Chapter 3: Overview of Turbulent Flow Physics and Equations Part 3: Mean and Turbulent Kinetic Energy Equations

Kinetic Energy of the Mean Flow: transport and sources and sinks of mean KE

$$\frac{\partial \overline{U_i}}{\partial t} + \overline{U_j} \frac{\partial \overline{U_i}}{\partial x_j} = -g\delta_{i3} + \frac{1}{\rho} \frac{\partial \overline{\sigma_{ij}}}{\partial x_i} \quad (1)$$

$$\overline{\sigma_{ij}} = -\overline{p}\delta_{ij} + 2\mu E_{ij} - \rho \overline{u_i u_j}$$

$$E_{ij} = \frac{1}{2} \left(\frac{\partial \overline{U_i}}{\partial x_j} + \frac{\partial \overline{U_j}}{\partial x_i} \right)$$

$$D = \overline{u} + \underline{u}$$

$$p = \overline{p} + p'$$

 $\overline{U_i}$ × (1):

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \overline{U_i}^2 \right) + \overline{U_j} \frac{\partial}{\partial x_j} \left(\frac{1}{2} \overline{U_i}^2 \right) = -g \overline{U_i} \delta_{i3} + \frac{1}{\rho} \overline{U_i} \frac{\partial \overline{\sigma_{ij}}}{\partial x_j}$$

 $\frac{D}{Dt}\left(\frac{1}{2}\overline{U_i}^2\right) = -\frac{g}{\rho}\overline{U_i}\delta_{i3} + \frac{1}{\rho}\frac{\partial(\overline{U_i}\overline{\sigma_{ij}})}{\partial x_j} - \frac{1}{\rho}\overline{\sigma_{ij}}\frac{\partial\overline{U_i}}{\partial x_j} \quad \text{As per instantaneous/deterministic ME equation.}$ $\frac{D}{Dt}\left(\frac{1}{2}\overline{U_i}^2\right) = -\frac{g}{\rho}\overline{U_3} + \frac{\partial}{\partial x_j}\left(-\frac{\overline{U_i}\overline{p}}{\rho}\delta_{ij} + 2\nu\overline{U_i}E_{ij} - \overline{u_i}\overline{u_j}\overline{U_i}\right) + \frac{\overline{p}}{\rho}\delta_{ij}\frac{\partial\overline{U_i}}{\partial x_j} - 2\nu E_{ij}\frac{\partial\overline{U_i}}{\partial x_j} + \overline{u_i}\overline{u_j}\frac{\partial\overline{U_i}}{\partial x_j} \quad (2)$

Note that:

$$E_{ij}\frac{\partial\overline{U_i}}{\partial x_j} = E_{ij}(E_{ij} + W_{ij}) = E_{ij}E_{ij}$$
$$\frac{\partial}{\partial x_j}\left(-\frac{\overline{U_i}\overline{p}}{\rho}\delta_{ij}\right) = -\frac{1}{\rho}\left(\frac{\partial\overline{U_i}}{\partial x_j}\overline{p}\delta_{ij} + \frac{\partial\overline{p}}{\partial x_j}\overline{U_i}\delta_{ij}\right) = -\frac{1}{\rho}\left(\frac{\partial\overline{U_j}}{\partial x_j}\overline{p} + \frac{\partial\overline{p}}{\partial x_j}\overline{U_j}\right) = \frac{\partial}{\partial x_j}\left(-\frac{\overline{U_j}\overline{p}}{\rho}\right)$$

Therefore, (2) can be rewritten as:

$$\frac{D}{Dt} \left(\frac{1}{2}\overline{U_i}^2\right) = \frac{\partial}{\partial x_j} \left(-\frac{\overline{p}\overline{U_j}}{\rho} + 2v\overline{U_i}E_{ij} - \overline{u_iu_j}\overline{U_i}\right) - 2vE_{ij}E_{ij} + \overline{u_iu_j}\frac{\partial\overline{U_i}}{\partial x_j} - g\overline{U_3}/\rho$$

$$\boxed{A} \qquad \boxed{B} \qquad \boxed{C} \qquad \boxed{D} \qquad \boxed{E} \qquad \boxed{F} \qquad \boxed{G}$$

