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Chapter 3: Overview of Turbulent Flow Physics and Equations 

Part 4:  Dissipation Rate, Reynolds Stress, Mean and Fluctuating 

Vorticity and Enstrophy Equations 

 

𝜺 Equation 

𝜀 = 2𝜐𝑒𝑖𝑗𝑒𝑖𝑗 = 𝜐 (𝑢𝑖,𝑗
2 + 𝑢𝑖,𝑗𝑢𝑗,𝑖) = 𝜀̃ + 𝜐

𝜕2𝑢𝑖𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
 

𝜀̃ = 𝜐𝑢𝑖,𝑗
2 ≈ 𝜀 

 

Since 𝜐𝑢𝑖,𝑗𝑢𝑗,𝑖 represents a small percentage of 𝜀 and it is exactly 0 for homogenous isotropic 

turbulence. 

 

To obtain an equation for 𝜺, the velocity fluctuation momentum equation,  

 

𝜕𝑢𝑖
𝜕𝑡
+ 𝑈𝑗𝑢𝑖,𝑗 + 𝑢𝑗𝑈𝑖,𝑗 + 𝑢𝑗𝑢𝑖,𝑗 − (𝑢𝑖𝑢𝑗),𝑗 = −

1

𝜌
 𝑝,𝑖
′ + 𝜈𝑢𝑖,𝑗𝑗  

 

is differentiated with respect to 𝑥𝑗and multiplied by 𝜐
𝜕𝑢𝑖

𝜕𝑥𝑗
 and time averaged, e.g.,  

 

𝜐
𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑖,𝑗

𝜕𝑡
 = 

𝜕

𝜕𝑡
(𝜐

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝜕𝑥𝑗
)= 
𝜕𝜀̃

𝜕𝑡
 

The final equation is: 

 

 

 

 

 

Notation: 

Ω = Ω + 𝜔 

𝑈 = 𝑈 + 𝑢 

𝑝 = 𝑝 + 𝑝 

Note in Part 4 

notation for p 

differs and ‘ is 

dropped for 

fluctuating 

pressure 
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Where: 

 

𝜀𝑖𝑗
𝑐  and 𝜀𝑖𝑗  are referred to as the complimentary dissipation rate tensor and the dissipation rate tensor, 

respectively. For both quantities the trace satisfies 𝜀𝑖𝑖 = 2𝜀. 

Most terms in the equation don’t have a known physical meaning. 

𝛱𝜀 , 𝑇𝜀 , 𝐷𝜀 are in gradient form ∴ mostly redistribution of 𝜀 in the domain, but their value is not zero at 

boundaries, so they may also function as sources or sinks of dissipation. 

𝑌𝜀 is strictly negative ∴ contributes exclusively to viscous loss of the dissipation rate 𝜀. 

𝑃𝜀
𝑖  represent production terms only if they are positive, which is not always the case. 

Much simplified for homogeneous isotopic turbulence and shear flows where many terms = 0; therefore, 

useful for development of model  equation.  In fact, for processes in the dissipation range the equation 

is exact vs. modeled equation used for large scale motions and energy cascade in the inertial subrange. 
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Reynolds stress equation 

The 𝑅𝑖𝑗 = 𝑢𝑖𝑢𝑗 equation derived by averaging and adding together NS for 𝑈𝑖  multiplied by 𝑢𝑗 and for 𝑈𝑗  

multiplied by 𝑢𝑖.   

𝜕𝑅𝑖𝑗

𝜕𝑡
+ 𝑈𝑘

𝜕𝑅𝑖𝑗

𝜕𝑥𝑘
= −𝑅𝑖𝑘

𝜕𝑈𝑗

𝜕𝑥𝑘
− 𝑅𝑗𝑘

𝜕𝑈𝑖
𝜕𝑥𝑘

− 𝜀𝑖𝑗 −
𝜕𝛽𝑖𝑗𝑘

𝜕𝑥𝑘
+ 𝛱𝑖𝑗 + 𝜐∇

2𝑅𝑖𝑗 

Where: 

