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Chapter 4: Turbulence at Small Scales 

Part 3: The smallest scales 

Kolmogorov: for sufficiently high Re, universal small-scale equilibrium (dissipation 

scales) depends on two main parameters, i.e., viscosity 𝜈 and the dissipation rate 

ε. Therefore, using dimensional analysis: 

 

𝜂 = (𝜈3/ε)1/4 

 

𝑡𝑑 = (𝜈/ε)
1/2 

 

𝑣𝑑 =
𝜂

𝑡𝑑
= (𝜈ε)1/4 

 

𝜂~1/𝑘𝑑 where 𝑘𝑑 = 2𝜋/𝑙𝑑  represents the peak in the dissipation spectrum.  

Lower limit since EFD shows 𝑘𝑑~𝛼/𝜂 where 𝛼 = 0.1 − 0.15 and most of the 

dissipation occurs for 𝑘 < 0.5/𝜂.  That is, 𝑙𝑑 = 2𝜋𝜂/.125 = 50𝜂 (vs. 60 given in 

Pope) and most of the dissipation occurs for 𝑙 < 12.5𝜂. 

 

Recall that  

ε = 2𝜐𝑒𝑖𝑗𝑒𝑖𝑗 =
𝜐

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)

2
    (1) 

𝜀 = 𝜀̃ + 𝜐
𝜕2𝑢𝑖𝑢𝑗
𝜕𝑥𝑖𝜕𝑥𝑗

= 𝜐(𝑢𝑖,𝑗𝑢𝑖,𝑗 +
𝜕2𝑢𝑖𝑢𝑗
𝜕𝑥𝑖𝜕𝑥𝑗

) 

 

and for isotropic turbulence 

𝜀̃ = 𝜐𝑢𝑖,𝑗𝑢𝑖,𝑗 = 𝜀     (2) 

 

since for isotropic turbulence 
𝜕2𝑢𝑖𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
= 0. 

Length scale 

Time scale = turn over time 

Velocity scale 
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Also, it has been shown that 𝜀 is related to ℛ𝑖𝑖 

 

𝜀

𝜐
= 𝑢𝑖,𝑘𝑢𝑖,𝑘 = −

𝜕2ℛ𝑖𝑖(0)

𝜕𝑟𝑘
2      (3) 

Equation (3) can be evaluated using several approaches to show the relationship 

between 𝜀 and 𝑓′′(0), i.e., 𝜆𝑓 and 𝜆𝑔; and relationship between 𝑓′′(0) and 𝑢𝑥
2.  

Which enable measurements of 𝜀 from single point time series or 1D spatial/line 

statistics. 

 

1. Pope (2000).   

𝑓′′(0) = −2/𝜆𝑓
2 can be related to 

𝜕𝑢

𝜕𝑥

2
 and thus 𝜀. 

𝑢2𝑓(𝑟) = 𝑢(𝑥)𝑢(𝑥 + 𝑟) 

𝑢2𝑓′(𝑟) = 𝑢(𝑥)
𝜕

𝜕𝑟
𝑢(𝑥 + 𝑟) 

                 = 𝑢(𝑥)
𝜕𝑢(𝑥′)

𝜕𝑥′
𝜕𝑥′

𝜕𝑟
 

𝑢2𝑓′′(𝑟) = 𝑢(𝑥)
𝜕

𝜕𝑟
(
𝜕𝑢(𝑥′)

𝜕𝑥′
) 

                           = 𝑢(𝑥)
𝜕

𝜕𝑥′
(
𝜕𝑢(𝑥′)

𝜕𝑥′
)
𝜕𝑥′

𝜕𝑟
 

            = 𝑢(𝑥)
𝜕2𝑢(𝑥′)

𝜕𝑥′2
 

 

𝜕

𝜕𝑥′
(𝑢𝑢𝑥′) − 𝑢𝑥′

2 = 𝑢𝑥′
2 + 𝑢𝑢𝑥′𝑥′ − 𝑢𝑥′

2 

 

 

Homogeneous 

turbulence 

𝜕𝑓

𝜕𝑟
= 𝑓′ 

Appendix A.4 provides more general derivation considering vector 𝑥𝑖  vs. scalar 𝑥 as per below. 

