Chapter 4: Turbulence at Small Scales

Part 3: The smallest scales

Kolmogorov: for sufficiently high Re, universal small-scale equilibrium (dissipation
scales) depends on two main parameters, i.e., viscosity v and the dissipation rate
€. Therefore, using dimensional analysis:

n=(3/e)

Length scale

tg = (V/S)l/z Time scale = turn over time

Velocity scale

Ui
vy = ” = (ve)l/4

n~1/k; where k; = 2m/l; represents the peak in the dissipation spectrum.
Lower limit since EFD shows k;~a/n where ¢ = 0.1 —0.15 and most of the
dissipation occurs for k < 0.5/n. Thatis, l; = 2nn/.125 = 50n (vs. 601 given in
Pope) and most of the dissipation occurs for | < 12.57.

Recall that
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Also, it has been shown that ¢ is related to R;;
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Equation (3) can be evaluated using several approaches to show the relationship

between € and f'(0), i.e., A4r and A;; and relationship between f”'(0) and u2.

Which enable measurements of € from single point time series or 1D spatial/line
statistics.

1. Pope (2000). Appendix A.4 provides more general derivation considering vector x; vs. scalar x as per below.
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Applyinglimr - 0,x" - x:

Next, show relationship between u_,% and €.

In homogeneous isotropic turbulence the 4™ order tensor

Ui jUk,1
is isotropic so it can be written by using the Kronecker delta (Pope Ex. 5.28):
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a5ij5jl + ﬁ6l]6]l + y6il6ij =0
a+pL+3y=0 (5

Subtracting Eq. (5) from Eq. (4) yields
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2. Bernard (2019)
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Taking derivative with respect to 7;
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Taking another derivative with respect to r;
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Using Eq. (3)



And substituting Eq. (7), we obtain

8f'(0)
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- = —¥<7f"<0) F rf"'(0)> (8)

Using a Taylor expansion around r = 0 for f', we obtain
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Since f is an even function.

Dividing by r and taking the limit forr = 0
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Substituting into Eq. (8)
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Using /1)% = And substituting into Eq. (9), we obtain the relationship
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3. Kundu et al. (2016)
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Note that the continuity equation requires derivative moments in the third set of equalities of

12.36) to be zero when n = 1.
uizj _ ou; du; _ du, du; Juy0u; Ju,0u,
7 0xj0x;  0xy 0x;  0xy 0x;  0x3 0x3
du, du, OJu,du, Jdu,adu,
dx, 0x; 0x,0x, O0x30x3
Ju; du; Ouzdus OJu;dus
0x, 0x; 0x,0x, 0Ox30x3
duy\ 2 duq\
b 0x, +6 0x,
ou; 0u;  O0uy duy  Ouy Ju,  Ou, Jug
0x; 0x; 0xq0x; 0xy0x; 0x30x%;
du, du; Ju,0u, OJ0u,du,
dx, 0x, 0x,0x, 0x30x,
Juz du; Oduzdu, Juzdus
0x; 0x3 0x, 0x3 0x30x3
AT URTE I
dx; 0x; 0x, dx, 0x4
> -
o= ov|(2) 4 () 4
d0x, 0x, dx, 0x,



Ui Ui = arkarl Part 1 Eq. (8)
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Alternatively, € is determined by the largest scales, i.e., rate at which energy is
extracted from the energy containing scales.

t, = time scale for energy loss from large scales, referred as eddy turnover time,
represents the life span of eddies so that there is a turnover in their population
occurring at this rate.

u2, . = energy of the large scales.

[, = eddy size of the large scales = A.

€ =rate of energy loss = u?,,. /t,.

te = le/urms-

l, = distance over which energy is lost

Thus, € = ud,,5/1,.

u2

Comparing with small scale € = 15v -
g

Therefore

[ UpmsA
~~R=—"— (10
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Urms
v

turbulence Reynolds number with A = A or A; and R, > 10% used as criteria for
turbulent flow.

