Chapter 3: Overview of Turbulent Flow Physics and
Equations

Part 2: Reynolds-Averaged Navier-Stokes Equations

For convenience of notation use lower case with over
squiggle, uppercase for mean, and lowercase for
fluctuation in Reynolds decomposition.

~

Uij :Ui +ui
p=P+p
ou; —
a_x‘ =7 ~ ~ NS
Oul Lo aul _ 1ap N 0%u; 5 -,
ot Y ox;  pox; Vaxjax,- 90 equation
Mean Continuity Equation
d U+ au+aai_aui_0
axl( W) = dx; O0x; O0x;
aul 6Ul aui aui
axi axi 0xl- axi
Both mean and fluctuation satisfy divergence = 0

condition.



Mean Momentum Equation
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The difference between the NS and RANS equations is the
Reynolds stresses —pu;u;, which acts like additional
stress.

—PU; U= —PUU; (i.e. Reynolds stresses are
symmetric)
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ui2 are normal stresses
wu; [#j are shear stresses
6 new unknowns

For homogeneous/isotropic turbulence u;u; i # j=0and

u? =v? =w?2 = constant; however, turbulence is
generally non-isotropic.

Isotropic Anisotropic

Figure 13.6 Isotropic and anisotropic turbulent fields. Each dot represents a nv-pair at a certain ==
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Consider shear flow with (jj—u >0 as below,
y
Y )
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The fluid velocity is: V. = (U +u,V,w)

If fluid particle retains its total velocity V from y to y #dy gives,
U + u = constant — If U increases, u decreases and vice versa.

X-momentum tends towards
— decreasing y as turbulence

v>0 — u<0 diffuses gradients and

> U_V<O

dU
_ decreases —
dy

v<0 — u>0



X-momentum transport in y direction, I.e., across y =
constant AA per unit area

My, = [ piiV - ndA, where i = (U + u)

Mxy — S —
74 = p(U +uw)v = pUv + puv = puv
lLe. pu;u; = average flux of ]-momentum in

I-direction = average flux of
I-momentum in j-direction



Anisotropy
Symmetry of the Reynolds stress tensor:

uiuj = ujui

The diagonal components of the Reynolds stress tensor
represent the normal stresses, which in general are not
equal:

2 2 2
uy, us, us

The off-diagonal components represent the shear stresses:

Turbulent kinetic energy per unit mass:
1 1 1
k(x,t) = SUTU =Sl = E(u% +us + u%)

Anisotropy tensor:

Normalized anisotropy tensor:

_ aij _ uiuj 1
B 2k B Uju; 3
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Role of the anisotropy tensor in the Mean Momentum
Equation:
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Therefore, only the anisotropic component a;; Is effective

. . . 2 .
In transporting momentum since gpk can be absorbed in a
modified mean pressure.



Irrotational motion
Consider an irrotational random velocity field:
W=0+w=0

Both mean and fluctuating vorticity are equal to zero. For
example, water waves and outer portion of turbulent jet
(free shear flow) or boundary layer.

Notation: u; ; = %, u; = velocity fluctuation with w = 0,
J

. 1 . .
e, w =- (u;; —uj;) = 0 where w;; is the fluctuation
rotation rate tensor.
ui,j — u]"i =0
(g — uy) = 0 = wwy j — gy

9,
Er (W) = wi oy + wuy

d /1 1
( U;iU; ) = E(ui,jui + uiui,]-) = uiui,j

ok _ .. .
(u u) = ( uu l) = ox; gradient of a scalar, i.e.,

same form as fluctuating pressure: Corrsin-Kistler
equation. Therefore, for potential flow, fluctuating velocity
IS equivalent to pressure fluctuations - do not affect the
mean velocity.



Closure Problem:

1.

RANS equations differ from the NS equations due to
the Reynolds stress terms

RANS equations are for the mean flow (U;, P); thus,
represent 4 equations with 10 unknowns due to the

additional 6 unknown Reynolds stresses u;u;

Equations can be derived for u;u; by summing

products of velocity and momentum components and
time averaging, but these include additionally 10 triple
products u;u;u; unknowns. Triple products represent

Reynold stress transport.

Again, equations for triple products can be derived that
involve higher order correlations leading to fact that
RANS equations are inherently non-deterministic,
which requires turbulence modeling.

Turbulence closure models render deterministic RANS
solutions.

The NS and RANS equations have paradox that NS
equations are deterministic but have nondeterministic
solutions for turbulent flow due to inherent stochastic
nature of turbulence, whereas the RANS equations are
nondeterministic, but have deterministic solutions due
to turbulence closure models.
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quiescent fluid and u, is measured at location

Xo. The records of u,(t) in two nominally Realization? -
identical realizations of the experiment are
quite different. — 1
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~ Thearrow of time, also called time's arrow, is the concept positing the "one-way direction" or
| "asymmetry" of time. It was developed in 1927 by the British astrophysicist Arthur Eddington i
~ andisan unsolved general physics question. This direction, according to Eddington, could be 1 e
determined by studying the organization of atoms, molecules, and bodies, and might be drawn
~ upon a four-dimensional relativistic map of the world ("a solid block of paper"). i S
|
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