𝑥′ = 𝑥 + 𝑟 
𝜕𝑥′

𝜕𝑟
= 1 

Which implicitly assumes 
𝑥 and 𝑟 are independent, 

i.e., 
𝜕𝑥

𝜕𝑟
= 0 
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Applying lim 𝑟 → 0, 𝑥′ → 𝑥: 

𝑢2𝑓′′(0) = −𝑢𝑥
2 

i.e., 

(
𝜕𝑢

𝜕𝑥
 )
2

=
2𝑢2

𝜆𝑓
2  

 

Next, show relationship between 𝑢𝑥
2 and 𝜀. 

 

In homogeneous isotropic turbulence the 4th order tensor 

 

𝑢𝑖,𝑗𝑢𝑘,𝑙  

 

is isotropic so it can be written by using the Kronecker delta (Pope Ex. 5.28): 

 

𝑢𝑖,𝑗𝑢𝑘,𝑙 = 𝛼𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛽𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛾𝛿𝑖𝑙𝛿𝑗𝑘 

 

For 𝑗 = 𝑖, 𝑢𝑖,𝑖𝑢𝑘,𝑙 = 0 

 

𝛼𝛿𝑖𝑖𝛿𝑘𝑙 + 𝛽𝛿𝑖𝑘𝛿𝑖𝑙 + 𝛾𝛿𝑖𝑙𝛿𝑖𝑘 = 0 

 

(3𝛼 + 𝛽 + 𝛾)𝛿𝑘𝑙 = 0 

i.e., 

3𝛼 + 𝛽 + 𝛾 = 0     (4) 

For 𝑘 = 𝑗, 𝑢𝑖,𝑗𝑢𝑗,𝑙 

𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗,𝑙)

⏟      
= 𝑢𝑖,𝑗𝑢𝑗,𝑙 + 𝑢𝑖

𝜕2𝑢𝑗
𝜕𝑥𝑗𝜕𝑥𝑙⏟      

= 0 

 

 

 

= 0 

homogeneous 

= 0 

continuity 
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𝛼𝛿𝑖𝑗𝛿𝑗𝑙 + 𝛽𝛿𝑖𝑗𝛿𝑗𝑙 + 𝛾𝛿𝑖𝑙𝛿𝑖𝑗 = 0 

𝛼 + 𝛽 + 3𝛾 = 0     (5) 

 

Subtracting Eq. (5) from Eq. (4) yields 

2𝛼 − 2𝛾 = 0 

𝛼 = 𝛾 

𝛽 = −4𝛾     

𝛼 = −𝛽/4 

𝑢𝑖,𝑗𝑢𝑘,𝑙 = 𝛽 (𝛿𝑖𝑘𝛿𝑗𝑙 −
1

4
𝛿𝑖𝑗𝛿𝑘𝑙 −

1

4
𝛿𝑖𝑙𝛿𝑗𝑘) 

𝑢1,1
2 = 𝛽/2 

𝑢1,2
2 = 𝛽 (𝛿11𝛿22 −

1

4
𝛿12𝛿12 −

1

4
𝛿12𝛿12) = 𝛽 

 

𝑢1,1𝑢2,2 = 𝛽 (𝛿12𝛿12 −
1

4
𝛿11𝛿22 −

1

4
𝛿12𝛿12) = −

𝛽

4
 

𝑢1,2𝑢2,1 = 𝛽 (𝛿12𝛿21 −
1

4
𝛿12𝛿21 −

1

4
𝛿11𝛿22) = −𝛽/4 

𝑢1,2
2 = 2𝑢1,1

2  

𝑢1,1𝑢2,2 = 𝑢1,2𝑢2,1 = −
1

2
𝑢1,1
2  

𝜀̃ = 𝜈𝛽 (𝛿𝑖𝑖𝛿𝑗𝑗 −
1

4
𝛿𝑖𝑗𝛿𝑖𝑗 −

1

4
𝛿𝑖𝑗𝛿𝑖𝑗) 

𝜀̃ = 𝜈𝛽 (9 −
3

4
−
3

4
) =

30

4
𝜈𝛽 

𝜀̃ =
60

4
𝜈𝑢1,1

2 = 15𝜈𝑢1,1
2  

 