A: rate of change of KE

B: due to the mean pressure

C: due to the mean viscous stresses

D: due to Reynolds stresses

E: viscous dissipation, $E_{ij} \times 2vE_{ij}$ =mean rate of strain × mean viscous stress = loss due to direct viscous dissipation

F: loss due to turbulence $\overline{u_i u_j} \frac{\partial \overline{U_i}}{\partial x_j} = \overline{u_i u_j} E_{ij}$ loss due to generation $\overline{u_i u_j} =$ gain in TKE If $\overline{U_i} = \overline{U(y)}$, $\overline{u_i u_j} \frac{\partial \overline{U_i}}{\partial x_j} = \overline{uv} \frac{\partial \overline{U}}{\partial y}$ $\overline{uv} < 0$ $\frac{\partial \overline{U}}{\partial y} > 0$ $\overline{u_i u_j} \frac{\partial \overline{U_i}}{\partial x_j} < 0$ Sign + in TKE equation

G: loss due to potential energy, i.e. work done by gravity on mean vertical motion

B+C+D = transport or redistribution of energy region to region. Flux/divergence form, i.e., $\int \nabla \cdot \underline{b} d \forall = \int \underline{b} \cdot \underline{n} dA = 0$ for U_i = 0 at large distances.

The two viscous terms $2v \frac{\partial}{\partial x_j} (\overline{U_i} E_{ij})$ and $-2v E_{ij} E_{ij}$ are small for high Re turbulent flow, e.g.

$$\frac{2\upsilon E_{ij}E_{ij}}{\overline{u_i u_j}\frac{\partial \overline{U_i}}{\partial x_i}} \sim \frac{\nu \left(\frac{U}{L}\right)^2}{u_{rms}^2 \frac{U}{L}} \sim \frac{\nu}{UL} \ll 1$$

Where $u_{rms} \sim U$, i.e., same order of magnitude.

Therefore, direct influence viscous terms small in equation for mean kinetic energy, which is not true for TKE equation/budget.

The mean flow loss of energy to turbulence by shear production results in TKE which is dissipated by viscosity as per TKE equation.

$$\begin{split} \frac{1}{D_{2}} \left(\frac{1}{2} \nabla_{2} \nabla_{2} \right) &= \overline{\gamma_{2}} \left(\frac{1}{2} \nabla_{2} \nabla_{1} \right) + \overline{\gamma_{3}} \frac{1}{2} \overline{\gamma_{4}} \left(\frac{1}{2} \nabla_{2} \nabla_{2} \right) \\ &= \overline{\gamma_{4}} \left[\frac{1}{2} \left(U^{1+}V^{1+}W^{2} \right) \right] + \overline{V} \frac{1}{2} \overline{\gamma_{4}} \left((K \right) + V \frac{1}{2} \frac{1}{2} \left((K \right) \right) \\ K &= \frac{1}{2} \overline{V_{4}} \nabla_{1} \nabla_{1} \\ &= \frac{1}{2} \overline{V_{4}} + \overline{U} + V K_{4} + \overline{V} K + 2 \\ &= \frac{1}{2} \overline{V_{4}} + \overline{U} + \overline{V} K + 2 \\ \frac{1}{2} \overline{V_{4}} \nabla_{1} \nabla_{1} \nabla_{1} \nabla_{2} \nabla_{2} \nabla_{1} \nabla_{2} \nabla_$$

