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Chapter 3: Overview of Turbulent Flow Physics and Equations 

Part 3:  Mean and Turbulent Kinetic Energy Equations 

Kinetic Energy of the Mean Flow: transport and sources and sinks of mean KE 

 

𝜕𝑈𝑖
𝜕𝑡

+ 𝑈𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

= −𝑔𝛿𝑖3 +
1

𝜌

𝜕𝜎𝑖𝑗

𝜕𝑥𝑖
     (1) 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 2𝜇𝐸𝑖𝑗 − 𝜌𝑢𝑖𝑢𝑗 

𝐸𝑖𝑗 =
1

2
(
𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
) 

𝑈𝑖   × (1): 

𝜕

𝜕𝑡
(
1

2
𝑈𝑖
2
) + 𝑈𝑗

𝜕

𝜕𝑥𝑗
(
1

2
𝑈𝑖
2
) = −𝑔𝑈𝑖𝛿𝑖3 +

1

𝜌
𝑈𝑖
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
      

 

𝐷

𝐷𝑡
(
1

2
𝑈𝑖
2
) = −

𝑔

𝜌
 𝑈𝑖𝛿𝑖3 +

1

𝜌

𝜕(𝑈𝑖𝜎𝑖𝑗)

𝜕𝑥𝑗
−
1

𝜌
𝜎𝑖𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
    As per instantaneous/deterministic ME equation. 

𝐷

𝐷𝑡
(
1

2
𝑈𝑖
2
) = −

𝑔

𝜌
𝑈3 +

𝜕

𝜕𝑥𝑗
(−

𝑈𝑖𝑝

𝜌
𝛿𝑖𝑗 + 2𝜈𝑈𝑖𝐸𝑖𝑗 − 𝑢𝑖𝑢𝑗𝑈𝑖) +

𝑝

𝜌
𝛿𝑖𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

− 2𝜈𝐸𝑖𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

+ 𝑢𝑖𝑢𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

     (2) 

 

Note that: 

𝐸𝑖𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

= 𝐸𝑖𝑗(𝐸𝑖𝑗 +𝑊𝑖𝑗) = 𝐸𝑖𝑗𝐸𝑖𝑗  

𝜕

𝜕𝑥𝑗
(−

𝑈𝑖𝑝

𝜌
𝛿𝑖𝑗) = −

1

𝜌
(
𝜕𝑈𝑖
𝜕𝑥𝑗

𝑝𝛿𝑖𝑗 +
𝜕𝑝

𝜕𝑥𝑗
𝑈𝑖𝛿𝑖𝑗) = −

1

𝜌
(
𝜕𝑈𝑗

𝜕𝑥𝑗
𝑝 +

𝜕𝑝

𝜕𝑥𝑗
𝑈𝑗) =

𝜕

𝜕𝑥𝑗
(−

𝑈𝑗𝑝

𝜌
) 

 

Therefore, (2) can be rewritten as: 

 

𝐷

𝐷𝑡
(
1

2
𝑈𝑖
2
) =

𝜕

𝜕𝑥𝑗
(−

𝑝𝑈𝑗

𝜌
+ 2𝜐𝑈𝑖𝐸𝑖𝑗 − 𝑢𝑖𝑢𝑗𝑈𝑖) − 2𝜐𝐸𝑖𝑗𝐸𝑖𝑗 + 𝑢𝑖𝑢𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝑔𝑈3/𝜌 

     

 

 

A B C D E F G 

Notation: 

Ω = Ω + 𝜔 

𝑈 = 𝑈 + 𝑢 

𝑝 = 𝑝 + 𝑝′ 
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A: rate of change of KE 

 

B: due to the mean pressure 

 

C: due to the mean viscous stresses 

 

D: due to Reynolds stresses 

 

E: viscous dissipation, 𝐸𝑖𝑗 × 2𝜐𝐸𝑖𝑗 =mean rate of strain × mean viscous stress = loss due to direct 

viscous dissipation 

 

F: loss due to turbulence 𝑢𝑖𝑢𝑗
𝜕𝑈𝑖

𝜕𝑥𝑗
= 𝑢𝑖𝑢𝑗𝐸𝑖𝑗  loss due to generation 𝑢𝑖𝑢𝑗 = gain in TKE 

If 𝑈𝑖 = 𝑈(𝑦),    𝑢𝑖𝑢𝑗
𝜕𝑈𝑖

𝜕𝑥𝑗
= 𝑢𝑣

𝜕𝑈

𝜕𝑦
   𝑢𝑣 < 0   

𝜕𝑈

𝜕𝑦
> 0       𝑢𝑖𝑢𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
< 0 

 

G: loss due to potential energy, i.e. work done by gravity on mean vertical motion 

 

B+C+D = transport or redistribution of energy region to region.  Flux/divergence form, i.e., ∫∇ ⋅ 𝑏 𝑑∀=

∫𝑏 ⋅ 𝑛𝑑𝐴 = 0 for Ui = 0 at large distances. 