𝑖 = 𝑗 = 𝑘 = 𝑙 = 1 

𝑖 = 𝑘 = 1 

𝑗 = 𝑙 = 2 

𝑖 = 𝑗 = 1 

𝑘 = 𝑙 = 2 

𝑖 = 𝑙 = 1 

𝑗 = 𝑘 = 2 

𝑖 = 𝑘 

𝑗 = 𝑙 
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𝜀 = 𝜀̃ = 30𝜈
𝑢2

𝜆𝑓
2  

             = 15𝜈
𝑢2

𝜆𝑔
2

 

 

𝑓′′(0) = −2/𝜆𝑓
2 

𝜆𝑓
2 = −2/𝑓′′(0) 

𝜀 = −15𝜈𝑢2𝑓′′(0) 

 

𝜆𝑓 = √2𝜆𝑔 
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2. Bernard (2019) 

 

ℛ𝑖𝑗(𝑟) = 𝑢
2 [(𝑓 +

𝑟

2

𝑑𝑓

𝑑𝑟
) 𝛿𝑖𝑗 −

𝑟𝑖𝑟𝑗
𝑟2
𝑟

2
 
𝑑𝑓

𝑑𝑟
] 

 

Taking derivative with respect to 𝑟𝑗 

 
𝜕ℛ𝑖𝑖
𝜕𝑟𝑗

= 𝑢2
𝜕

𝜕𝑟𝑗
(3𝑓 + 𝑟𝑓′) = 𝑢2

𝜕

𝜕𝑟
(3𝑓 + 𝑟𝑓′)

𝜕𝑟

𝜕𝑟𝑗
 

= 𝑢2 (3𝑓′ + 𝑟𝑓′′ + 𝑓′
𝜕𝑟

𝜕𝑟
)
𝑟𝑗
𝑟

 

= 𝑢2 (4𝑓′
𝑟𝑗
𝑟
+ 𝑟𝑗𝑓

′′)     (6) 

 

Taking another derivative with respect to 𝑟𝑗 

 

𝜕2ℛ𝑖𝑖

𝜕𝑟𝑗
2 = 𝑢2

𝜕

𝜕𝑟𝑗
(4𝑓′

𝑟𝑗
𝑟
+ 𝑟𝑗𝑓

′′) 

= 𝑢2 (4
𝑟𝑗
𝑟

𝜕𝑓′

𝜕𝑟

𝜕𝑟

𝜕𝑟𝑗
+ 4𝑓′

𝜕(𝑟𝑗/𝑟) 

𝜕𝑟𝑗
+ 𝑟𝑗

𝜕𝑓′′

𝜕𝑟

𝜕𝑟

𝜕𝑟𝑗
+
𝜕𝑟𝑗
𝜕𝑟𝑗
𝑓′′) 

= 𝑢2 (4
𝑟𝑗
𝑟

𝑟𝑗
𝑟
𝑓′′ +

4𝑓′

𝑟

𝜕𝑟𝑗  

𝜕𝑟𝑗
+ 4𝑓′𝑟𝑗 (−

1

𝑟2
)
𝑟𝑗
𝑟
+
𝑟𝑗
𝑟
𝑟𝑗𝑓′′′ + 3𝑓

′′) 

= 𝑢2 (4𝑓′′ +
12𝑓′

𝑟
+ 4𝑓′ (−

1

𝑟
) + 𝑟𝑓′′′ + 3𝑓′′) 

= 𝑢2 (7𝑓′′ +
8𝑓′

𝑟
+ 𝑟𝑓′′′)     (7) 

 

Using Eq. (3) 

𝜀

𝜈
= −

𝜕2ℛ𝑖𝑖(0)

𝜕𝑟𝑗
2  
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And substituting Eq. (7), we obtain 

 

𝜀

𝜈
= −𝑢2 (7𝑓′′(0) +

8𝑓′(0)

𝑟
+ 𝑟𝑓′′′(0))     (8) 

 

Using a Taylor expansion around 𝑟 = 0 for 𝑓′, we obtain 

 

𝑓′(𝑟) = 𝑓′(0) + 𝑟𝑓′′(0) +
𝑟2

2!
𝑓′′′(0) +

𝑟3

3!
𝑓𝐼𝑉(0) + ⋯ 

 

Since 𝑓 is an even function. 