Turbulent Kinetic Energy Equation

Momentum equation for the mean flow:

$$\frac{D\overline{U_i}}{Dt} = \frac{\partial\overline{U_i}}{\partial t} + \overline{U_j}\frac{\partial\overline{U_i}}{\partial x_j} = -\frac{1}{\rho}\frac{\partial\overline{p}}{\partial x_i} + v\frac{\partial^2\overline{U_i}}{\partial x_j^2} - \frac{\partial}{\partial x_j}\overline{u_iu_j} - g\delta_{i3}$$

Which can also be written as:

Г

For the total flow, the moment equation is:

Instantaneous
$$\frac{\partial}{\partial t} (\overline{U_i} + u_i) + (\overline{U_j} + u_j) (\overline{U_i} + u_i)_{,j} = -\frac{1}{\rho} (\overline{p} + p')_{,i} + v (\overline{U_i} + u_i)_{,jj}$$
Total = mean + fluctuation

To obtain the equation for the fluctuating part, subtract the mean momentum equation from the total equation:

$$\frac{\partial u_i}{\partial t} + \overline{U_j}u_{i,j} + u_j\overline{U_{i,j}} + u_ju_{i,j} - (\overline{u_iu_j})_{,j} = -\frac{1}{\rho}p'_{,i} + \nu u_{i,jj} \quad (3)$$

$$A \quad B \quad C \quad D \quad E \quad F \quad G$$

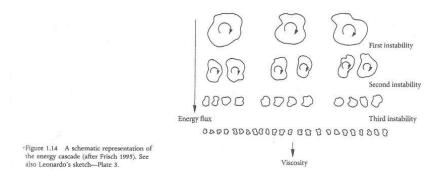
Multiply (3) by u_i , apply time average $\left(k = \frac{1}{2}(\overline{u_i u_i})\right)$ and analyze A-G terms:

A:
$$u_i \frac{\partial u_i}{\partial t} = \frac{\partial}{\partial t} \left(\frac{1}{2} \overline{u_i^2}\right)$$

B: $\overline{u_i \overline{U_j} u_{i,j}} = \overline{U_j} \left(\frac{1}{2} \overline{u_i^2}\right)_{,j}$
 $\boxed{\frac{\partial \left(\frac{1}{2} u_i u_i\right)}{\partial x_j} = \frac{1}{2} \left(u_{i,j} u_i + u_i u_{i,j}\right) = u_i u_{i,j}}$
C: $\overline{u_i u_j \overline{U_{i,j}}} = \overline{u_i u_j \overline{U_{i,j}}}$
D: $\overline{u_i u_j u_{i,j}} = \left(\frac{1}{2} \overline{u_i^2 u_j}\right)_{,j} = \frac{1}{2} \left(2u_i \frac{\partial u_i}{\partial x_j} u_j + \overline{u_i^2 \frac{\partial u_j}{\partial x_j}}\right)$
E: $\overline{u_i (\overline{u_i u_j})}_{,j} = \overline{u_i} (\overline{u_i u_j})_{,j} = 0$
E: $\overline{u_i (\overline{u_i u_j})}_{,j} = \overline{u_i} (\overline{u_i u_j})_{,j} = 0$
E: $-\frac{1}{\rho} \overline{u_i p'_i} = -\frac{1}{\rho} \left(\overline{u_i p'}\right)_{,i}$
G: $v \overline{u_i u_{i,jj}} = v \left[u_i u_{i,jj} + \frac{1}{2} (u_{i,j} + u_{j,i}) (u_{i,j} - u_{j,i})\right]$
 $= 0$ \Rightarrow Doubly contracted product of symmetric and antisymmetric tensor

$$\overline{\left[u_{i}(u_{i,j}+u_{j,i})\right]_{,j}} = \frac{\partial}{\partial x_{j}}\left[\overline{u_{i}(u_{i,j}+u_{j,i})}\right] = \frac{\partial u_{i}}{\partial x_{j}}\left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}}\right) + \overline{u_{i}u_{i,jj}} + \overline{u_{i}u_{j,i}}$$

