(K) (1 — K—%> dk

Kq K

dEll @ _ZK]_E(K) *®
= /| —dk=-2 E(k)k™3
ar, j’; 3 dix rclf (K

1 K1

Using Leibniz theorem:

da J,a , Oa
Where:
X=Ka=K
pP=Ky,q=>
d?’E ® _2E(k 2E (x
.y 0, , 260
dkl Kq K Kl
1 dEq1
K1 dicy
dKlz B Kl dKl Klz
Solving for E (k)

k2d*E;; Kk,{dE;;
2 d}clz 2 dKl

E(xqy) =

Letting k; = Kk

E(k) = =«3

1 [ ) dEll -1 d2E11
> —K

dk T K dr?

dx

d (1@ _ (19f(x,a) dq dp
| o= dx + f(@,0 1~ )

|

d [1 dEn]

di lx dx

17



A3

— 3
E(K)_ZK dx

1 ,d [1 dEll]
Kk dk

dE1y :
= 0 - min or max
dK,
E;1(k,) is either a minimum or a maximum. However, as shown in Eq. 1A,
dE
11 _ 9
dKy

which indicates that E;; (k;) is a decreasing function such that k; = O is a

maximum.

18



A4

af (r)
or

1
9 = f) +57 (24)

Taking the cosine Fourier transform of Eq. (2A) yields

Zf g(ry) cos(iyry) dry
0

of (1)
ory

cos(xyrp) dry| (34)

=2 jowf(rl) cos(kyry) dry + % U_O:o o)

Multiplying Eq. (3A) by ﬁ/n and using the definition of E;; (k) and E,,(k;) in
Eqg. (20) yields

cos(kry)dry| (44)

wWlre o
Eyp (k1) = Eq1(kp) + ;_n U;OO £t ];(7'71”1)

Considering the last term on the RHS of Eq. (4A)

u? (© 3f(r)

2w )_, ory

_ E joo d[r f (1) cos(i;7y)]
2m|)_,,

cos(ky1y) dry

dr; — foof(ﬁ) cos(k,17) dry

—00

o,

- j o f () siniyry) dn] 54)

19



And using the relation

dr; = [rf () cos(ic;7)] | 0 — [rf (1) cos(ic;71)] | =0

* 0[r f (ry) cos(iey11)]
j ar

— 00

Since f(r) approaches 0 faster than 1/r (Pope Ex. 6.4 Solution), Eq. (5A) becomes

u? (*  af(r)
2T _Oorl 67”1

cos(kyry) dry

w2 [ ® ”
=-o U f(ry) cos(iyry) dry + f K11 f (1) sin(xq 1) d’”l] (64)

Substituting Eq. (6A) into (4A)

) o 1)
Baali) = Bue) — | | F cost) dry o+ [ s st dn

And using the definition of E;; (k)

Eyp(ky) = E11 (1) — §E11(K1) - §K1 d—Kl
Results into
1 dE{(x;)
E;p (k1) = §<E11(K1) — K %) (74)

20



A.5

Combining Eq. (7A) with (8A)

1
Eyp(xy) = {[—

1

]

Focus on the last term in the RHS of Eq. (9A)

1 d
2 1 dK,
Using Leibniz theorem
1 jOOE(K)
2 ke, K

U""E(rc)
PR

And substituting Eqg. (10A) into (9A)

1

Eyp(xy) = { 5

1

{

2

j:E,(CK)
.[:E’(CK)

(&

(1
(1

f; E’(crc)

21

Kt
—— ) dxe

K

kg
—— ) dxe

K

(1+

“E(K)Kq

L

1 d JOOE(K)

2K1dK1 e, K
Ki

(1-3)+

ax )

3

(104)

ol
ol



A.6
“E (k)

1 2
E,,(ky) = EL (1 + %) dke  11(4)

1

Deriving (11A) with respect to k; yields

dE,;(x4) _ lfooE(K) (2¢,)dxc _%E(’ﬁ) (1 +K—%>

dr, 2 K3 Kq

dE5; (k1) _ jooE(K) v dic — E (i)

1
dr, K3 Kq

Where Leibniz theorem was used. The first term in the RHS can be rewritten using
the fundamental theorem of calculus as

jooE(K) K,dKk = JOOOE(K) K,dK — JOKlE(K) K,dK

3 3 3
K, K K K

And since E (k) approaches 0 faster than k « 1/r (similar reasoning Pope Ex. 6.4
Solution)

