Chapter 3: Overview of Turbulent Flow Physics and Equations

A5 A summary of Cartesian-tensor suffix notation

The definitions, rules, and operations involved with Cartesian tensors using
suffix notation can be summarized thus.

1:

11.

12.

13.

14.

15.
16.

17.

18.

In a tensor equation, tensor expressions are separated by +, —, or =.
For example;

by + ¢ij = fijk- (A.75)

- In a tensor expression, a suffix that appears once is a free suffix (e.g.,

i and j in Eq. (A.75)).

. In a tensor expression, a suffix that appears twice is a repeated suffix

or a dummy suffix (e.g., the suffixes k in dijic). The symbol used for a
dummy suffix is immaterial, i.e., dijue = dijpp.
Summation convention: a repeated suffix implies summation, ie.,

3
diju = Z dijie- (A76

k=1

- In a tensor expression, a suffix cannot appear more than twice. For

example, the expression fujir is invalid.

. A tensor expression with N free suffixes is (or, more correctly, rep-

resents the components of) an Nth-order tensor. For example, each
expression in Eq. (A.75) is a second-order tensor.

- Each expression in a tensor equation must be a tensor of the same

order, with the same free suffixes (not necessarily in the same order
Equation (A.75) is valid, whereas by = dy and b;; = ¢y are botx
invalid.

- The Kronecker delta §;; is defined by

oy = 1, for i=j,
= 0, for i+ j.

It is a second-order tensor. Note that §;, = 3.

(A.77)

. The alternation symbol &ijx in Eq. (A.56) is NOT a tensor.
. Addition, e.g., bij = ey +dy;. Each tensor must be of the same order

with the same free suffixes.

The tensor product of an Nth-order tensor and an Mth-order tensor
is an (N + M)th-order tensor, €8s bijken = cijdigm.

An Nth-order tensor (N > 2) can be contracted by changing two frs=
suffixes into repeated suffixes. The result is a tensor of order N — 2
Different contractions of dij are dyy, d;j;, and dyjj.

The inner product of an Nth-order tensor and an Mth-order tensor
(N=1,M > 1) is a tensor of order N + M — 2: .8, fie = cijdjy.
The substitution rule is that the inner product with the Kronecksr
delta is, for example,

o0

5chjk = Ci. (A7
There is no tensor operation corresponding to division.
The gradient of a tensor is a tensor of one order higher, e.g., d;; =
6ckl / 0x e
The divergence of an Nth-order tensor (N > 1) is a tensor of orde-
(N —1), e.g, v = dcy/0x;.
There are no tensor operations corresponding to the vector cros:
product or to the curl.
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Matrix multiplication c= i s,
In mahematics, partcularly in linear _algebra, matrix tRnrs, B = Anas Cmi Cmz ttt Cmp A
multiplication is a binary operation that produces a matrix from N such that
two matrices. For matix Eq:?‘:llnpﬁcaﬁm:mi: nl;mbm‘ of :elumnm L= Al '3
the fi i b h  rows i B a0b; »
maﬁ?ﬁ‘:”::u‘;’;;ammﬁw:;me;:n:wp::umﬁsme )\ c;{wwsﬁ i‘““b”+"“b”+

number of tows of the first and the number of columns of the
second matrix. The product of matrices A and B is denoted as
ABY

Matrix  multiplication  was first  described by the French
mathematician Jacques Philippe Marie Binet in 1812,‘2] 1o represent
the composition of linear maps that are represented by matrices.
Matrix multiplication is thus a basic tool of linear algebra, and as
such has numerous applications in many areas of mathematics, as
well as in applied mathematics, statistics, physics, economics, and
r.xngirmering.ml‘l Computing matrix products is a central operation
in all computational applications of linear algebra.

C

For matrix multiplication, the number
of columns In the first matrix must
be equal to the number of foAs in
the second matrix. The result matrix
has the number of rows of the first
and the number of columns of the
second matrix.

Notation

“This article will use the following | matrices are d by capital letters in bold,

e.g. A; vectors in lowercase bold, e.g. a; and entries of vectors and matrices are italic (they are numbers
from a field), e.g. A and a. Index notation is often the clearest way 1o express definitions, and is used as
standard in the literanre, The entry in row i, column j of mauix A is indicated by (A),}. Ajjor ag. In
contrast, a single subscript, eg. Ay, Ay, is used (o select a matrix (not a matrix entry) from a collection of
matrices.

Definition

1f A is an m % n matix and B isan i % p matrix,

ay @ O bu bz -+ by
P (el ™ kit

the matrix product C = AB (denoted without multiplication signs or dots) is defined w0 be the m * p
mauixSII7IE]

fori=1,..,mandj=1, ..