 

The two viscous terms 2𝜐
𝜕

𝜕𝑥𝑗
(𝑈𝑖𝐸𝑖𝑗) and −2𝜐𝐸𝑖𝑗𝐸𝑖𝑗  are small for high Re turbulent flow, e.g.  

2𝜐𝐸𝑖𝑗𝐸𝑖𝑗

𝑢𝑖𝑢𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

~
𝜈 (
𝑈
𝐿)

2

𝑢𝑟𝑚𝑠
2 𝑈

𝐿

~
𝜈

𝑈𝐿
≪ 1 

Where 𝑢𝑟𝑚𝑠 ~ 𝑈, i.e., same order of magnitude. 

Therefore, direct influence viscous terms small in equation for mean kinetic energy, which is not true for 

TKE equation/budget. 

 

The mean flow loss of energy to turbulence by shear production results in TKE which is dissipated by 

viscosity as per TKE equation. 

Sign + in TKE equation 
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Turbulent Kinetic Energy Equation 

Momentum equation for the mean flow: 

𝐷𝑈𝑖
𝐷𝑡

=
𝜕𝑈𝑖
𝜕𝑡

+ 𝑈𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

= −
1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜐

𝜕2𝑈𝑖
𝜕𝑥𝑗

2
−
𝜕

𝜕𝑥𝑗
𝑢𝑖𝑢𝑗 − 𝑔𝛿𝑖3 

Which can also be written as: 

𝜕𝑈𝑖
𝜕𝑡

+ 𝑈𝑗  𝑈𝑖,𝑗 = −
1

𝜌
𝑝,𝑖 + 𝜐𝑈𝑖,𝑗𝑗 − (𝑢𝑖𝑢𝑗),𝑗 − 𝑔𝛿𝑖3 

For the total flow, the moment equation is: 

𝜕

𝜕𝑡
(𝑈𝑖 + 𝑢𝑖) + (𝑈𝑗 + 𝑢𝑗)(𝑈𝑖 + 𝑢𝑖),𝑗 = −

1

𝜌
(𝑝 + 𝑝′),𝑖 + 𝜐(𝑈𝑖 + 𝑢𝑖),𝑗𝑗 

To obtain the equation for the fluctuating part, subtract the mean momentum equation from the total 

equation: 

𝜕𝑢𝑖
𝜕𝑡
+ 𝑈𝑗𝑢𝑖,𝑗 + 𝑢𝑗𝑈𝑖,𝑗 + 𝑢𝑗𝑢𝑖,𝑗 − (𝑢𝑖𝑢𝑗),𝑗

= −
1

𝜌
 𝑝,𝑖
′ + 𝜈𝑢𝑖,𝑗𝑗     (3) 

 

Multiply (3) by 𝑢𝑖, apply time average (𝑘 =
1

2
(𝑢𝑖𝑢𝑖)) and analyze A-G terms: 

A:    𝑢𝑖
𝜕𝑢𝑖

𝜕𝑡
=

𝜕

𝜕𝑡
(
1

2
𝑢𝑖
2) 

B:   𝑢𝑖𝑈𝑗𝑢𝑖,𝑗 = 𝑈𝑗 (
1

2
𝑢𝑖
2)
,𝑗

 

C:   𝑢𝑖𝑢𝑗𝑈𝑖,𝑗 = 𝑢𝑖𝑢𝑗𝑈𝑖,𝑗 

D:   𝑢𝑖𝑢𝑗𝑢𝑖,𝑗 = (
1

2
𝑢𝑖
2𝑢𝑗

̅̅ ̅̅ ̅̅ ̅̅
),𝑗 =

1

2
(2𝑢𝑖

𝜕𝑢𝑖

𝜕𝑥𝑗
𝑢𝑗 + 𝑢𝑖

2 𝜕𝑢𝑗

𝜕𝑥𝑗
) 

E:   𝑢𝑖(𝑢𝑖𝑢𝑗),𝑗 = 𝑢𝑖(𝑢𝑖𝑢𝑗),𝑗 = 0 

F:   −
1

𝜌
 𝑢𝑖𝑝,𝑖

′ = −
1

𝜌
(𝑢𝑖𝑝

′)
,𝑖

 