Dividing by 𝑟 and taking the limit for 𝑟 → 0 

 

𝑓′(0)

𝑟
= 𝑓′′(0) 

Substituting into Eq. (8) 

𝜀

𝜈
= −𝑢2(7𝑓′′(0) + 8𝑓′′(0)) 

 

𝜀

𝜈
= −15𝑢2𝑓′′(0)    (9) 

Using 𝜆𝑓
2 = −

2

𝑓′′(0)
  And substituting into Eq. (9), we obtain the relationship 

between 𝜀 and 𝜆𝑓 

𝜀 =
30𝜈𝑢2

𝜆𝑓
2  
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3. Kundu et al. (2016) 

𝜀 =
𝜈

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)

2
= 𝜈(𝑢𝑖,𝑗

2 + 𝑢𝑖,𝑗𝑢𝑗,𝑖) 

 

𝑢𝑖,𝑗
2 =

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

=
𝜕𝑢1
𝜕𝑥1

𝜕𝑢1
𝜕𝑥1

+
𝜕𝑢1
𝜕𝑥2

𝜕𝑢1
𝜕𝑥2

+
𝜕𝑢1
𝜕𝑥3

𝜕𝑢1
𝜕𝑥3

 

                                                              +
𝜕𝑢2
𝜕𝑥1

𝜕𝑢2
𝜕𝑥1

+
𝜕𝑢2
𝜕𝑥2

𝜕𝑢2
𝜕𝑥2

+
𝜕𝑢2
𝜕𝑥3

𝜕𝑢2
𝜕𝑥3

 

                                    +
𝜕𝑢3
𝜕𝑥1

𝜕𝑢3
𝜕𝑥1

+
𝜕𝑢3
𝜕𝑥2

𝜕𝑢3
𝜕𝑥2

+
𝜕𝑢3
𝜕𝑥3

𝜕𝑢3
𝜕𝑥3

 

𝑢𝑖,𝑗
2 = 3(

𝜕𝑢1
𝜕𝑥1

)
2

+ 6(
𝜕𝑢1
𝜕𝑥2

)
2

 

 

              
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑗
𝜕𝑥𝑖

=
𝜕𝑢1
𝜕𝑥1

𝜕𝑢1
𝜕𝑥1

+
𝜕𝑢1
𝜕𝑥2

𝜕𝑢2
𝜕𝑥1

+
𝜕𝑢1
𝜕𝑥3

𝜕𝑢3
𝜕𝑥1

 

                                                              +
𝜕𝑢2
𝜕𝑥1

𝜕𝑢1
𝜕𝑥2

+
𝜕𝑢2
𝜕𝑥2

𝜕𝑢2
𝜕𝑥2

+
𝜕𝑢2
𝜕𝑥3

𝜕𝑢3
𝜕𝑥2

 

                                      +
𝜕𝑢3
𝜕𝑥1

𝜕𝑢1
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥2

𝜕𝑢2
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥3

𝜕𝑢3
𝜕𝑥3

 

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑗
𝜕𝑥𝑖

= 3(
𝜕𝑢1
𝜕𝑥1

)
2

+ 6
𝜕𝑢1
𝜕𝑥2

𝜕𝑢2
𝜕𝑥1

 

 

𝜀 = 6𝜈 [(
𝜕𝑢1
𝜕𝑥1

)
2

+ (
𝜕𝑢1
𝜕𝑥2

)
2

+
𝜕𝑢1
𝜕𝑥2

𝜕𝑢2
𝜕𝑥1

] 
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𝑢𝑖,𝑘𝑢𝑗,𝑙 = −
𝜕2ℛ𝑖𝑗(0)

𝜕𝑟𝑘𝜕𝑟𝑙
 

For 𝑖 = 𝑗 = 𝑘 = 𝑙 = 1 

𝑢1,1
2 = −

𝜕2ℛ11(0)

𝜕𝑟1𝜕𝑟1
 

= −𝑢2
𝜕2

𝜕𝑟1
2 [𝑓 +

𝑟

2
𝑓′ (1 −

𝑟1
2

𝑟2
)] 

 

Using Taylor expansion for 𝑓(𝑟) 

𝑓(𝑟) ≈ 1 +
𝑟2

2
𝑓′′(0) 

 

𝑢1,1
2 = −𝑢2

𝜕2

𝜕𝑟1
2 [1 +

𝑟2

2
𝑓′′(0) +

𝑟2

2
𝑓′′(0) (1 −

𝑟1
2

𝑟2
)] 