That is, the entry ¢; of the product is obtained by multiplying tem-by-term the entries of the ith row of A
and the jth column of B, and summing these 11 products. In other words, ;5 is the dot product of the ith
row of A and the jth column of B.

Therefore, AB can also be written as

ayby + -+ + anbm
anby + -+ + Ganbul

aybyz + o+ ambua ot
anbip +-++ambua 0t

Gubip ++++ G1nbnp

Gl amb:,+---+m..b.,

a“lhl+4..+%bn‘ amibiz 4+ + Gmnbn2 0 Mb.,.*.....}.%bw

Thus the product AB is defined if and only if the number of columns in A equals the number of rows in
B,in this case 1.

In most scenarios, the entries are numbers, but they may be any kind of mathematical objects for which an
addition and a multiplication are defined, that are associative, and such that the addition is commutative,
and the multiplication is distibutive with respect (0 the addition. In particular, the entries may be matrices

themselves (see block matrix).
Illustration
The figure (o the right illustrates diagrammatically the product of B
wo matrices A and B, showing how each intersection in the v b, b,
product matix corresponds © a row of A and a column of B. {60 i

4x2 matrix 43 matrix o e VA

011 012 | 9x3 matrix ® o @ 5

T b ] I Al
an  ag by bas EEC )

“T'he values at the intersections, marked with circles in figure to the right, are:

Ci=ay S+ An-Ybaa

Cizz A2 Nn & A3y Y31



1.8.3 The Dyad (the tensor product)

The vector dot product and vector cross product have been considered in previous
sections. A third vector product. the tensor product (or dyadic product). is important in
the analysiis of tensors of order 2 or more. The tensor product of two vectors u and v is
written as

Tensor Product (1.8.2)

This tensor product is itself a tensor of order two, and 1s called dyvad:

W-V is ascalar (a zeroth order tensor)
uxVv isa vector (a first order tensor)
u®v isadyad (a second order tensor)

It is best to define this dyad by what it does: it transforms a vector w into another vector
with the direction of u according to the rule’

‘(u @v)w=u(v- W}| The Dyad Transformation (1.8.3)

This relation defines the symbol *& ™.

The length of the new vector 1s ‘ll‘ times V-W. and the new vector has the same direction

as u. Fig. 1.8.4. It can be seen that the dyad is a second order tensor, because it operates
linearly on a vector to give another vector { A Problem 2}.

Note that the dyad is not commutative, u® v # v @u. Indeed it can be seen clearly from
the figure that (U@ v)w = (v@u)w.



(u @ v)w

Figure 1.8.4: the dyad transformation
The following important relations follow from the above definition { A Problem 4},

(u@v)wex)=(v- wlu ® x)

u(‘r@w}: (u-‘r)w (1.8.4)

It can be seen from these that the operation of the dyad on a vector is not commutative:

u(v@w)#(v@w}u (1.8.5)

Example (The Projection Tensor)

Consider the dyad e ®e. From the definition 1.8.3. (e®@e)u= (E -uje. But e-u is the

projection of u onto a line through the unit vector e. Thus (e -uk is the vector projection

of u on e. For this reason e ®@e is called the projection tensor. It is usually denoted by

P

d
-

Pu € Pv

Figure 1.8.5: the projection tensor
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Part 1: Instantaneous Equations: Focus DNS

2
0ij = — (P +§MV'Q) 8ij + 2pe;;

u=10

Einstein summation
convention: if an
index occurs twice

inaterma
summation over the
repeated index is

implied

aU; 1/0U; 0U; 1/0U; 0U;
ox, ' = 2\ox, Tox ) T2\ 0x T ox
x]- x]- X x]- X
&ij = &ji Wijj = —Wj

Deformation Strain Rotation Rate tensors

QzVXQz(Wy—vz)i+(uz—wx)j+(vx—uy)12

2w3; 2013 2wy
Continuity
ap .. . ap d .
— 4 V- (pU) in index notation — + — (pU;) (conservative form)
at = at | ox;
. . . D _d
Using material derviative operator — = — +U-V
Dp
—+pV-U=0
Dt pv:-U
Momentum

DU au

P = PG HUVU) =—pgk+ V-0

P =P ’axj)
~ 0p 2 dU,
= —pok = gt g (2ney = 500
£ S

Naronas Nn= -:__
e =P
P e spnall,

1 Deformation rate tensor is derived from the analysis of the relative motion between two

neighboring fluid particles.