𝛱𝑖𝑗 =
1

𝜌
𝑝 (
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

𝛽𝑖𝑗𝑘 =
1

𝜌
𝑝𝑢𝑖𝛿𝑗𝑘 +

1

𝜌
𝑝𝑢𝑗𝛿𝑖𝑘 + 𝑢𝑖𝑢𝑗𝑢𝑘 

The first two terms on the right-hand side may be interpreted as production terms. The third term 𝜀𝑖𝑗  is 

the dissipation rate tensor defined for the  equation: 

𝜀𝑖𝑗 = 2𝜐
𝜕𝑢𝑖
𝜕𝑥𝑘

𝜕𝑢𝑗

𝜕𝑥𝑘
 

𝛽𝑖𝑗𝑘 is made up of two pressure work terms and a turbulent flux of Reynolds stress = flux or transport. 

𝛱𝑖𝑗 is a pressure-strain term. 

𝜐∇2𝑅𝑖𝑗  is a viscous diffusion term. 

 

If a contraction of indices is applied and the equation is multiplied by 1/2, we recover the TKE equation. 

LHS of the equation and P terms do not require additional modeling than RANS equations; 𝜀𝑖𝑗 , 𝛱𝑖𝑗, 𝛽𝑖𝑗𝑘 do 

require additional modeling. 

 

The pressure-strain term 𝛱𝑖𝑗, under the incompressibility hypothesis, has the following property: 

 

𝛱11 + 𝛱22 + 𝛱33 = 0 

 

Consequently, the term 𝛱𝑖𝑖 does not appear in the TKE equation. 

𝛱𝑖𝑗 acts to redistribute energy between 𝑢𝑖
2 components without a change in total energy. If the individual 

terms of 𝛱𝑖𝑖 are non-zero, then at least one must be positive and one negative with the resultant action 

causing 𝑢𝑖
2 to move closer towards an isotropic state, where 𝛱𝑖𝑗 = 0. 𝛱𝑖𝑗 is critical for modeling of 

anisotropic turbulence. 
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Mean vorticity equation 

RANS equations include turbulent momentum flux via the Reynolds stresses: 

𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
= ∇ ∙ 𝑢𝑖𝑢𝑗 

An alternative form can be obtained using vector identities in which turbulent vorticity flux replaces the 

Reynolds stresses. 

Mean flow momentum equation: 

𝐷𝑈𝑖
𝐷𝑡

=
𝜕𝑈𝑖
𝜕𝑡

+ 𝑈𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

= −
1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑈𝑖
𝜕𝑥𝑗

2
−
𝜕

𝜕𝑥𝑗
𝑢𝑖𝑢𝑗 

We can rewrite the Reynolds stress as: 

𝜕

𝜕𝑥𝑗
𝑢𝑖𝑢𝑗 = 𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

= 𝑢 ∙ ∇𝑢 = ∇𝑘 − 𝑢 × 𝜔 

𝑘 =
1

2
𝑢𝑖𝑢𝑖  

In vector form, the mean flow momentum equation becomes: 

𝐷𝑈

𝐷𝑡
= −∇(

𝑝

𝜌
+ 𝑘) + 𝜈∇2𝑈 + 𝑢 × 𝜔 

Where: 

(𝑢 × 𝜔)
𝑖
= 𝜀𝑖𝑗𝑘𝑢𝑖𝜔𝑗 

 

𝜀𝑖𝑗𝑘  is the Levi-Civita symbol or permutation symbol. 

𝑢𝑖𝜔𝑗 represents the vorticity flux correlation. 

𝑝

𝜌
+ 𝑘 =modified mean pressure with isotropic Reynolds stress component. 

Numerical methods for solving this alternative form of the mean momentum equation coupled with the 

continuity equation generally yield a solution for 𝑈 and the combined quantity 
𝑝

𝜌
+ 𝑘,using closure for 

𝑢𝑖𝜔𝑗. 

This form of the equations was used by, e.g., Taylor to study atmospheric flows and vorticity of heat 

transport.  

