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Chapter 4 Turbulence at Small Scales 

Part 0 The Energy Cascade and Kolmogorov Hypotheses (Pope 6.1) 

 

Assume large 𝑅𝑒 = 𝑈𝐿/𝜈 for large scale flow with geometries and flows of interest: 

wall (channel, pipe, or boundary layer) or free shear flows. 

 

Largest size eddies: 

𝑙0~𝐿,     𝑢0(𝑙0) ~ 𝑢′ = 𝑢𝑟𝑚𝑠 ~ 𝑈,     𝜏0 =
𝑙0

𝑢0
 

𝑘 =
1

2
< 𝑢2 + 𝑣2 + 𝑤2 > 

 if isotropic = 𝑘 =
3

2
< 𝑢2 > 

𝑢𝑟𝑚𝑠 = [
2

3
𝑘]

1/2

≈  𝑘1/2 

Smallest size eddies: 

𝜂, 𝑢𝜂 , 𝜏𝜂  

 

 

Kolmogorov scales 
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Energy Cascade: 

Energy transferred from the largest to successively smaller scales until 𝑅𝑒𝜂 =
𝑢𝜂𝜂

𝜈
~1 such that eddy motion is stable and viscosity dissipates the TKE. 

 

Leonardo’s Da Vinci: sketch of water falling into a pool. Note the different scales 

of motion, suggestive of the energy cascade. 

 

Rate of dissipation ε is determined by the largest scales with energy 𝑢0
2 and time 

scale 𝜏0 =
𝑙0

𝑢0
; therefore, 

 

𝜀 ≈
𝑢0

2

𝜏0
≈

𝑢0
3

𝑙0
≠ 𝑓(𝜈)!    (m2/s3) 

 

Important assumption is that both 𝑢(𝑙) and 𝜏(𝑙) decrease as 𝑙 decreases. 
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Kolmogorov’s hypothesis of local isotropy: 

At high Reynolds number, the small-scale turbulent motions (𝑙 ≪ 𝑙0) are 

statistically isotropic . 

 

Define length scale 𝑙𝐸𝐼 as the demarcation between the anisotropic large eddies 

and the isotropic small eddies 

 

𝑙 > 𝑙𝐸𝐼~
1

6
𝑙0  anisotropic large eddies 

𝑙 < 𝑙𝐸𝐼  isotropic small eddies → information mean flow and BCs is lost 

→ statistics of the small-scale motions are universal. i.e., 

similar all high-Reynolds number turbulent flows. 

 

Two important parameters: energy transfer from large scales 𝒯𝐸𝐼 ≈ 𝜀 and viscous 

diffusion 𝜈 (m2/s). 

 

Kolmogorov’s first similarity hypothesis1: 

at high Reynolds number, small-scale motions (𝑙 < 𝑙𝐸𝐼) have universal form 

uniquely f(ε, ν) = universal equilibrium range. 

 

The size range 𝑙 < 𝑙𝐸𝐼  is referred to as the universal equilibrium range.  

 

 

 

 

 

 
1 Paraphrased 
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Thus, Kolmogorov scales are only function of  𝜀 and ν, i.e., 𝜂(𝜀, ν), 𝑢𝜂(𝜀, ν), and 

𝜏𝜂(𝜀, ν) can be determined by dimensional analysis: 

 

𝜂 = (
𝜈3

𝜀
)

1
4

 

𝑢𝜂 =  (𝜀ν)
1
4 

𝜏𝜂 = (
𝜈

𝜀
)

1
2
 

 

The ratios of the smallest to largest scales can be obtained using 𝜀 =
𝑢0

3

𝑙0
 

 

𝜂/𝑙0~𝑅𝑒−3/4 

𝑢𝜂/𝑢0~𝑅𝑒−1/4 

𝜏𝜂/𝜏0~𝑅𝑒−1/2 

 

which shows how scales decrease with 𝑅𝑒 =
𝑢0𝑙0

𝜈
. 

 

Thus, 

𝑅𝑒𝜂 =
𝑢𝜂𝜂

𝜈
= 1 

𝜀 = 𝜈 (𝑢𝜂/𝜂)
2

= 𝜈/𝜏𝜂
2 

𝑢𝜂

𝜂
= 1/𝜏𝜂 

 

Velocity gradient of the dissipative eddies 

= the inverse of the turnover time 
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Alternative reasoning: 

𝜀 =
𝑢0

2

𝜏0
=

𝑢0
3

𝑙0
 

                            = 𝜈𝜀𝑖𝑗𝜀𝑖𝑗 =  𝜈 (𝑢𝜂/𝜂)
2
 

𝑢0
3

𝑙0
= 𝜈 (𝑢𝜂/𝜂)

2
 but 𝑅𝑒𝜂 =

𝑢𝜂𝜂

𝜈
= 1 

 

𝜂 = 𝑙0𝑅𝑒−3/4

𝑢𝜂 = 𝑙0𝑅𝑒−1/4} 

 

𝑅𝑒 =
𝑢0𝑙0

𝜈
 

 

How large is η?   