            = −𝑢2
𝜕2

𝜕𝑟1
2 [1 + 𝑟

2𝑓′′(0) −
𝑟1
2

2
𝑓′′(0)] 

                                 = −𝑢2
𝜕

𝜕𝑟1
[2𝑟

𝑟1
𝑟
𝑓′′(0) − 𝑟1𝑓

′′(0)] = −𝑢2𝑓′′(0) 

For 𝑖 = 𝑗 = 1, 𝑘 = 𝑙 = 2 

𝑢1,2
2 = −

𝜕2ℛ11(0)

𝜕𝑟2𝜕𝑟2
 

                                                     = −𝑢2
𝜕2

𝜕𝑟2
2 [1 + 𝑟

2𝑓′′(0) −
𝑟1
2

2
𝑓′′(0)] 

                                                       = −𝑢2
𝜕

𝜕𝑟2
[2𝑟

𝑟2
𝑟
𝑓′′(0)] = −2𝑢2𝑓′′(0) 

 

 

Part 1 Eq. (8) 

Part 1 Eq. (8) 
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For 𝑖 = 𝑘 = 1, 𝑗 = 𝑙 = 2 

𝑢1,2𝑢2,1 = −
𝜕2ℛ12(0)

𝜕𝑟1𝜕𝑟2
 

                                            = −𝑢2
𝜕2

𝜕𝑟1𝜕𝑟2
[−
𝑟1𝑟2
𝑟2

𝑟

2
 𝑓′(0)] 

                                            = 𝑢2
𝜕2

𝜕𝑟1𝜕𝑟2
[
𝑟1𝑟2
2
 𝑓′′(0)] 

                     = 𝑢2
𝑓′′(0)

2
 

 

𝜀 = 6𝜈 [𝑢1,1
2 + 𝑢1,2

2 + 𝑢1,2𝑢2,1] 

                           = 6𝜈 [−𝑢2𝑓′′(0) − 2𝑢2𝑓′′(0) + 𝑢2
𝑓′′(0)

2
] 

                                               = 6𝜈𝑢2𝑓′′(0) [−1 − 2 +
1

2
] 

                                                = −15𝜈𝑢2𝑓′′(0) 

 

 

 

 

 

 

 

 

 

 

𝑓′(0) = 𝑟𝑓′′(0) 

Part 1 Eq. (8) 
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Alternatively, ε is determined by the largest scales, i.e., rate at which energy is 

extracted from the energy containing scales.  

 

𝑡𝑒 = time scale for energy loss from large scales, referred as eddy turnover time, 

represents the life span of eddies so that there is a turnover in their population 

occurring at this rate. 

𝑢𝑟𝑚𝑠
2 = energy of the large scales. 

𝑙𝑒 = eddy size of the large scales ≈ 𝛬. 

 

ε =rate of energy loss = 𝑢𝑟𝑚𝑠
2 /𝑡𝑒. 

 

𝑡𝑒 = 𝑙𝑒/𝑢𝑟𝑚𝑠. 

𝑙𝑒 = distance over which energy is lost 

 

Thus, ε = 𝑢𝑟𝑚𝑠
3 /𝑙𝑒. 

 

Comparing with small scale ε = 15𝜈
𝑢2

𝜆𝑔
2 : 

 

ε~
𝜐𝑢𝑟𝑚𝑠

2

𝜆2
~
𝑢𝑟𝑚𝑠
3

𝑙𝑒
          (𝜀 =

30𝜈𝑢2

𝜆𝑓
2 ) 

 

Therefore 

 
𝑙𝑒
𝜆
~𝑅𝜆 =

𝑢𝑟𝑚𝑠𝜆

𝜐
     (10) 
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Multiply numerator and denominator Eq. (10) by  
𝑢𝑟𝑚𝑠

𝜐
, to show that 𝑅𝑒~𝑅𝜆

2 is a 

turbulence Reynolds number with 𝜆 = 𝜆𝑓 or 𝜆𝑔 and 𝑅𝜆 > 102 used as criteria for 

turbulent flow. 