LHS in conservative form:

Ui 9U; 6(pU1) au;
poi+pU= +U[ +—( U)] —(pUU) lat+p¥
a J
pU; a_:]- Highlighted terms sum to zero, as per continuity equation.
J

ap aU;
+—U.U:. +p—U: +
aij‘U] paijJ

In the context of fluid dynamics, the "conservative" form of the Navier-Stokes equations
represents a mathematical formulation that explicitly expresses the conservation of mass and
momentum within a control volume, while the "non-conservative" form does not, with the key
difference lying in how the time derivative is calculated, where the conservative form uses a local
derivative (fixed control volume) and the non-conservative form uses a substantial derivative

(moving control volume).

Incompressible flow

U,

—=V:U=0
0x,, =
bu * 2 PN 2
pPpr = ~Pgk—Vp+uVilU =-Vp+uviU
Where
0 0 (aui aU]-> 9%y,
2—¢i==—|—+7=]= =V2U; =V?U
an Y ax] ax] axi axjaxj
p = p + pgz =piezometric pressure
Mechanical energy equation
U DUl _ n aO'ij
i|P Dt pPYi ox;
b (% u?) . 903
p Dt = pPYigi i ox;
Rate of Rate of Rate of work
increase KE work done by net
done by surface
body force V- oy;
force

U?=U;U; = U? + U? + U2




Consider:

d
% (Vioy) =

Total work
of surface
force

U,

3] . t .
ax] 6x1
Deformation Increase of
work w/o a KE since
and lost to contributes
internal fluid a
energy

Oij ox; 0ij (&) + wyj) = o385

g;jw;j = 0 since it is the product of a symmetric and an anti-symmetric tensor.

iac L 20v-0)6, +2
Oijj5— = [— (P M '_> ij Mfij] Eij
an 3
0ot = —pV- U + 2ue; ¢ 2u(v- v)°
U - = ijeij = 4 =
ax]' 3
Since eij&-]- =& = \Y Q Q@
%ij pV-U+te
1.2
pD(ZUl ) Uig _I_a(UiUU) .
iYi — Uijeij
Dt axj
1.2
Dt - = aX] -
1.2 Rate of Total Rate of work Rate of
p 2 (EU.Z) - p[w work done rate of dueto viscous
Dt\2 ! atl by body work volume dissipation
0 (7 Uzz) force g done 0;; expansion;
+ U; 5 ] - converts
Xj mechanical
energy to
internal
energy and
vice-versa




@ = 0 = loss of mechanical energy = gain of internal energy due to the deformation of the fluid particle
—0i€ij = pV - U — ¢ =total rate of deformation work
pV - U=reversible part

@ = irreversbile part = rate of viscous dissipation of KE per unit volume. ¢ a p and ¢ a
(velocity gradients)? and important in regions of high shear with outcomes, e.g. , hot lubrificant in
bearings and burning surfaces on re-entry of the atmosphere for spacecraft.

Energy equation

- De _ . =) R
g = q = heat (conduction/radiation) Por=47W Qfv-Wiv g =—gk
added to MV L1 L1 -
e=u+-U+gz=u+-U-U-g-r
szi/:workdoneb MV ’ ’ _
v y G=—V-q=—V-(—kVT) = V- (KVT) q = —kVT heat flux vector
U —V - g since + sign for heat
. L -
w=-V- (Q' Uij) =-U- (V ' Gij) ~ % G, added
DU J
- p(uFE-vg)
p(-g7) _ Dr _
e = 9p="9U
u2Z_y (6Q+U VU)— 2+1 VU2—1DU2— oY
= Dt —\ot — =) 290 27 2 Dt Dt
[DG+U/D£ ]—V(kVT)+ (Q/Dg/ﬁ )+ oU;
Ploe =Dt /Q/Q_ P\"De 7= 79) T Ty
DY _ v kvm) 40y
Pt~ % 0x;
Di Same't
p=— =V (KVT)—pV U + ¢ ame terms
Dt e — mechanical
Notice that: \ enerey
equation
wU.j7_PDp_Dp __D(p with change
pV-U oot bt Pt (p) of sign!

