Chapter 4: Turbulence at Small Scales

Part 4: Inertial Subrange

Recall:

K(t) = fooE(k, t)dk
0

E (k,t) shows how the TKE is distributed among the different scales of the flow.

k=1 = length scale of eddy associated with wave number k.

Richardson cascade, Kolmogorov hypotheses, theory of isotropic turbulence and
dimensional analysis lead to the “most famous and prominent” feature of high Re
turbulence: the universal power law form of the energy spectrum in the inertial
subrange.

1. KolmogoroV’s first similarity hypothesis.
In every turbulent flow at sufficiently high Reynolds number, the statistics of
the small-scale motions ( | < l,) have a universal form that is uniquely
determined by v and €. Note e = El.

In the universal equilibrium range, the turbulence is isotropic:
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Using €, v to non-dimensionalize E and k:
E(k) = (ev®)Y*@(kn) = nu,2(kn)

Where u,, = v, and @ (kn) = Kolmogorov spectrum function.
Alternatively, using &, k to non-dimensionalize E’

E(k) = e?/3k=53Y(kn)
Where W(kn) = compensated Kolmogorov spectrum function.

W(kn) = (kn)> o (kn)
And kn > 2nn/l,.
. Kolmogorov’s second similarity hypothesis
In every turbulent flow at sufficiently high Reynolds number, the statistics of
the motions of scale l in the range l; <l < [, have a universal form that is

uniquely determined by &, independent of v.
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Or in terms of kn:

1> kn > n/l,
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In the inertial subrange E (k) = f (&) only; thus, for kn < 1, ¥ becomes
independent of k7, i.e., = constant=C.

E(k) = Ce?/3k™>/3 | Kolmogorov -5/3 spectrum

C~1.5 = Kolmogorov universal constant.

E(k) is a power law spectrum = CAk™P, wherep = 5/3, A = £2/3,

Most turbulence data come from stationary single point time series, which are
converted to spatial data using Taylor’s frozen turbulence hypothesis to obtain
one-dimensional spectra that can be related to the 3D spectra using theory of
isotropic turbulence (tensors).
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Fig. 6.1. Eddy sizes £ (on a logarithmic scale) at very high Reynolds number, showing
the various lengthscales and ranges.
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Fig. 6.12. Wavenumbers (on a logarithmic scale) at very high Reynolds number
showing the various ranges.
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ABSTRACT

Turbulent skies have often inspired artists, particularly in the iconic swirls of Vincent van Gogh's The Starry Night. For an extended period,
debate has raged over whether the flow pattern in this masterpiece adheres to Kolmogorov's theory of turbulence. In contrast to previous
studies that examined only part of this painting, all and only the whirls/eddies in the painting are taken into account in this work, following
the Richardson-Kolmogorov's cascade picture of turbulence. Consequently, the luminance’s Fourier power spectrum spontaneously exhibits
a characteristic —5/3 Kolmogorov-like power-law. This result suggests that van Gogh had a very careful observation of real flows, so that not
only the sizes of whirls/eddies in The Starry Night but also their relative distances and intensity follow the physical law that governs turbulent
flows. Moreover, a “~1"-like power-law persists in the spectrum below the scales of the smallest whirls, hinting at Batchelor-type scalar turbu-
lence with a high Schmidt number. Our study, thus, unveils the hidden turbulence captured within The Starry Night.
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o 20000 FIG. 2. (a) A high-resolution van Gogh's
The Stamy Night obtained from htips/
arsandculture.google.com with a size

= 100 =T of 92.1cmx737cm and 30000 pixel
2 i %2375 pixel. Visually, the sky seems b
B 10000 = be flowing with swiriing eddies. (b) Gray
= = version of the The Starry Night, where
the region studied by Finlay™® is ilustrated

000 by a white square. The non-flow part is

masked out manually. The whids/eddies
are recognized by naked eyes.
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Luminance measures the amount of light emitted, passed through, or reflected from
a particular area. It indicates how bright a surface will appear to the human eye. It is
closely tied to a surface’s physical characteristics and is essential because it affects
how we see and understand the world.



The Wiener-Khinchine theorem:

This theorem states that, for the luminance (e.g., the gray-scale field

Y defined above), its Fourier power spectrum Es(k) and the autocorre-
lation function pg(r) are a Fourier transform pair, which are written as
follows:

Eo(K) = jpg{r) axp(—i2akr) dr, pe(r) = ng{k) axpliznkr) dk,
®)

where j = =) is a complex unit, k = 1/r is the wavenumber, and r
is the distance between two points in the physical space. The autocor-
relation function is defined as pg(r) = (#/(x 4+ r)#(x)), in which
#(x) = 0(x) — (@) is the scalar variation in space and (-} means
ensemble average. p(r) can be estimated when there are missing data,
and in such case, an additional step is involved to correct the missing
data effect; see detail of this algorthm in Ref. 45. In the case of scale
invariance, one expects a power-law behavior of Es(k) written as
follows:

Eg(k) oc kPs, (7)

where fiy = 0 is the scaling exponent that can be determined expeni-
mentally or through theoretical considerations; for example, i = 5/3
for the velocity spectrum of high Reynolds number flows. "
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FIG. 3. Experimental Fourier power spectrum Ea(k), where the black and red lines
indicate the power-law behaviors in the ranges 6.67 = 0 2an ' sk=233
%10 em ! (ig, 210 'piel ™ k=7 2 10 pixel™)_and 6.67 107"
em' =k=10cm' (e, 2x10 "pixel ' =k=3: 10 “pixel '), respec-
tively. For clarity, the curve Eg(ky) has been shifted up by multiplying a factor of 10.
The inset shows the compensated curves E;(k)kC— using the comesponding
scaling exponents f§; and prefactors C to emphasize the powerdaw behaviors.

Before making the analysis, the original image is converted from
the red-green-blue scale to the gray-scale using the following formula:

Y = 0.2125R + 0.7154G + 0.0721B, (5)

where R, G, and B represent the intensity for each color channel. The
function color.rgb2gray from the Python scikit-image package is uti-
lized for this transformation, which can well preserve the flow struc-
tures.”* In addition, the church, mountain, and village are masked out
to exclude the potential influence of these non-flow-like elements, see
Fig. 2(b). The so-obtained gray-scale field is subsequently treated as a
passive scalar field for the following analysis.

FIG. 7. (a) Chain Per, Brighton painted by John Constable in 1827, obtained from hitps//www.lale.org.uk. The land and the cloud sky are separated by the red line. (b)
Experimental Fourier power spectrum Es(k) of Chain Pler, Brighton. The green and purple dashed lines indicate power-aw behaviors in the range 5 x 10'3pixe|’1 =k=25
%102 pixel ™" (ie., 42 x 107 2cm~! k=21 x10"cm') and 10 2 pixel " <k <10 " pixel " (ie, 83 x 10 2em! =k=83x 10 ' cm') for the data in the
horizontal and vertical directions, respectively. For display clanity, the curve of E;(k, ) has been shifted up vertically by multiplying a factor of ten. The red solid and brown dashed

lines are compensated curves £;(k)k® b highlight the —5 /3 scaling.
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