G:   𝜈𝑢𝑖𝑢𝑖,𝑗𝑗 = 𝜈 [𝑢𝑖𝑢𝑖,𝑗𝑗 +
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)(𝑢𝑖,𝑗 − 𝑢𝑗,𝑖)⏟                ] 

➔ Doubly contracted product of symmetric and anti-

symmetric tensor 

 

A B C D E F G 

𝑢𝑖 = 0 

𝑢𝑗,𝑗 = 0 

= 0 

𝐴,𝑗 =
𝜕𝐴

𝜕𝑥𝑗
 Mean 

Total = 
mean + 
fluctuation 

Instantaneous 

𝜕(
1
2𝑢𝑖𝑢𝑖)

𝜕𝑥𝑗
=
1

2
(𝑢𝑖,𝑗𝑢𝑖 + 𝑢𝑖𝑢𝑖,𝑗) = 𝑢𝑖𝑢𝑖,𝑗 

𝑢𝑖,𝑖 = 0 
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[𝑢𝑖(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)],𝑗
=
𝜕

𝜕𝑥𝑗
[𝑢𝑖(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)] =

𝜕𝑢𝑖
𝜕𝑥𝑗

(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) + 𝑢𝑖𝑢𝑖,𝑗𝑗 + 𝑢𝑖𝑢𝑗𝑗,𝑖 

Therefore: 

𝜈𝑢𝑖𝑢𝑖,𝑗𝑗 = 𝜈 [[𝑢𝑖(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)],𝑗 − 𝑢𝑖,𝑗(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) +
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)(𝑢𝑖,𝑗 − 𝑢𝑗,𝑖)]                       

     = 𝜈 [[𝑢𝑖(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)],𝑗
− 𝑢𝑖,𝑗

2 − 𝑢𝑖,𝑗𝑢𝑗,𝑖 +
1

2
(𝑢𝑖,𝑗
2 − 𝑢𝑗,𝑖

2 )] 

     = 𝜈 [[𝑢𝑖(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)],𝑗
−
1

2
𝑢𝑖,𝑗
2 − 𝑢𝑖,𝑗𝑢𝑗,𝑖 −

1

2
𝑢𝑗,𝑖
2 ] 

     = 𝜈 [[𝑢𝑖(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)],𝑗
−
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)

2
] 

𝜈𝑢𝑖𝑢𝑖,𝑗𝑗 = 2𝜈(𝑢𝑖𝑒𝑖𝑗),𝑗 − 2𝜈𝑒𝑖𝑗𝑒𝑖𝑗  

Where the fluctuating rate of strain components 𝑒𝑖𝑗 are:  𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 

Eq. (3) becomes: 

𝜕

𝜕𝑡
(
1

2
𝑢𝑖
2) + 𝑈̅𝑗 (

1

2
𝑢𝑖
2)
,𝑗
=

𝐷

𝐷𝑡
(
1

2
𝑢𝑖
2) = −

𝜕

𝜕𝑥𝑗
[
1

𝜌
(𝑝′𝑢𝑗) +

1

2
𝑢𝑖
2𝑢𝑗 − 2𝜈(𝑢𝑖𝑒𝑖𝑗)]⏟                    

− 𝑢𝑖𝑢𝑗𝑈𝑖,𝑗⏟    − 2𝜈𝑒𝑖𝑗𝑒𝑖𝑗⏟        (4) 

 

 

 

First three terms on RHS are in flux divergence form and consequently represent spatial transport of TKE.  

First two are due to the turbulence itself, whereas the last is viscous transport. 

 

The shear production term appears in the mean KE equation with opposite sign. Usually > 0, therefore, 

represents loss of mean KE and gain of TKE.  Viscous dissipation = 𝜀 = same order shear production. 

 

Shear production can be < 0, i.e., in some cases backscatter wherein small vortices combine to form larger 

ones, which can bring energy from the small to the large scales. 

