Chapter 3: Overview of Turbulent Flow Physics and Equations

A5 A summary of Cartesian-tensor suffix notation

The definitions, rules, and operations involved with Cartesian tensors using
suffix notation can be summarized thus.

1.

11.

12.

13.

14.

15.
16.

17.

18.

In a tensor equation, tensor expressions are separated by +, —, or =.
For example;

by + cij = fij. (A.75)

- In a tensor expression, a suffix that appears once is a free suffix (e.g.,

i and j in Eq. (A.75)).

. In a tensor expression, a suffix that appears twice is a repeated suffix

or a dummy suffix (e.g., the suffixes k in dijic). The symbol used for a
dummy suffix is immaterial, i.e., dijue = dijpp.
Summation convention: a repeated suffix implies summation, ie.,

3
diju = Z dijie- (A76

k=1

- In a tensor expression, a suffix cannot appear more than twice. For

example, the expression fujir is invalid.

. A tensor expression with N free suffixes is (or, more correctly, rep-

resents the components of) an Nth-order tensor. For example, each

W=o
expression in Eq. (A.75) is a second-order tensor.
- Each expression in a tensor equation must be a tensor of the same Sesdos
order, with the same free suffixes (not necessarily in the same order
Equation (A.75) is valid, whereas by = diy and b; = ¢, are both VU
invalid.
- The Kronecker delta §;; is defined by Vaiteir
d; = 1, for i=j, (A7) W=
= 0, for i+ j. "
: 74 A f‘J\D’\_
It is a second-order tensor. Note that §;, = 3.
. The alternation symbol éijx in Eq. (A.56) is NOT a tensor. akely

. Addition, e.g., bij = ey +dy;. Each tensor must be of the same order

with the same free suffixes.

The tensor product of an Nth-order tensor and an Mth-order tensor
is an (N + M)th-order tensor, €. bijken = cijdigm.

An Nth-order tensor (N > 2) can be contracted by changing two frs=
suffixes into repeated suffixes. The result is a tensor of order N — 2
Different contractions of dyj are dy, dji, and dyj;.

The inner product of an Nth-order tensor and an Mth-order tensor
(N=1,M >1)is a tensor of order N + M — 2: .8, fie = cijdjy.
The substitution rule is that the inner product with the Kronecksr
delta is, for example,

o0

5chjk = Ci. (A7
There is no tensor operation corresponding to division.
The gradient of a tensor is a tensor of one order higher, e.g, d;; =
6ckl / 0x e
The divergence of an Nth-order tensor (N > 1) is a tensor of orde-
(N=1),eg, v = Ocy/0x;.
There are no tensor operations corresponding to the vector cros:
product or to the curl.
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Matrix multiplication L P
In  mathematics, partcularly in linear algebra, ~matrix Rt B = A S Cmi Cm2 *tt Cmp A
multiplication is a binary operation that produces a mauix from - I such that
two matrices. For matix multplication, the number of columns in L= M\Ask
the fi i by the number of rows in the second . z -
maﬁfxu;u?;;a;&mmﬁwn;m;:u:p;:umhs:me A Cq-{wv«&ﬁ i‘““"*'+““b”+

number of tows of the first and the number of columns of the
second matrix. The product of matrices A and B is denoted as
ABY

Matrix multiplication was first  described by the French
mathematician Jacques Philippe Marie Binet in 1812,21 (0 represent
the composition of linear maps that are represented by matrices.
Matrix multiplication is thus a basic tool of linear algebia, and as
such has numerous applications in many areas of mathematics, as
well as in applied mathematics, statistics, physics, economics, and
r.xngirmering‘ml‘l Computing matrix products is a central operation
in all computational applications of linear algebra.

c

Far matrix multipliication, the number
of columns In the first matrix must
be equal to the number of roAs in
the second matrix. The result matrix
has the number of rows of the first
and the number of columns of the
second matrix.

Notation

“This article will use the following ional matrices are d by capital letters in bold,
e.g. A; vectors in lowercase bold, e.g. a; and entries of vectors and matrices are italic (they are numbers
from a field), e.g. A and a. Index notation is often the clearest way 1o express definitions, and is used as
standard in the literaure, The entry in row i, column j of mauix A is indicated by (A),}‘ Ajjor ag. In
contrast, a single subscript, e.g. Ay, Ay, is used Lo select a matrix (not a matrix entry) from a collection of
matrices.

Definition

I A isan m X 1 matix and B isan n % p matrix,

ay a2 O bu bz -+ by
P o helitihd T ™ ki
Umi Gm2 t Gmn b bz v bup

the matrix product C = AB (denoted without multiplication signs or dots) is defined o be the m * p
mauixSII7IE]

fori=1,..,mandj=1, ..

That is, the entry ¢ of the product is obtained by multiplying tem-by-term the entries of the ith row of A
and the jth column of B, and summing these 11 products. In other words, ;5 is the dot product of the ith
row of A and the jth column of B.