Cases Re η /lo lo η 

Educational experiments 103 5.6×10-3 ~ 1 cm 0.056 mm 
Model-scale experiments 106 3.2×10-5 ~ 1 m 0.032 mm 

Full-scale experiments 109 1.8×10-7 ~ 100 m 0.018 mm 

 
The smallest fluid motion scales for ship and airplane: 

 U(m/s) L(m) v (m2/s) Re 
(mm) 

u

(m/s) 

 (s) 

Ship 

(Container: 
ALIANCA MAUA) 

11.8 (23.3 

knots) 

 

272 9.76E-7 3.3E09 0.02 0.05 4E-4 

Airplane 

(Airbus A300) 

216.8 

(Ma=0.64) 

56.2 3.7E-5 

(z=10Km) 

0.3E09 0.023 1.64 1.4E-5 

 
Much of the energy in this flow is dissipated in eddies which are less than fraction 

of a millimeter in size!!  

Largest scales 

Smallest scales, as per TKE equation 

𝜂 = (𝜈3/𝜀)1/4 

𝑢𝜂 = (𝜀ν)
1
4 

http://www.containership-info.com/vessel_9283239.html
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For a ship with 𝐿 = 272𝑚, the BL thickness at 𝐿 can be estimated using Prandtl’s 

one-seventh power-law for the turbulent boundary layer thickness. Similarly, for 

an airplane, the BL thickness at the trailing edge of the wing can be estimated using 

the chord length 𝐿 = 5𝑚. The corresponding 𝛿 in each case is equal to: 

𝛿𝑠ℎ𝑖𝑝 =
0.16𝐿

𝑅𝑒𝐿

1
7

~1.9𝑚 

𝛿𝑤𝑖𝑛𝑔 =
0.16𝐿

𝑅𝑒𝐿

1
7

~7𝑐𝑚 

 

The corresponding boundary-layer Reynolds number are: 

 

𝑅𝑒𝛿𝑠ℎ𝑖𝑝
= 2.3𝐸 + 7 

𝑅𝑒𝛿𝑤𝑖𝑛𝑔
= 5𝐸 + 5 

Using the relation 𝜂/𝛿~𝑅𝑒𝛿
−3/4

, the Kolmogorov scales can be estimated as: 

 

𝜂𝑠ℎ𝑖𝑝 = 0.0057𝑚𝑚 = 5.7 m 

𝜂𝑤𝑖𝑛𝑔 = 0.004𝑚𝑚 = 4 m 

 

These represent the dissipation length scale based on the thickness of the 

boundary layer, instead of the length of the ship/airplane. 

In terms of airplane turbulence, eddies that are roughly the same size as the aircraft 

itself are the ones that cause the most noticeable turbulence; meaning, smaller 

eddies create smaller bumps, while larger eddies might move the whole plane up 

and down, but the most impactful turbulence is felt when eddies are close in size 

to the airplane's wingspan and length, causing noticeable rolling and pitching 

motions.  
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Kolmogorov’s second similarity hypothesis2: 

at high Reynolds number, the statistics of the motions 𝑙0 ≫ 𝑙 ≫ 𝜂 are uniquely 

determined by ε and not f(ν). 

 

 

 

In the inertial subrange, viscous effects are negligible. 

 

𝑙𝐸𝐼 = 𝑙0/6 and 𝑙𝐷𝐼 = 60𝜂 based on fact that 80% energy is for 𝑙 > 𝑙0/6 and most of 

the dissipation is for 𝑙 < 60𝜂 in the Energy and Dissipation spectrums, respectively, 

as per Chapter 4, Part 7. 

 

E=energy range 

I=inertial sub range 

D=dissipation range 

EI is boundary between E and I 

DI is boundary between I and D 

 

 
2 Paraphrased 



8 
 

Length, velocity, and time scales 𝑙, 𝑢, 𝜏 cannot be formed using 𝜀 only, but using 𝜀 

and 𝑙 (in the inertial sub range) 

 

𝑢(𝑙) = (𝜀𝑙)1/3 = 𝑢𝜂(𝑙/𝜂)1/3~𝑢0(𝑙/𝑙0)1/3 

𝜏(𝑙) = (𝑙2/𝜀)1/3 = 𝜏𝜂(𝑙/𝜂)2/3~𝜏0(𝑙/𝑙0)2/3 

That is both 𝑢(𝑙) and 𝜏(𝑙) decrease as 𝑙 decreases. 