 

Transport by pressure, 
turbulence and viscous effects 

Shear 
production 

𝜀 = Viscous 
dissipation 

TKE Equation 
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𝑒𝑖𝑗𝑒𝑖𝑗 = 𝑒𝑖𝑗
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) +

1

2
𝑒𝑖𝑗(𝑢𝑖,𝑗 − 𝑢𝑗,𝑖)⏟          

 

 

                                                                   =
1

2
𝑒𝑖𝑗(2𝑢𝑖,𝑗) =

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)(𝑢𝑖,𝑗) 

True dissipation ε: 

𝜀 = 2𝜈𝑒𝑖𝑗𝑒𝑖𝑗 = 𝜈 (𝑢𝑖,𝑗
2 + 𝑢𝑖,𝑗𝑢𝑗,𝑖) 

 

Pseudo-dissipation 𝜀̃: 

𝜀̃ = 𝜈
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

= 𝜐𝑢𝑖,𝑗
2̅̅ ̅̅  

 

Relation between 𝜀 and 𝜀̃ (Pope Prob. 5.25 for proof): 

𝜀 = 𝜀̃ + 𝜈
𝜕2𝑢𝑖𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
= 𝜈 (𝑢𝑖,𝑗𝑢𝑖,𝑗 +

𝜕2𝑢𝑖𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
) = 𝜈 (𝑢𝑖,𝑗

2 + 𝑢𝑖,𝑗𝑢𝑗,𝑖) 

𝜕2𝑢𝑖𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑖
𝑢𝑖𝑢𝑗 = 𝑢𝑖,𝑗𝑢𝑗,𝑖 

𝜕

𝜕𝑥𝑖
(𝑢𝑖𝑢𝑗)= 𝑢𝑗𝑢𝑖,𝑖 + 𝑢𝑖𝑢𝑗,𝑖  

𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗,𝑖)= 𝑢𝑖,𝑗𝑢𝑗,𝑖+𝑢𝑖

𝜕2𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
 

The term 𝜐
𝜕2𝑢𝑖𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
 usually represents only a small percentage of 𝜀. Additionally, for homogenous 

isotropic turbulence, this term is exactly 0 (Chapter 4, Part 1). 

Reconsider term G to obtain an alternative form of the TKE equation as a function of 𝜀̃: 

G:   𝜈𝑢𝑖𝑢𝑖,𝑗𝑗 =  𝜈∇
2𝑘 − 𝜀̃ = 𝜈 ((

1

2
𝑢𝑖
2)
,𝑗𝑗
− 𝑢𝑖,𝑗

2 ) 

𝜈∇2𝑘 = 𝜈
1

2

𝜕

𝜕𝑥𝑗
(
𝜕

𝜕𝑥𝑗
𝑢𝑖
2) = 𝜈

1

2

𝜕

𝜕𝑥𝑗
(2𝑢𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗
) = 𝜈 (𝑢𝑖,𝑗

2 + 𝑢𝑖𝑢𝑖,𝑗𝑗) = 𝜀̃ + 𝜈𝑢𝑖𝑢𝑖,𝑗𝑗 

 

 

 

 

= 0 
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As shown before: 

𝜐𝑢𝑖𝑢𝑖,𝑗𝑗 = 2𝜐(𝑢𝑖𝑒𝑖𝑗),𝑗
− 2𝜐𝑒𝑖𝑗𝑒𝑖𝑗  

 

Or equivalently: 

 

𝜐𝑢𝑖𝑢𝑖,𝑗𝑗 = 𝜐∇
2𝑘 − 𝜀̃ = 𝜐 (

1

2
𝑢𝑖
2)
,𝑗𝑗
− 𝜀̃ = 𝜐

𝜕

𝜕𝑥𝑗
𝑢𝑖𝑢𝑖,𝑗 − 𝜀̃ 

 

 

Eq. (4), then becomes: 

𝐷

𝐷𝑡
(
1

2
𝑢𝑖
2) +

𝜕

𝜕𝑥𝑗
[
1

𝜌
(𝑝′𝑢𝑗) +

1

2
𝑢𝑖
2𝑢𝑗] = 𝜐∇

2𝑘 + 𝑃 − 𝜀̃ 

Where: 

𝑃 = − 𝑢𝑖𝑢𝑗𝑈𝑖,𝑗 

𝜀̃ =  𝜐𝑢𝑖,𝑗
2  

Finally, we can write Eq. (4) as: 

𝐷

𝐷𝑡
(
1

2
𝑢𝑖
2) = −∇ ∙ 𝑇 + 𝑃 − 𝜀 = −∇ ∙ 𝑇′ + 𝑃 − 𝜀̃ 

Where: 

𝑇 =
1

𝜌
(𝑝′𝑢𝑗) +

1

2
𝑢𝑖
2𝑢𝑗 − 2𝜐(𝑢𝑖𝑒𝑖𝑗) 