Therefore:


$$\begin{aligned} v\overline{u_{i}u_{i,jj}} &= v\left[\left[u_{i}(u_{i,j}+u_{j,i})\right]_{,j} - u_{i,j}(u_{i,j}+u_{j,i}) + \frac{1}{2}(u_{i,j}+u_{j,i})(u_{i,j}-u_{j,i})\right] \\ &= v\left[\left[u_{i}(u_{i,j}+u_{j,i})\right]_{,j} - u_{i,j}^{2} - u_{i,j}u_{j,i} + \frac{1}{2}(u_{i,j}^{2} - u_{j,i}^{2})\right] \\ &= v\left[\left[u_{i}(u_{i,j}+u_{j,i})\right]_{,j} - \frac{1}{2}u_{i,j}^{2} - u_{i,j}u_{j,i} - \frac{1}{2}u_{j,i}^{2}\right] \\ &= v\left[\left[u_{i}(u_{i,j}+u_{j,i})\right]_{,j} - \frac{1}{2}(u_{i,j}+u_{j,i})^{2}\right] \\ &\quad v\overline{u_{i}u_{i,jj}} = 2v\overline{(u_{i}e_{ij})}_{,j} - 2v\overline{e_{ij}e_{ij}}\end{aligned}$$

Where the fluctuating rate of strain components e_{ij} are: $e_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i})$

Eq. (3) becomes:

First three terms on RHS are in flux divergence form and consequently represent spatial transport of TKE. First two are due to the turbulence itself, whereas the last is viscous transport.

The shear production term appears in the mean KE equation with opposite sign. Usually > 0, therefore, represents loss of mean KE and gain of TKE. Viscous dissipation = ε = same order shear production.

Shear production can be < 0, i.e., in some cases backscatter wherein small vortices combine to form larger ones, which can bring energy from the small to the large scales.

$$e_{ij}e_{ij} = e_{ij}\frac{1}{2}(u_{i,j} + u_{j,i}) + \frac{1}{2}e_{ij}(u_{i,j} - u_{j,i})$$

$$= 0$$

$$= \frac{1}{2}e_{ij}(2u_{i,j}) = \frac{1}{2}(u_{i,j} + u_{j,i})(u_{i,j})$$

True dissipation ε:

$$\varepsilon = 2\nu \overline{e_{ij}e_{ij}} = \nu \left(\overline{u_{i,j}^2 + u_{i,j}u_{j,i}}\right)$$

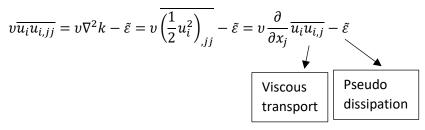
Pseudo-dissipation $\tilde{\varepsilon}$:

$$\tilde{\varepsilon} = v \frac{\overline{\partial u_i} \, \partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} = v \overline{u_{\iota,j}^2}$$

Relation between ε and $\tilde{\varepsilon}$ (Pope Prob. 5.25 for proof):

$$\varepsilon = \tilde{\varepsilon} + v \frac{\partial^2 \overline{u_i u_j}}{\partial x_i \partial x_j} = v \left(\overline{u_{i,j} u_{i,j}} + \frac{\partial^2 \overline{u_i u_j}}{\partial x_i \partial x_j} \right) = v \left(\overline{u_{i,j}^2 + u_{i,j} u_{j,i}} \right)$$
$$\frac{\partial^2 \overline{u_i u_j}}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_i} \overline{u_i u_j} = \overline{u_{i,j} u_{j,i}}$$
$$\frac{\partial}{\partial x_i} (u_i u_j) = u_j u_{i,i} + u_i u_{j,i}$$
$$\frac{\partial}{\partial x_j} (u_i u_{j,i}) = u_{i,j} u_{j,i} + u_i \frac{\partial^2 u_j}{\partial x_i \partial x_j}$$

The term $v \frac{\partial^2 \overline{u_i u_j}}{\partial x_i \partial x_j}$ usually represents only a small percentage of ε . Additionally, for homogenous isotropic turbulence, this term is exactly 0 (Chapter 4, Part 1).