Taking a second derivative with respect to k (assuming k = k) yields

d (dE,,(x) _d j‘”E(K) p d leE(K) p d (E(x)

dc\ dx ) del, k@ T Ak, B T ae\
And since E (k) approaches 0 faster than k « 1/r (similar reasoning Pope Ex. 6.4
Solution)

K2 dk

d (dE;;(x) _E(K1) d (E(x)
d_< dx >— <—> (124)

The last term on the RHS can be decomposed applying the product rule for
derivatives

dk\ k Kk dk K2

d (E(K)) B _ldE(K) +E(K)

22



And substituting into Eq. (12A), where we assumed that k = k; gives

d (dEZZ(K)> B _ldE(K)

dx dx Kk dk

Or equivalently

dE(x) d (dE,,(k)
dk __K&< dk )

Integrating by parts

dE “dE
zz(K)+ 22(K) dic

Elie) = —x dx 0 dx

Substituting k; = Kk in the last term of the RHS, and using the fundamental
theorem of calculus

dE;, (k) joo dE;; (k1) jKdEzz(M)
4| =l gy, o | 2R
0 0

E(k) = —k di, (134)

dx dK, dKy

E5; (k)

2
dx

EG) = -2 | b B0 — Eyp(1) + EortO

E(k) = —«k

dE dE 1
ZZK(K) - EEZZ(K) = _K( ZZK(K) + EEZZ(K)>

Focus on the last term

1 “ 1 dE,,

1 1 r® *°1
CEp () = —Ep (k) = — | dEp(e) = | —dEype) = [ —
» 22(K) K, 22 (K1) Kl-[;c 22 (K1) L Ky 22 (K1) .L i, di,

dKy

Where the integrals do not start from 0 because i, in undefined for k = 0.

Therefore

E(x) = — —
(k) K( T +j;) K dr dr,

23



A.7

E(k) = =Kk3—

2 dk

1 d [1 dE,
Kk dk

] (114)
Assuming k; = Kk, Eq. (7A) becomes

1 dE;; (k)
EZZ(K)f Es3(k) = E<E11(K) —K dre ) (124)

isotropy

Isolating dE;,(x)/dk in Eq. (12A) yields

dE; (k) _ E11(x) — 2E3;,(x)
de k

Substituting this relation into Eq. (11A)

E(K) =§

1 .,d E11(k) — 2E5, (k)
K a[ 2 ] (134)

Calculating the derivative in Eq. (13A)

00 =51 (£ - 2 2209 2 (5, 00 - 28,00
B = (dE;f") - 2 (")> k2 = 2(Ey (1) — 2E22<x>)x] (144)

24



Substituting Eq. (12A) for E,, (k) into (14A) yields

. 1 ((dE11(x) dE;; (k)
EOC)_E{( dk —2 dk )kz

2 B0~ (Bt ~ <)o

1 dE;; (k) dEy, (k) dEy; (k)
E(K)_E{K dxk 2K dxk 2K di

_ l —x dEq4(x) — ok dE3, (k)
2 dk dk

d

1
E(x) = _EKE(Ell(K) + 2E22(K))

dx

3 d
E(k) = —K—<2

L EnGo + Ezz(x)) (154)

Due to isotropy,

1
E3, (k) = E33(k) = Epp(x) = E(Ezz(’c) + E33(K)) (164)

Substituting Eq. (16A) into (15A)

1 d
E(x) = _E’Ca(En(K) + Ezp (k) + E33(K)) = _EK dK

25



A.8

The definition of the longitudinal integral scale is

Ly, = joof(ﬁ)dﬁ = 7TE11_(0) (174)
0 2u?

The relation between E;;(k;) and E (k) is

And evaluating it at k; = 0 yields

Ey,(0) = jw@dk (194)
0

Substituting Eq. (19A) into (17A)

_nEn(O): T jOOE(K)d;c
0

11 — — —
2u? 2u? K
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A.9

= T

Integrating with respect to Kk between 0 and oo

(00

LOOE(K) di = j; —K%[%Eii(lc)] dxk

J { 5 Eu)] - 5 Ea0) e

Where:
[} elgtueo]ax=[xzra00]
OdKKZiiK K—KziiKO
[K%Eii(lc)]o = 0 since k = 0 and E;;(0) is a finite quantity

[K%Eii(K)]oo = 0 since E;; (k) approaches 0 faster than k « 1/r (similar

reasoning Pope Ex. 6.4 Solution)

K = .[000 {%Eii(rc)}dlc

Therefore,
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1@ 10f (x, a) dq dp
Za), Teow= | T Ea e g - feog

1 “E(k) (2K, dE,,
B =g | () ae g
1
“E(x dE
E(K1)=K1zj (3)d - 1d22
K 1
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