 

√𝑅𝑒~𝑅𝜆 

and 

𝑅𝑒 =
𝑢𝑟𝑚𝑠𝑙𝑒
𝜐

 

 

is a turbulence Reynolds number based on the physical size of the flow domain.   

Using the definition 𝜂 = (
𝜈3

𝜀
)
1/4

with ε~
𝜐𝑢𝑟𝑚𝑠

2

𝜆2
  

 
𝜂

𝜆
=

1

√𝑅𝜆
~

1

𝑅𝑒1/4 
 (11) 

 

showing that 𝜂 is smaller than 𝜆, but not much.  Using the ratio of (11) and (10) 

shows that  

 
𝜂

𝑙𝑒
~ 𝑅𝜆

−3/2
~𝑅𝑒−3/4  

 

Which represents the ratio of the smallest to largest scales in the flow.  Also using 

𝑢𝜂 = 𝑣𝑑 = (𝜀ν)
1

4, with ε~
𝜐𝑢𝑟𝑚𝑠

2

𝜆2
 shows that 

 
𝑣𝑑
𝑢𝑟𝑚𝑠

~𝑅𝜆
−1/2~𝑅𝑒−1/4  

 

Represents the ratio of velocities between the smallest and largest eddies.  
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Alternative reasoning can also be used to determine ratio between the Taylor and 

Kolmogorov scales [following Pope (2000)] 

 

Noting that 

𝜀 = 15𝜈
𝑢2

𝜆𝑔
2
     (12) 

 

 ε  can also be determined by the largest scales, i.e., rate at which energy is 

extracted from the energy containing scales.  

 

Define the following quantities for the large scales: 

▪ 𝑢𝑟𝑚𝑠
2 = 𝑘 → energy of the large scales 

▪ 𝐿 → eddy size of the large scales ≈ 𝛬 

▪ 𝑡𝑒 → time scale for energy loss from large scales, referred as eddy turnover 

time 

 

Using dimensional analysis, the rate of energy dissipation can be written as 

𝜀 =
𝑢𝑟𝑚𝑠
2

𝑡𝑒
=
𝑢𝑟𝑚𝑠
3

𝑙𝑒
 

Or equivalently using TKE 

𝜀 =
𝑘

𝑡𝑒
=
𝑘3/2

𝑙𝑒
 

Where: 

𝑘 =
1

2
(𝑢2 + 𝑣2 +𝑤2) 

𝑘 =
3

2
𝑢2 If isotropic 
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𝑢𝑟𝑚𝑠 = [
2

3
𝑘]
1/2

≈ 𝑘1/2 

 

Using the characteristic quantities of the large scales, 𝐿 can be defined as follows 

 

𝐿 ≡
𝑘3/2

𝜀
=
𝑢𝑟𝑚𝑠

3

𝜀
 

 

Then, the Reynolds number of the large eddies can be written as 

 

𝑅𝑒𝐿 =
𝑘1/2𝐿

𝜈
=
𝑘2

𝜀𝜈
     (13) 

 

Combining Eq. (12) and (13),  

 

𝑘1/2𝐿

𝜈
=

𝑘2

𝜈 15𝜈
𝑢2

𝜆𝑔
2

⏟  
𝜺

 

 

And solving for the ratio between the Taylor and large scales yields 

 

𝜆𝑔
𝐿
= √10𝑅𝑒𝐿

−1/2
     (14) 

 

 

 

Proof in Appendix A.1 
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Using the Kolmogorov dissipation scale definition, according to dimensional 

analysis 

𝜂 = (
𝜈3

𝜀
)

1/4

     (15) 

 

And substituting Eq. (15) into Eq. (12), 

 

𝜆𝑔 =
√15√𝑢2

𝜈
𝜂2     (16) 

 

Combining Eq. (14) and (16), it is possible to obtain the ratio between the 

Kolmogorov and largest scales 

 

𝜂

𝐿
= 𝑅𝑒𝐿

−3/4
     (17) 

 

Finally, combining Eq. (14) and (17), it is possible to obtain the ratio between the 

Kolmogorov and Taylor scales 

 

𝜂

𝜆𝑔
=

1

√10
𝑅𝑒𝐿

−1/4
 

 

Thus, at high Re, 𝜆𝑔 intermediate in size between 𝜂 and 𝐿. 