Reconsider term G to obtain an alternative form of the TKE equation as a function of $\tilde{\varepsilon}$:

G:
$$v\overline{u_i u_{i,jj}} = v\nabla^2 k - \tilde{\varepsilon} = v\left(\overline{\left(\frac{1}{2}\overline{u_i^2}\right)_{,jj}} - u_{i,j}^2\right)$$

 $v\nabla^2 k = v\frac{1}{2}\frac{\partial}{\partial x_j}\left(\frac{\partial}{\partial x_j}\overline{u_i^2}\right) = v\frac{1}{2}\frac{\partial}{\partial x_j}\left(\overline{2u_i\frac{\partial u_i}{\partial x_j}}\right) = v\left(\overline{u_{i,j}^2 + u_iu_{i,jj}}\right) = \tilde{\varepsilon} + v\overline{u_iu_{i,jj}}$

As shown before:

$$v\overline{u_iu_{i,jj}} = 2v\overline{(u_ie_{ij})_{,j}} - 2v\overline{e_{ij}e_{ij}}$$

Or equivalently:

Eq. (4), then becomes:

TKE Equation
Alternative form
$$\frac{D}{Dt}\left(\frac{1}{2}u_i^2\right) + \frac{\partial}{\partial x_j}\left[\frac{1}{\rho}\left(\overline{p'u_j}\right) + \frac{1}{2}\overline{u_i^2u_j}\right] = v\nabla^2 k + P - \tilde{\varepsilon}$$

Where:

$$P = -\overline{u_i u_j} \overline{U_{i,j}}$$
$$\tilde{\varepsilon} = v \overline{u_{i,j}^2}$$

Finally, we can write Eq. (4) as:

$$\frac{D}{Dt}\left(\frac{\overline{1}}{2}u_i^2\right) = -\nabla \cdot T + P - \varepsilon = -\nabla \cdot T' + P - \tilde{\varepsilon}$$

Where:

$$T = \frac{1}{\rho} \left(\overline{p'u_j} \right) + \frac{1}{2} \overline{u_i^2 u_j} - 2v \overline{\left(u_i e_{ij} \right)}$$
$$T' = \frac{1}{\rho} \left(\overline{p'u_j} \right) + \frac{1}{2} \overline{u_i^2 u_j} - v \overline{u_i u_{i,j}}$$

 $\tilde{\varepsilon}$ is also called isotropic dissipation rate. Note:

 $\frac{\partial}{\partial x_j} \frac{\partial}{\partial x_i} \overline{u_i u_j} = 0$ for I = j and $\overline{u_i^2} = \text{constant}$ and $\overline{u_i u_j} = 0$ for i $\neq j$, i.e., for homogeneous isotropic turbulence

$$\frac{\partial \lambda}{\partial z} = \frac{2h}{2\pi} \pm \underline{g} \cdot \nabla \lambda = \frac{2h}{2\pi} \pm 4\lambda_{x} \pm 4\lambda_{y} \pm 4\lambda_{y} \pm 4\lambda_{z} \pm 4\lambda_{$$

Rate of Strain Principal Axes, Parallel Shear Flow, Turbulent Anisotropy, and Shear Production

 $e_{ij} = rac{1}{2} ig(u_{i,j} + u_{j,i} ig)$ symmetric rate of strain tensor

Symmetric tensor obeys transformation laws that there are three invariants which are independent of the choice of the coordinate axes:

$$I_{1} = e_{xx} + e_{yy} + e_{zz}$$

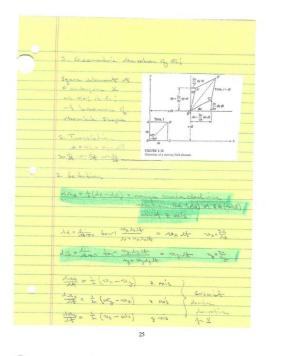
$$I_{2} = e_{xx}e_{yy} + e_{yy}e_{zz} + e_{zz}e_{xx} - e_{xy}^{2} - e_{yz}^{2} - e_{zx}^{2}$$

$$I_{3} = \begin{vmatrix} e_{xx} & e_{xy} & e_{xz} \\ e_{yx} & e_{yy} & e_{yz} \\ e_{zx} & e_{zy} & e_{zz} \end{vmatrix}$$

