Chapter 4: Turbulence at Small Scales

Part 1: Spectral Representation of &

For homogeneous/isotropic turbulence € = ¢, since
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Consider the following terms:
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Substituting (1) into LHS term in parentheses in (2) shows that (2) = (3).

In homogeneous turbulence, the fluctuating velocity g(g,t) is statistically
homogeneous, and the time-averaged properties of the flow are uniform and
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independent of position, i.e., Efluctuatlng terms = 0. Therefore,
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For homogeneous turbulence, the two-point velocity correlation tensor R;; (x, y, t)

depends only on the relative position of x, y and not their absolute positions:
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wherer =y —x->n =y, — x;.
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where the dependence on time is implied for ensemble averaging. Differentiating
Rij (g) with respect to x; (gradient of 2" order tensor is third order tensor).
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Applying d/0y; to Eq. (6) (gradient of 3rd order tensor is fourth order tensor):
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Applying the limitfory - x, r = 0,
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RHS of (7) is only a function of relative position f(r) and not x or y, whereas for

r = 0, RHS of (8) is not a function of any position; therefore, must be constant.
Thus, the LHS of (8) must also be constant both mathematically and invoking the
fact that for homogenous turbulence the statistics for fluctuating terms are
constant.

Setting j = i and | = k and using the definition of ¢ for isotropic turbulence
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Recall
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Fourier transform pair

Rij(rt) = J e T E(k t) dx
v
Where:

&;j = velocity spectrum tensor (®;; Pope, energy spectrum tensor Bernard).

R;j = 2-point, 2-velocity correlation tensor.

Using
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where dk = dk,dk,dk; and V = infinite volume (—o0, ) in wave number space.
Taking the first derivative with respect to r}
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Which is a vector (since R;; is a scalar and its gradient 5, isa vector) and evaluate
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Therefore, for any k, we obtain
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And evaluating atr = 0
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Taking another derivative of Eq. (10) with respect to 7y, yields
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Which is a scalar since 5,z isa scalar which when operating on a scalar is also a
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Density energy k space
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Energy spectrum = E (k, t)

E (x, t) shows how KE is distributed across different scales, i.e., collects energy onto
shells of radius |5| = K.
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Motions making the biggest contributions to K and € come from different wave
number ranges: k, and k.
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Figure 4.1 Spectral ranges of E(k) and 2k2E(k), with k, and k, marking their respective peaks.
Energy containing eddies size: [, = 1/k,

Dissipation eddies size: [; = 1/k,4

Physics of transfer process i.e., energy cascade fundamental to theory of
turbulence. Separation between scales increases with Re and for sufficiently high
Re the transfer occurs without dissipation at intermediate scales.