In this approach, the vorticity transport physics is embedded within a momentum balance. A more 

complete centering of the physics on vorticity can be had by developing an averaged form of the vorticity 

equation itself: 
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DΩ

Dt
= Ω ∙ ∇𝑈 + 𝜐∇2Ω 

 

Decomposition for the velocity and the vorticity: 

 

Ω = Ω+ 𝜔 

𝑈 = 𝑈 + 𝑢 

 

Ω̅ = ∇ × 𝑈̅ = (𝑊̅𝑦 − 𝑉𝑧̅)𝑖̂ + (𝑈̅𝑧 − 𝑊̅𝑥)𝑗̂ + (𝑉̅𝑥 − 𝑈̅𝑦)𝑘̂ 

𝜔 = ∇ × 𝑢 = (𝑤𝑦 − 𝑣𝑧)𝑖̂ + (𝑢𝑧 −𝑤𝑥)𝑗̂ + (𝑣𝑥 − 𝑢𝑦)𝑘̂ 

 

Substituting the decompositions and time-averaging: 

 

DΩ

Dt
= Ω ∙ ∇𝑈 + 𝜔 ∙ ∇𝑢 + ∇ ∙ (𝜈∇Ω − 𝜔𝑖𝑢𝑗) 

 

𝜔 ∙ ∇𝑢 = ∇ ∙ 𝑢𝑖𝜔𝑗 = rate of deformation of vortex lines due to turbulence (∇ ∙ 𝜔=0) 

 

∇ ∙ (𝜈∇Ω − −𝜔𝑖𝑢𝑗) = viscous diffusion augmented by turbulent vorticity diffusion; similar as Reynolds 

stresses augment viscous momentum diffusion.  

 

DΩ

Dt
= Ω ∙ ∇𝑈 −

𝜕

𝜕𝑥𝑗
(𝜔𝑖𝑢𝑗 − 𝑢𝑖𝜔𝑗) + 𝜈∇

2Ω 

         

DΩ

Dt
= Ω ∙ ∇𝑈 − 𝑢 ∙ ∇𝜔 + 𝜔 ∙ ∇𝑢 + 𝜈∇2Ω    (∇ ∙ 𝑢 = 0 and ∇ ∙ 𝜔=0) 

 

Or in index notation: 

𝜕Ω𝑖
𝜕𝑡

+ 𝑈𝑗
𝜕Ω𝑖
𝜕𝑥𝑗

= Ω𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

−
𝜕

𝜕𝑥𝑗
(𝜔𝑖𝑢𝑗 − 𝑢𝑖𝜔𝑗) + 𝜈

𝜕2Ω𝑖

𝜕𝑥𝑗
2  
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Closed vs. Open Channel Turbulence Anisotropy 

Non-circular ducts exhibit corner flows (secondary flow/streamwise vortices towards the corner) 

due to turbulence anisotropy.  Open channel flows have similar corner flows not only at the bottom 

juncture but also at the free surface juncture due to turbulence anisotropy, which all leads to 

velocity-dip phenomena, i.e., maximum velocity occurs not at but just below free surface. 

 

Closed and open channel u’ and v’ similar near bottom juncture but different near symmetry plane 

vs. free surface where open channel shows u’ minimum near velocity dip and v’ monotonically 

damped near free surface. 
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Mean enstrophy equation 

To obtain the mean enstrophy equation, multiply the mean vorticity equation by 𝛺𝑖 (scalar equation): 

 

𝛺𝑖 ⋅ [
𝜕𝛺𝑖
𝜕𝑡

+ 𝑈𝑗
𝜕𝛺𝑖
𝜕𝑥𝑗

= 𝛺𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

−
𝜕

𝜕𝑥𝑗
(𝜔𝑖𝑢𝑗 − 𝑢𝑖𝜔𝑗) + 𝜐

𝜕2𝛺𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

] 

𝜕 (Ω𝑖
2/2) 

𝜕𝑡
+ 𝑈𝑗

𝜕 (Ω𝑖
2/2)

𝜕𝑥𝑗⏟                
= 𝛺𝑖  𝛺𝑗

𝜕𝑈𝑖
𝜕𝑥𝑗

− 𝛺𝑖
𝜕

𝜕𝑥𝑗
(𝜔𝑖𝑢𝑗 − 𝑢𝑖𝜔𝑗) + 𝜐 (

𝜕2 (Ω𝑖
2/2)

𝜕𝑥𝑗𝜕𝑥𝑗
−
𝜕𝛺𝑖
𝜕𝑥𝑗

𝜕𝛺𝑖
𝜕𝑥𝑗

) 