Further property: one and only one set of axes exists for which $e_{ij} = 0$ $i \neq j \rightarrow$ principal axes.

$$e_{ij} = \begin{cases} e_1 & 0 & 0\\ 0 & e_2 & 0\\ 0 & 0 & e_3 \end{cases}$$

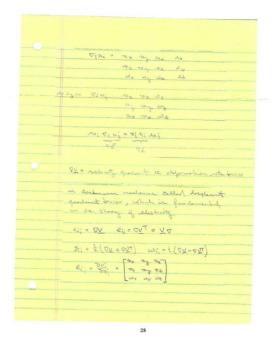
Where e_1, e_2, e_3 represent the principal strain rates.


The invariants represented in this set of axes are:

$$I_{1} = e_{1} + e_{2} + e_{3}$$
$$I_{2} = e_{1}e_{2} + e_{2}e_{3} + e_{3}e_{1}$$
$$I_{3} = e_{1}e_{2}e_{3}$$

If I_1, I_2, I_3 known these equations can be solved for e_1, e_2, e_3 .

http://user.engineering.uiowa.edu/~me_260/Viscous_flow_main.htm


Chapters 1 & 2 (6.3)

	烧= (************************************
	大 不 1 本 5
	· · · · · · · · · · · · · · · · · · ·
	W = 2 AU = VXV = WXE-WGARE
	d.k.
	SA A L L
	Sudant devoter on guess welvery of
	novel components
	Hole: D. W =0 Ance D. Dry =0
	WARE TO APACE V. VXV FD
	3. Show shin = werge decreme of oncin
	Setwandors lines
	ht as initial th
	bype Strin
	his to like at t
	=x== 土(++++++)= = = = ========================
	- 1- 1- 1
	$\Sigma_{yz} = \frac{1}{2} \left(\omega_y + \omega_z \right) \wedge \Sigma_{zx} = \frac{1}{2} \left(\mathcal{U}_{z} + \omega_x \right)$
	a a a a a a a a a a a a a a a a a a a
	nate: Zij=Zji i+j
	note · 211 = 271 247
4	1. Extension 1 Strin = marine in length
-	an = dx + and xit - dx = the lt
	ss = = = = = = = = = = = = = = = = = =
	= 11 = 233 = 233 = 232 = 152
	-0 0 <u>-</u>

26

	$\omega_{21} = \begin{bmatrix} 0 & -x & -y \end{bmatrix} = -\omega_{12}^{21}$
	= = -> w= 232+243 + 242
	[7 × 0]
	Sig + Southay Evel = \$12
	the type tope
	tax tay Zee
	$a_{ij} \circ \overline{a_{ij}} - z_{ij} + \omega_{ij} = \frac{1}{2} \left(e_{ij} + e_{ij} \right) + \frac{1}{2} \left(e_{ij} - e_{ij} \right)$
	2. Ralation Mation derivation ci;
4 ¹⁴	a yany
100	a boy the relay of B is second using
ę	to be by the relacif at B is security using
	M= mp + mixture + my dy + up de + max At +
	the top + axes + top by + as de + way de +
	We with the work the start with the the start
	VA = VA + AV
-	
net bis model	
The state of the s	$m = \nabla Y \cdot dx = dx \nabla V^T$
	27