Therefore, AB can also be written as

anby + -+ +ainbm
anby + -+ + Ganbnl

aybyz + o+ ambua ot
anbip +-+++ambua o0t

Gubip +++ G1nbnp

G . . ' amb:,+---+m..b.,

amlhl+4..+%bn‘ amibiz 4+ + Gmnbn2 00 Mb.,.*....q.%bw

Thus the product AB is defined if and only if the number of columns in A equals the number of rows in
B, in this case n.

In most scenarios, the entries are numbers, but they may be any kind of mathematical objects for which an
addition and a multiplication are defined, that are associative, and such that the addition is commutative,
and the multiplication is distibutive with respect 0 the addition. In particular, the entries may be matrices

themselves (see block matrix).
lllustration
The figure (o the right illustrates diagrammatically the product of B
two matrices A and B, showing how each intersection in the v b, b,
product matix corresponds © a row of A and a column of B. {60 b

4x2 matrix 43 matrix o VM

011 012 | 9u3 matrix s o @ 5

o . ]_ o & Al
an  ag by bas EEC )

“TI'he values at the intersections, marked with circles in figure to the right, are:

Ci=ay S+ An-YPaa

Cizz A2 N & A3y Y319



1.8.3 The Dyad (the tensor product)

The vector dot product and vector cross product have been considered in previous
sections. A third vector product. the tensor product (or dyadic product). is important in
the analysiis of tensors of order 2 or more. The tensor product of two vectors u and v is
written as

Tensor Product (1.8.2)

This tensor product is itself a tensor of order two, and 1s called dyvad:

W-V is ascalar (a zeroth order tensor)
uxVv isa vector (a first order tensor)
u®v isadyad (a second order tensor)

It is best to define this dyad by what it does: it transforms a vector w into another vector
with the direction of u according to the rule’

‘(u @v)w=u(v- W}| The Dyad Transformation (1.8.3)

This relation defines the symbol *& ™.

The length of the new vector 1s ‘ll‘ times V-W. and the new vector has the same direction

as u. Fig. 1.8.4. It can be seen that the dyad is a second order tensor, because it operates
linearly on a vector to give another vector { A Problem 2}.

Note that the dyad is not commutative, u® v # v @u. Indeed it can be seen clearly from
the figure that (U@ v)w = (v@u)w.



(u @ v)w

Figure 1.8.4: the dyad transformation
The following important relations follow from the above definition { A Problem 4},

(u@v)wex)=(v- wlu ® x)

u(‘r@w}: (u-‘r)w (1.8.4)

It can be seen from these that the operation of the dyad on a vector is not commutative:

u(v@w)#(v@w}u (1.8.5)

Example (The Projection Tensor)

Consider the dyad e ®e. From the definition 1.8.3. (e®@e)u= (E -uje. But e-u is the

projection of u onto a line through the unit vector e. Thus (e -uk is the vector projection

of u on e. For this reason e ®@e is called the projection tensor. It is usually denoted by

P

d
-

Pu € Pv

Figure 1.8.5: the projection tensor
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Part 1: Instantaneous Equations: Focus DNS

2
0ij = — (P +§MV'Q) 8ij + 2pe;;

u=10

Einstein summation
convention: if an
index occurs twice

inaterma
summation over the
repeated index is

implied

aU; 1/0U; 0U; 1/0U; 0U;
ox, ' = 2\ox, Tox ) T2\ 0x T ox
x]- x]- X x]- X
&ij = &ji Wijj = —Wj

Deformation Strain Rotation Rate tensors

QzVXQz(Wy—vz)i+(uz—wx)j+(vx—uy)12

2w3; 2013 2wy
Continuity
ap .. . ap d .
— 4 V- (pU) in index notation — + — (pU;) (conservative form)
at = at | ox;
. . . D _d
Using material derviative operator — = — +U-V
Dp
—+pV-U=0
Dt pv:-U
Momentum

DU au

P = PG HUVU) =—pgk+ V-0

pu, _ 9U; . 9U;
ERATT: 7 0x;

p )

]

B P c’)p_l_ 9] (2 2 dUp
—~P8 Jdx; Ox Heij 3“axm

5ij)

A S

,\(\ A R A
{ =
e = o
P = wrlom aav ,M_Q\

1 Deformation rate tensor is derived from the analysis of the relative motion between two

neighboring fluid particles.



LHS in conservative form:

au;

au; ap a _ d(pUy a _ ap au;

at

ap aU;
+—U;U; +p—U; +
at aij‘UJ pale]]

J

au . L . .
pU; e Highlighted terms sum to zero, as per continuity equation.
J

In the context of fluid dynamics, the "conservative" form of the Navier-Stokes equations
represents a mathematical formulation that explicitly expresses the conservation of mass and
momentum within a control volume, while the "non-conservative" form does not, with the key
difference lying in how the time derivative is calculated, where the conservative form uses a local
derivative (fixed control volume) and the non-conservative form uses a substantial derivative
(moving control volume).