, to show that Re~R;12 is a

Multiply numerator and denominator Eq. (10) by

VR6~R/1
and
Uy o |
Re — rms*e
v

is a turbulence Reynolds number based on the physical size of the flow domain.

v3\1/4 vu?
Using the definitionn = (:) with e~ —/=

A2

1
172 (11)

n_ 1
1~ JR, Re

showing that 7 is smaller than A, but not much. Using the ratio of (11) and (10)
shows that

1 R;3/2~Re-3/4

Le

Which represents the ratio of the smallest to largest scales in the flow. Also using

1
rms

2
Uy, = vg = (ev)s, with e~ WT shows that

Vg ~RA_1/2~R6_1/4

urms

Represents the ratio of velocities between the smallest and largest eddies.
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Alternative reasoning can also be used to determine ratio between the Taylor and
Kolmogorov scales [following Pope (2000)]

Noting that

uz

€= 151/g (12)

€ can also be determined by the largest scales, i.e., rate at which energy is
extracted from the energy containing scales.

Define the following quantities for the large scales:

= u? . =k - energy of the large scales

= [ — eddy size of the large scales = A

= t, — time scale for energy loss from large scales, referred as eddy turnover
time

Using dimensional analysis, the rate of energy dissipation can be written as

2 3
_ Urms _ Urms

Or equivalently using TKE

Where:

1
k=§(u2+U2+W2)

If isotropic k = Eﬁ
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2 112
Urms = [§ k] ~ k2

Using the characteristic quantities of the large scales, L can be defined as follows

3/2 3
k3/ _ Urms

& &

L

Then, the Reynolds number of the large eddies can be written as

kYL k2
Combining Eq. (12) and (13),
k2L k?
v o 12
v 151/;‘—2
9

And solving for the ratio between the Taylor and large scales yields

Proof in Appendix A.1

2 _
Tg = V10Re; * (14)
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Using the Kolmogorov dissipation scale definition, according to dimensional
analysis
~ V3 1/4 15
n=\7 (15)
And substituting Eq. (15) into Eq. (12),

V15V u?
Jg ==——1* (16)

Combining Eq. (14) and (16), it is possible to obtain the ratio between the
Kolmogorov and largest scales

g = ReL_g/4 (17) Proof in Appendix A.2

Finally, combining Eq. (14) and (17), it is possible to obtain the ratio between the
Kolmogorov and Taylor scales

Thus, at high Re, Ag intermediate in size between 1 and L.
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It is possible to use the Taylor scale to define the Taylor-scale Reynolds number

urms /1

R/l = (18)

Which is used to characterize grid turbulence.

Combining Eqg. (13), (14) and (18), the relationship between Re; and R, is obtained

1/2

20
Ry = (?ReL) Proof in Appendix A.3

These results can be used to estimate the cost of DNS simulations based on grid
size and time step required for spatial and temporal resolution of the flow vs.
computational power (Bernard pg. 57).

9
Number of mesh points for turbulent flow simulation ~O (Re+).
Number of time steps ~O(Re3/4).

Total number of operations ~O(Re3).
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Appendix A
A.l

Rewrite as

kl/ZL k2
v )
151/1/{—21/
g

A2 15v2kY2y2

L vk?2

Divide by L on both sides and simplify

%
L2

Apply square root
A

151/?_ . % u?
=Tz =L (Lkl/z) k

Tg = \/Ew/2/3ReL_1/2 = \/EReL_l/2
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A.2

Rewrite (A1) as
Ag = LVI0Re, */*

And substitute in (A2)

_ V15 (u?
LV10Re; /* = —V<” ) 2

Multiply both sides by L and rewrite as

n’ vW10Re; /* B 2vRe, M/

L VIsJ@?) A3 LJ@d)

k =%(u2) = k1/2 = B(uz)

n’ vReL_l/2

12 Lk1/2

Using the relation

Yields

= Re;'Re; "/* = Re;/*

Apply square root

— Re;3/4—
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A3
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Multiply Eq. (A3) by /(u?)/v
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