So an alternative formulation is:

Dla+P) v avm+224
Poc\" o)~ pr ' ?
h



Vorticity equation

Start from NS:

au VP )
—+U-VU =——+vV°U
t — - p -
Using the identity: U - VU =V GQ ' Q) — U X w and taking the curl of NS:
Dw
—= VU + vW2w
Dt - = =
Rate of Rate of
deforming viscous
vortex lines diffusion
Enstrophy equation
Enstrophy definition:
0 w-w
2 2

Intensification w by stretching with similarity mechanical enragy equation as can be destroyed by viscosity
K. Multiply vorticity equation by w:

Dw 2
— = VU + vV a)]
D [(w? 2
— | — | = wiwjgij V(V X (IJ) + vV- [(IJ X (V X (IJ)]
Dt\ 2 i — 7 — -
Generation/ Destruction/ [ =0 for localized disturbance
reduction dissipation and often not important
due to duetop
vortex
stretching

10



Derivation of Egs. 3.35 to 3.36 in Davidson’s book

DS _ & V)i + W

- = . =

Dr (w-V)u+vWw
w-ﬁzw-[(w-V)u+vV2co]:>

Dil 7 =0 (W -Viu+w- - vWo
(1) (2)

. ) ou\ _ ou; _ 1 _
First term (1): w; - (ooj a_x,) = wiwjaj = w;w;j(S;j — Eeijkwk) = w;w;S;;

Second term (2): v - V®
Using the identity for the curl of curl:

Ux (VxA)=V(V-A) = V2A=>V2A=V(V-4) -V x (VxA)

va-vza’:va-[V(V-a’)—Vx(an’) =-va- |Vx (VX&)
=0 a b

Using the vector identity:

V-(@xb)=b-(Vx3)—3-(Vxb)=d-(Vxb)=b-(Vxd) —V-(dxbh)

_vg.[vwxa)]=—v<v><6)2+vv-[ax(vxa>]
b

a

Final expression:

D (w? . _ _
E 7 =u)iijij—v(V><(0) +VV[U)X(VX(‘))]

Exe. 2. 10 of Pope’s Book:

Dw? ou; dw; dw;
= W w? + 2w;wj — — 2v
Dt ‘—(i)—’ axj axj axj
(2
Terms()+(2) 1 _, dw;dw; 1 )
5 =5 —va—xjaxj —EVV'(V(U )—v(Vw) - (Vw)
=W (w- Vo) —v(Vw) - (Vo) = vVW(o) - (Vo) + vo - V2w — v(Vw) - (Vo)

= v - V?

11



Turbulent Flows
Stephen B. Pope
Cambridge University Press (2000}
Solution to Exercise 2.10

Prepared by: Mark Fogleman Date: 1/27/03

The enstrophy equation can be found by dotting the vorticity equation,
Eq.(2.60), written in index notation with vorticity:

(fj:',dt' . L’?:',Jt' f)?{.:..i'z' f)Ug [: 1:]
wi— + Vjwim—— = vwjm——— + wiwj .
b ot O ‘O ;0 T Oy

Integrating the first three terms by parts gives
Dzwiw; d . Ouw Ow; Ow; oU;

[t Lk i i i i

, =V —(wiz—) — Vr—5— + Wiwj-—. 2
0z oz (w"d:cj) Br;0r; ' Ox; @)

0 %Ldiu.‘:'

at

+ U

The third term can be integrated by parts once more to yield

f}%wiwf

at

n I E)%waw,- 1 32 ( } Bw,- s':'iw,- 60}
g = -V whildy ) — V—— + Wildy—.
7 Oy 2 Bz;or; dz; Oz; oz

(3)

Multipyling through and converting some terms back to vector notation
gives the final result:

Duw? 3 ;. Bw; Ow,
= vV%? + Qi — — i O A
Di PV W + 2wyl c'):i:j yf):;:j i):cj ( )

Thizs work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike License. To view a copy of this license, visit
hitp://creativecommons.org/licenses /by-ne-sa /1.0 or send a letter to Cre-
ative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

12



Pressure equation

Obtained by taking the divergence of NS equation:

ZE>=_. VU) =
v (P v-(U-vy) ax, 6xk
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Alternate derivation vorticity transport equation

au VP )
—+4+U-VU =—-——+vV°U
it — - p -
Using the identities:
1
U-vu=v(5U-U)-Uxw

VZU=V(V-U)-Vx(VXU)=-Vxw

Therefore:

A~

\Y
a)=——p—vV><Q

au
—+VK-U X
ot -

K=iU-U

N | =

Q .

Viscous force directly
related to w, i.e., existance
w implies viscous forces

-V X w

Stokes form NS

wa+V<K+E)
at — - o)

N———

Bernoulli
equation for
steady inviscid
irrotational flow

Curl Stokes form NS: Helmholtz vorticity equation.

T (Ux ) = U(Tw) + 0 U - o(V0) - U Vo = -7 -

VX(VxQ)=V(v/£/)—v2Q

dw ) Dw
—+U-Vo= w-'VU + Ww=—7=
t - T == —= Dt
Vortex Viscous
stretching diffusion
/turning

17

Vo

u

Rate of change following fluid
particle