Incompressible flow

au.
M _v.U=0
0x,, =
by A 2 A~ 2
Por = —pgk —Vp +puVeU = =Vp + uveU
Where
d d <6Ui aU]> 0%U;
2—¢i=—|—+=—]= =V2U; =V?U
an Y ax] ax] axl- axjax] ¢ -
p = p + pgz =piezometric pressure
Mechanical energy equation
DUL' 60’11
U. = pg:
l[P Dt PYi 9x;
1.2
p(3u7) _ U u. 2% 5
P—0pr = PUg F %, U?=U;U; = U} + U2 + U2
Rate of Rate of Rate of work
increase KE work done by net
done by surface
body force V- 0y
force




Consider:

)
% (Vioy) =

Total work
of surface
force

oU;

5. Ui 90y
U . t .
8x] 8x]
Deformation Increase of
work w/o a KE since
and lost to contributes
internal fluid a
energy

l
% o, = i (e + wij) = 0yje
]

g;jw;; = 0since it is the product of a symmetric and an anti-symmetric tensor.

au;

2
Gija—xj = [— (P +tuv: Q) 65 + lefij] &;j

i

O'.._
Y ax]
Since eij&-j = & ]
% 5x = —pV-U+tog
1.2
D(iul )= U. ,+5(Uif’i1)
p Dt pYigi ox;
D( 9(U;0i)
‘U J
p Pg Y ox;
1.2 Rate of Total
2 —U;? i (2 O ) work done rate of
p i pl
Dt dat by body work
0 (— force g done 0j;
+ U; -

2 2
=—pV-U+2ue;je; — g#(v -U)

Rate of work
due to
volume
expansion;
converts
mechanical
energy to
internal
energy and
vice-versa

Rate of
viscous
dissipation




@ = 0 =loss of mechanical energy = gain of internal energy due to the deformation of the fluid particle
—0;j&;j = pV - U — ¢ =total rate of deformation work
pV - U= reversible part

@ = irreversbile part = rate of viscous dissipation of KE per unit volume. ¢ a 0 and ¢ a
(velocity gradients)? and important in regions of high shear with outcomes, e.g. , hot lubrificant in
bearings and burning surfaces on re-entry of the atmosphere for spacecraft.

Energy equation

Q_ . .
g—g—heat (conduction/radiation) — _ak
g 9
added to MV 1 1 -
e=u+EU2+gz=u+§Q-Q—g-1

W= w = work done by MV

v

D . . . H
po=q—Ww=Q/V-W/V

g=-V-q=-V-(-kVT) = V- (kVT)

U, V- q since + sign for heat

q = —kVT heat flux vector

w=-V-(U-0;)=-U-(V-a;) - %Gy, | added

bu_ ..
- P(ln—t‘! 2)

p(-gr) _ Dr _

e 9”92
y.2u_, (ag+U VU)_ aU? 1, VUZ_lDUZ_ DU
= Dt — \ot — =) 20t 27 2Dt Dt

[Dﬁ+u% ]—v (kVT) + (g/Dg/ﬁ >+ oUs
th—Dt/Q/Q_ P\="De 7="9) ™ %y,

DU_v (kVT) + oU;
p Dt B O-U axj
D
p—=V-(KkVT)—pV-U+¢ Same terms
Dt —_— mechanical
Notice that: \ energy
equation
pV-y=R22_2B_ E(B) with change
= Dt Dt Dt \p of sign!

So an alternative formulation is:

9



Vorticity equation

Start from NS:

U VP

Zhu-vU=-——L4vviy
t - = P

Q

Using the identity: U - VU =V GQ ' Q) — U X w and taking the curl of NS:

Dw )
—_— = w VU + vWew
Dt - = -
Rate of Rate of
deforming viscous
vortex lines diffusion
Enstrophy equation?
Enstrophy definition:
0 w-w
2 2

Intensification w by stretching with similarity mechanical enragy equation as can be destroyed by viscosity

K. Multiply vorticity equation by w:

Dw 2
|—==w-VU+ vV w]
D [w? 2
—|=5 )= wwg - v(V X a)) + VvV [a) X (V X a))]
Dt\ 2 N N — -
Generation/ Destruction/ [ =0 for localized disturbance
reduction dissipation and often not important
due to duetop
vortex
stretching

2 Needs detailed derivation and comparison Pope Exercise 2.10.

10



Pressure equation
Obtained by taking the divergence of NS equation:

v (p v (Q VQ) dx; 0xy
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Alternate derivation vorticity transport equation

au VP )
—+4+U-VU =—-——+vV°U
it — - p -
Using the identities:
1
U-vu=v(5U-U)-Uxw

VZU=V(V-U)-Vx(VXU)=-Vxw

Therefore:

A~

\Y
a)=——p—vV><Q

au
—+VK-U X
ot -

K=iU-U

N | =

Q .

Viscous force directly
related to w, i.e., existance
w implies viscous forces

-V X w

Stokes form NS

wa+V<K+E)
at — - o)

N———

Bernoulli
equation for
steady inviscid
irrotational flow

Curl Stokes form NS: Helmholtz vorticity equation.

T (Ux ) = U(Tw) + 0 U - o(V0) - U Vo = -7 -

VX(VxQ)=V(v/£/)—v2Q

dw ) Dw
—+U-Vo= w-'VU + Ww=—7=
t - T == —= Dt
Vortex Viscous
stretching diffusion
/turning

15

Vo

u

Rate of change following fluid
particle