 

 

𝐷 (Ω𝑖
2/2) 

𝐷𝑡
= 𝛺𝑖 𝛺𝑗

𝜕𝑈𝑖
𝜕𝑥𝑗

−
𝜕

𝜕𝑥𝑗
(𝛺𝑖𝜔𝑖𝑢𝑗) + 𝜔𝑖𝑢𝑗

𝜕𝛺𝑖
𝜕𝑥𝑗

+ 𝛺𝑖
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝜔𝑗) + 𝜐(

𝜕2 (Ω𝑖
2/2)

𝜕𝑥𝑗𝜕𝑥𝑗
−
𝜕𝛺𝑖
𝜕𝑥𝑗

𝜕𝛺𝑖
𝜕𝑥𝑗

) 

 

I: mean enstrophy. 

II: mean flow stretching. 

III: transport by velocity/vorticity interaction. 

IV: gradient production fluctuating vorticity. 

III + IV: turbulence advection. 

V: stretching turbulent vorticity by turbulence deformation rate = turbulence stretching. 

VI: viscous transport (diffusion). 

VII: dissipation of mean vorticity. 

 

−
𝜕

𝜕𝑥𝑗
(𝛺𝑖𝜔𝑖𝑢𝑗) = −𝜔𝑖𝑢𝑗

𝜕𝛺𝑖
𝜕𝑥𝑗

− 𝛺𝑖
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝜔𝑗) 

 

 

 

 

 

𝐷 (Ω𝑖
2/2) 

𝐷𝑡
= 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 Ω𝑖

2/2  

I II III IV V VI VII 

a b 

III IV a 
III + IV = a 

V = b 
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Fluctuating vorticity equation 

To obtain an equation for the fluctuating vorticity, subtract the mean vorticity equation from the 

instantaneous vorticity equation.  

Instantaneous vorticity equation: 

𝜕(𝛺𝑖 +𝜔𝑖)

𝜕𝑡
+ (𝑈𝑗 + 𝑢𝑗)

𝜕(𝛺𝑖 +𝜔𝑖)

𝜕𝑥𝑗
= (𝛺𝑗 +𝜔𝑗)

𝜕(𝑈𝑖 + 𝑢𝑖)

𝜕𝑥𝑗
+ 𝜐

𝜕2(𝛺𝑖 + 𝜔𝑖)

𝜕𝑥𝑗𝜕𝑥𝑗
 

Mean vorticity equation: 

𝜕𝛺𝑖
𝜕𝑡

+ 𝑈𝑗
𝜕𝛺𝑖
𝜕𝑥𝑗

= 𝛺𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

−
𝜕

𝜕𝑥𝑗
(𝜔𝑖𝑢𝑗 − 𝑢𝑖𝜔𝑗) + 𝜐

𝜕2𝛺𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

 

Resulting fluctuating equation: 

𝜕𝜔𝑖
𝜕𝑡

+ 𝑈𝑗
𝜕𝜔𝑖
𝜕𝑥𝑗

= −𝑢𝑗
𝜕𝛺𝑖
𝜕𝑥𝑗

+ 𝛺𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+𝜔𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

− 𝑢𝑗
𝜕𝜔𝑖
𝜕𝑥𝑗

+𝜔𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕

𝜕𝑥𝑗
(𝜔𝑖𝑢𝑗 − 𝑢𝑖𝜔𝑗) +  𝜐

𝜕2𝜔𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

 

𝐷𝜔𝑖 

𝐷𝑡
= −𝑢𝑗

𝜕𝛺𝑖
𝜕𝑥𝑗

+𝛺𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+𝜔𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

−
𝜕

𝜕𝑥𝑗
(𝜔𝑖𝑢𝑗 − 𝑢𝑖𝜔𝑗 −𝜔𝑖𝑢𝑗 + 𝑢𝑖𝜔𝑗) +  𝜐

𝜕2𝜔𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

 

 

Multiply the resulting equation by 𝑢𝑖 and apply time average to obtain turbulent enstrophy equation. 

Note that for total enstrophy: 

𝛺𝑖𝛺𝑖
2

=
𝛺𝑖  𝛺𝑖
2

+
ω𝑖
2

2
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𝜀̃

𝜈
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