Parallel Shear Flow Principal Axes

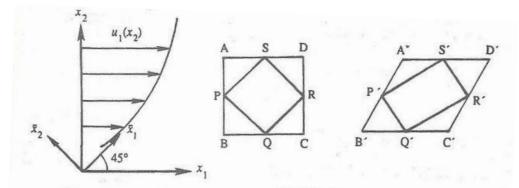


Figure 3.14 Deformation of elements in a parallel shear flow. The element is stretched along the principal axis \bar{x}_1 and compressed along the principal axis \bar{x}_2 .

$$\underline{u} = (u_1(x_2), 0, 0)$$

$$\gamma(x_2) = \frac{du_1}{dx_2}$$

 $\omega_3 = -\gamma$ represents the only non-zero component of the vorticity.

Angular velocity for AB = $-\gamma$, BC=0, \therefore average = $-\frac{\gamma}{2}$

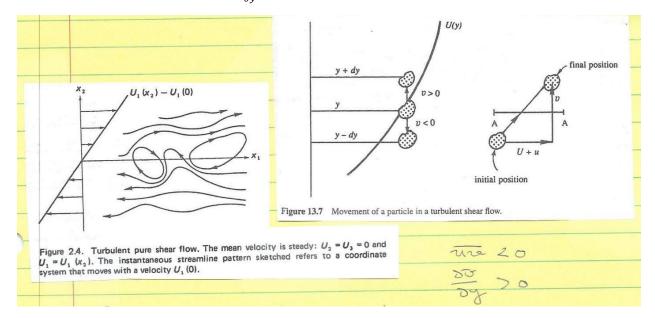
The average angular velocity represents the rate of rotation which is independent of the coordinate system. Whereas e_{ij} depends on the coordinate system.

For ABCD with axes parallel the x_1x_2 plane e_{ij} only has shear elements:

$$e_{ij} = \begin{cases} 0 & \gamma/2 & 0\\ \gamma/2 & 0 & 0\\ 0 & 0 & 0 \end{cases}$$

However, representation in principal axes (45° rotation PQRS) results in e_{ii} only having normal elements:

$$\widetilde{e_{ij}} = \begin{cases} \gamma/2 & 0 & 0 \\ 0 & -\gamma/2 & 0 \\ 0 & 0 & 0 \end{cases}$$


 $\widetilde{e_{11}}$ =linear rate of extension = $\gamma/2$

 $\widetilde{e_{22}}$ =linear rate of compression = $-\gamma/2$

PQRS oriented at 45° deforms to P'Q'R'S' -> PS elongates and PQ contracts, but the angle between the sides remain 90°: spherical element becomes ellipsoidal.

In parallel shear flow, the element ABCD undergoes shear only, whereas element PQRS undergoes only normal strain.

Recall also for parallel shear flow that the main loss term in mechanical energy equation < 0 and gain/production in TKE equation is $\overline{uv} \frac{\partial \overline{v}}{\partial v} < 0$.

Thus, eddies that are most effective in maintaining the \overline{UV} <0 correlation and extraction energy from the mean flow are those aligned with the principal axes, which is essentially a 3D process.

Correlation function can be used calculate de form de eldies OSjetre Lumly (1965) us procedur addies Domm erges t un (n) ce (n) (X) r)Q.(n) X+V x_1 (1) -21, (×2) (2) convergence / in x2 clivetion 13 (3) 22 (X) Fig. 4.10. Sketch of the velocity pattern of the eddy giving best fit to the cor-relation measurements of Grant, obtained by Lumley & Payne. (S) MOLXI of patterno bagal approach is to construct simplest edd Simpler a)servating: U) RILO, r, 0 40, RILO, 0, r 20 (2) Rulo, V, O) LO large V (3) R22 (V, 3,0) 60 Ris (0, v, 0) miller 20 (+) Sit charger Sign >0 x (5) R35 (1,0,0) KO, SAT Fig. 4.11. Sketch of an inclined double-roller eddy. (Arrows on the lines around the cylinders indicate the eddy streamlines. From Townsend 1970.) V233 (0, V, 0) 20