 

At the boundary of the energy containing and inertial sub ranges, i.e., EI where l = 

l0/6: 

 

𝑢𝐸𝐼 = 𝑢 (
𝑙0

6
) ~ 𝑢0(6)−

1
3 = 0.5504𝑢0 

                                               = 𝑢0/1.8165 

                                     ~ 𝑢0/2 

𝜏𝐸𝐼 = 𝜏 (
𝑙0

6
) ~ 𝜏0(6)−

2
3 = 0.3028𝜏0 

                                               = 𝜏0/3.3025 

                                     ~ 𝜏0/3 

That is at EI:  

• 𝑙0 is reduced by about 1/6 

• 𝑢0 is reduced by about 1/2 

• 𝜏0 reduced by about 1/3 

 

According to the Kolmogorov hypotheses. 
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𝒯(𝑙) is the rate at which energy is transferred from eddies larger than 𝑙 to those 

smaller than 𝑙. 

 

𝒯(𝑙) =
𝑢(𝑙)2

𝜏(𝑙)
= 𝜀 ≠ 𝑓(𝜈) in the inertial subrange 

𝒯𝐸𝐼(𝑙𝐸𝐼) =  𝒯(𝑙) =  𝒯𝐷𝐼(𝑙𝐷𝐼) = 𝜀 

 

Rate of energy transfer from the large scales determines the constant rate of 

energy transfer through the inertial subrange and that which enters the dissipation 

range. 

 

 

 

𝑙𝐸𝐼 > 𝑙 > 𝑙𝐷𝐼 

 



10 
 

The energy spectrum: TKE distribution as 𝑓(𝑒𝑑𝑑𝑦 𝑠𝑖𝑧𝑒), as per Chapter 2 

 

𝑘(𝜅𝑎,𝜅𝑏) = ∫ 𝐸(𝜅)𝑑𝜅
𝜅𝑏

𝜅𝑎

 

Where 𝜅 = 2𝜋/𝑙= wave number and 𝑘 =TKE; and similarly, the dissipation 

spectrum, as per Chapter 4, Part 1 

 

𝜀(𝜅𝑎,𝜅𝑏) = ∫ 2𝜈𝜅2𝐸(𝜅)𝑑𝜅
𝜅𝑏

𝜅𝑎

 

 

In the universal equilibrium range (𝜅 > 𝜅𝐸𝐼 ≡ 2𝜋/𝑙𝐸𝐼), E(𝜀,𝜈); whereas  in the 

inertial subrange (𝜅𝐸𝐼 < 𝜅 < 𝜅𝐷𝐼 ≡ 2𝜋/𝑙𝐷𝐼) E(𝜀) only such that using dimensional 

analysis, as per Chapter 4, Part 4 

 

𝐸(𝜅) = 𝐶𝜀2/3𝜅−5/3    (m3/s2) 

 

where 𝐶 is a universal constant.  Which is in the form of a power-law spectrum  

 

𝐸(𝜅) = 𝐴𝜅−𝑝 

 

with 𝐴 and 𝑝 constants. The energy contained in wave numbers greater than 𝜅 is 

𝑘(𝜅,∞) = ∫ 𝐸(𝜅′)𝑑𝜅′ =
𝐴

𝑝 − 1
𝜅−(𝑝−1)

∞

𝜅

 

 

for 𝑝 > 1, whereas the integral diverges for 𝑝 ≤ 1. 
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Similarly, the dissipation in wavenumbers less than 𝜅 is 

 

𝜀(0,𝜅) = ∫ 2𝜈𝜅′2𝐸(𝜅′)𝑑𝜅′
𝜅

0

=
2𝜈𝐴

3 − 𝑝
𝜅3−𝑝 

 

for 𝑝 < 3, whereas the integral diverges for 𝑝 ≥ 3. 

 

Thus, 𝑝 = 5/3 = the Kolmogorov spectrum, is around the middle of the range (1,3) 

for which the integrals for 𝑘(𝜅,∞) and 𝜀(0,𝜅) converge. 

 

For 𝑝 =
5

3
= 1.667, 𝑘(𝜅,∞) =

𝐴

2/3
𝜅−2/3, i.e., amount of energy for high wave 

numbers decreases as 𝑘(𝜅,∞)~𝜅−2/3 as 𝜅 increases, whereas the dissipation for low 

wave numbers decreases as 𝜀(0,𝜅) =
2𝜈𝐴

4/3
𝜅4/3 as 𝜅 decreases towards zero. 

Thus, the bulk of energy is at large scales 𝑙 > 𝑙𝐸𝐼 or 𝜅 < 2𝜋/𝑙𝐸𝐼 

and the bulk of dissipation is in small scales 𝑙 < 𝑙𝐷𝐼 or 𝜅 > 2𝜋/𝑙𝐷𝐼 
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