 

 

 

Proof in Appendix A.2 
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It is possible to use the Taylor scale to define the Taylor-scale Reynolds number  

 

𝑅𝜆 =
𝑢𝑟𝑚𝑠𝜆

𝜐
     (18) 

 

Which is used to characterize grid turbulence. 

 

Combining Eq. (13), (14) and (18), the relationship between 𝑅𝑒𝐿 and 𝑅𝜆 is obtained 

 

𝑅𝜆 = (
20

3
𝑅𝑒𝐿)

1/2

 

 

These results can be used to estimate the cost of DNS simulations based on grid 

size and time step required for spatial and temporal resolution of the flow vs. 

computational power (Bernard pg. 57).  

 

Number of mesh points for turbulent flow simulation ~𝑂(𝑅𝑒
9

4). 

 

Number of time steps ~𝑂(𝑅𝑒3/4 ).  

 

Total number of operations ~𝑂(𝑅𝑒3 ). 

 

 

 

 

Proof in Appendix A.3 
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Appendix A  

A.1 

𝑘1/2𝐿

𝜈
=

𝑘2

15𝜈
𝑢2

𝜆𝑔
2 𝜈

 

Rewrite as 

𝜆𝑔
2

𝐿
=
15𝜈2𝑘1/2𝑢2

𝜈𝑘2
 

 

Divide by 𝐿 on both sides and simplify 

 

𝜆𝑔
2

𝐿2
=
15𝜈𝑢2

𝐿𝑘3/2
= 15 (

𝜈

𝐿𝑘1/2
)

⏟    
(
𝑢2

𝑘
)

⏟  
   

 

Apply square root 

𝜆𝑔
𝐿
= √15√2/3𝑅𝑒𝐿

−1/2
= √10𝑅𝑒𝐿

−1/2
 

 

 

 

 

 

 

 

 

𝑅𝑒𝐿
−1      2/3 
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A.2 

𝜆𝑔
𝐿
= √10𝑅𝑒𝐿

−1/2
     (𝐴1) 

𝜆𝑔 =
√15√〈𝑢2〉

𝜈
𝜂2     (𝐴2) 

Rewrite (A1) as 

𝜆𝑔 = 𝐿√10𝑅𝑒𝐿
−1/2

 

And substitute in (A2) 

𝐿√10𝑅𝑒𝐿
−1/2

=
√15√〈𝑢2〉

𝜈
𝜂2 

Multiply both sides by 𝐿  and rewrite as 

𝜂2

𝐿2
=
𝜈√10𝑅𝑒𝐿

−1/2

𝐿√15√〈𝑢2〉
= √

2

3

𝜈𝑅𝑒𝐿
−1/2

𝐿√〈𝑢2〉
 

Using the relation  

𝑘 =
3

2
〈𝑢2〉  ⇒ 𝑘1/2 = √

3

2
〈𝑢2〉 

Yields  

𝜂2

𝐿2
=
𝜈𝑅𝑒𝐿

−1/2

𝐿𝑘1/2
= 𝑅𝑒𝐿

−1𝑅𝑒𝐿
−1/2

= 𝑅𝑒𝐿
−3/2

 

 

Apply square root 

𝜂

𝐿
= 𝑅𝑒𝐿

−3/4
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A.3 

𝑅𝑒𝐿 =
𝑘1/2𝐿

𝜈
=
𝑘2

𝜀𝜈
 

𝑅𝜆 =
√〈𝑢2〉𝜆

𝜐
 

 

𝜆𝑔

𝐿
= √10𝑅𝑒𝐿

−1/2
     (𝐴3) 

 

Multiply Eq. (A3) by √〈𝑢2〉/𝜐 

√〈𝑢2〉
𝜆𝑔
𝜐𝐿
=
√〈𝑢2〉

𝜐
√10𝑅𝑒𝐿

−1/2
 

𝑅𝜆 =
𝐿√〈𝑢2〉

𝜐
√10𝑅𝑒𝐿

−1/2
 

Multiply and divide by √
3

2
 

𝑅𝜆 = √
2

3
√
3

2

𝐿√〈𝑢2〉

𝜐⏟      
√10𝑅𝑒𝐿

−1/2
 

 

 

𝑅𝜆 = √
20

3
𝑅𝑒𝐿

1/2
 

 

 

 

𝑅𝑒𝐿      
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A.4 
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