𝑇′ =
1

𝜌
(𝑝′𝑢𝑗) +

1

2
𝑢𝑖
2𝑢𝑗 −  𝜐𝑢𝑖𝑢𝑖,𝑗  

𝜀̃ is also called isotropic dissipation rate.  Note: 

𝜕

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑖
𝑢𝑖𝑢𝑗=0 for I = j and 𝑢𝑖

2= constant and 𝑢𝑖𝑢𝑗=0 for i ≠ 𝑗, i.e., for homogeneous isotropic turbulence 
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Rate of Strain Principal Axes, Parallel Shear Flow, Turbulent Anisotropy, and Shear Production 

𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) symmetric rate of strain tensor 

Symmetric tensor obeys transformation laws that there are three invariants which are independent of 

the choice of the coordinate axes: 

𝐼1 = 𝑒𝑥𝑥 + 𝑒𝑦𝑦 + 𝑒𝑧𝑧 

𝐼2 = 𝑒𝑥𝑥𝑒𝑦𝑦 + 𝑒𝑦𝑦𝑒𝑧𝑧 + 𝑒𝑧𝑧𝑒𝑥𝑥 − 𝑒𝑥𝑦
2 − 𝑒𝑦𝑧

2 − 𝑒𝑧𝑥
2 

𝐼3 = |

𝑒𝑥𝑥 𝑒𝑥𝑦 𝑒𝑥𝑧
𝑒𝑦𝑥 𝑒𝑦𝑦 𝑒𝑦𝑧
𝑒𝑧𝑥 𝑒𝑧𝑦 𝑒𝑧𝑧

| 

Further property: one and only one set of axes exists for which 𝑒𝑖𝑗 = 0    𝑖 ≠ 𝑗 → principal axes. 

𝑒𝑖𝑗 = {

𝑒1 0 0
0 𝑒2 0
0 0 𝑒3

} 

Where 𝑒1, 𝑒2, 𝑒3 represent the principal strain rates.  

The invariants represented in this set of axes are: 

𝐼1 = 𝑒1 + 𝑒2 + 𝑒3 

𝐼2 = 𝑒1𝑒2 + 𝑒2𝑒3 + 𝑒3𝑒1 

𝐼3 = 𝑒1𝑒2𝑒3 

If 𝐼1, 𝐼2, 𝐼3 known these equations can be solved for 𝑒1, 𝑒2, 𝑒3. 
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http://user.engineering.uiowa.edu/~me_260/Viscous_flow_main.htm 

Chapters 1 & 2 (6.3) 

 

http://user.engineering.uiowa.edu/~me_260/Viscous_flow_main.htm
http://user.engineering.uiowa.edu/~me_260/2024_Spring/Chapters%201%20&%202/Part%206/Part%206.3/Chapters%201%20&%202%20(6.3)_cm_final.pdf


11 
 

Parallel Shear Flow Principal Axes 

 

𝑢 = (𝑢1(𝑥2), 0,0) 

𝛾(𝑥2) =
𝑑𝑢1
𝑑𝑥2

 

𝜔3 = −𝛾 represents the only non-zero component of the vorticity.  

Angular velocity for AB= −𝛾, BC=0, ∴ average =−
𝛾

2
 

The average angular velocity represents the rate of rotation which is independent of the coordinate 

system. Whereas 𝑒𝑖𝑗depends on the coordinate system. 

For ABCD with axes parallel the x1x2 plane 𝑒𝑖𝑗  only has shear elements: 

𝑒𝑖𝑗 = {
0 𝛾/2 0
𝛾/2 0 0
0 0 0

}    

However, representation in principal axes (45o rotation PQRS) results in 𝑒𝑖𝑗 only having normal elements: 

𝑒𝑖𝑗̃ = {
𝛾/2 0 0
0 −𝛾/2 0
0 0 0

}   

𝑒11̃ =linear rate of extension = 𝛾/2 

𝑒22̃ =linear rate of compression = -𝛾/2 

PQRS oriented at 45° deforms to P’Q’R’S’ -> PS elongates and PQ contracts, but the angle between the 

sides remain 90°: spherical element becomes ellipsoidal. 

In parallel shear flow, the element ABCD undergoes shear only, whereas element PQRS undergoes only 

normal strain. 
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Recall also for parallel shear flow that the main loss term in mechanical energy equation < 0 and 

gain/production in TKE equation is 𝑢𝑣
𝜕𝑈

𝜕𝑦
< 0. 

 

Thus, eddies that are most effective in maintaining the 𝑈𝑉<0 correlation and extraction energy from the 

mean flow are those aligned with the principal axes, which is essentially a 3D process. 
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