Chapter 2 Describing Turbulence: Averages, Correlations and
Spectra

2.1 Navier-Stokes Equation and Reynolds Number

Spatial and temporal velocity and pressure fields obey the Navier-
Stokes equations herewith of interest for incompressible flow:
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Inertia = body force due gravity — pressure gradient force +
viscous force, which is diffusive. The body force due to gravity
may be absorbed into the pressure gradient force via use of
piezometric pressure p = p +yz. The pressure force tends to adapt
to whichever of the other terms is dominant and need not be
considered explicitly when considering the relative magnitude of
the forces.



Inertia includes U -VU nonlinear mechanism by which
perturbations may self-reinforce.

Viscous diffusion derives from molecular momentum diffusion:
for non-dense gases due to molecular collisions, whereas for
liquids due to local intermolecular cohesion arising from their
proximity.

Diffusion smooths flow perturbations, whereas nonlinear
Inertia may strengthen them such that their effects are often
in conflict.
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Recall viscous diffusion layers:

Viscous layers:

Sudden acceleration flat plate: U, =vu,, u(y,0)=0
Soo = 36477 0D =Y
9 u(oo,t) =0
Layer grows in time due viscous diffusion
Oscillating flat plate: u; = vu,,, 0.8 <U
u(0,t) =U, cosmt
g9 = 6.5\/V/Ww ’ ’
79 / U(oo,t) =0

Layer confined constant thickness

Stagnation point flow: 69 = 2.4./v/B layer not a
function of x since convection balances diffusion

Flat plate boundary layer: u +v, =0
uu, +vu =ou
g9 = 4.9 /vx/U u(x,0) =0
u(x,)=U

Layer grows with x due convection



Ekman Layer on Free Surface: effects due to wind shear
j 2"
=1l = -Oozpair(vwind - u(O)) l

I

= \/2fz = Ekman layer thickness

Coriolis force = 202 xX V= —fvg + fu]A' — 20 cosOBu IQ

f =2Qsin 9= planetary vorticity = 2*vertical component Q
—fv=vuz; fu=vvgy

pu, =T atz=0

v, =0 atz=0

(u,v) =0 atz=-

The Ekman layer thickness is constant in time and space
since vortex diffusion balances the Coriolis force.



2.2 Averaging

Averages:

For turbulent flow V (x, #), p/x, ) arc random runctions of
time and must be evaluated statistically using averaging
techniques: time, ensemble, phase, or conditional.

Time Averaging

For stationary flow, the mean is not a function of time and
we can use time averaging.

1+t

§=; [u(t)dt T > any significant period of u'=u - u
o

(e.g. | sec. for wind tunnel and 20 min. for ocean)

Statistically stationary process = the statistical properties, such as
mean, variance and autocorrelation, do not change over time.

E veragin

For non-stationary flow, the mean is a function of time
and ensemble averaging is used

" N 5
u(t) = }:; Yu'(t) Nis large enough that » independent
ful

u'()) = collection of experiments performed under

identical conditions (also can be phase aligned
for same t=0).
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FIGURE 12.3 Tllustration of ensemble and temporal averaging. The left panel shows four members of an
ensemble of time series for the decaying random variable «. In all four cases, the fluctuations are different but the
decreasing trend with increasing ¢ is clearly apparent in each. The right panel shows averages of two, four, and eight
members of the ensemble in the upper three plots. As the sample number N increases, fluctuations in the ensemble
average decreases. The lowest plot on the right shows the N— o« curve — this is the expected value of u(f) — and a
simple sliding time average of the n = 4 curve where the duration of the time average is one-tenth of the time period
shown. In this case, time and ensemble averaging produce nearly the same curve.

Averaging Rules:
f:f-}-f' g=§+g. g =x0rt
0 T=Tf Te=fz fg=0

7=
Fre=7+8 IL  E-Te+Te



Phase and Conditional Averaging

Similar to ensemble averaging, but for flows with
dominant frequency content or other condition, which is
used to align time series for some phase/condition. In this
case triple velocity decomposition is used: u=u+u"+u'

where u’° is called organized oscillation.
Phase/conditional  averaging  extracts all  three
components.
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Fig. 6.1 Schematic representation of the triple
decomposition: e, ‘instantaneous signal;
===, conditionally averaged; , mean.
The numerals in circles characterize the phase
for later reference.
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f?=0, =0, TF=o (6.2.7)
E_{S =f <P=F (6.2.8)
B=f =< FB=K» (6.2.9)
f'g' =<{f"¢g>=0. (6.2.10)
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In some situations, particularly in numerical work, it is convenient to use spatial aver-
aging to get flow statistics. For a given volume of fluid, V, this is defined in an obvious
way via |

U(x, t) = % / UK, t)dx, (2.12)
v

where V is generally taken to be centered around the point x. Volume averaging is most
appropriate if the turbulent flow is homogeneous over the averaging region in the sense
that mean statistics do not vary over this domain. In some cases, particularly flows with
geometrical symmetries, averaging may be taken along particular lines or within sur-
faces in the flow field over which the velocity field has a uniform mean behavior. For
example, Eq. (2.12) is appropriate to use in a channel flow with V taken to be planes
parallel to the bounding surfaces since mean statistics do not vary over such regions.
Averaging over planes in this case is equivalent to averaging over many experiments and
provides a convenient means of getting rapidly converged statistics. Similar to the case of
time averaging, spatial averaging is not generally appropriate for flows with non-uniform
turbulence properties, that is, non-homogeneous turbulence. In particular, the average
of terms containing spatial derivatives in the directions over which averaging is imple-
mented cannot be computed accurately. In the example of a channel flow spatial aver-
aging over planes parallel to the boundaries is legitimate because the non-homogeneity
of the mean flow in this instance is in the direction normal to the averaging planes.
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The plunging wave-breaking process for impulsive flow over a bump in a shallow water
flume is described, which is relevant to ship hydrodynamics albeit for an idealized
‘geometry since it includes the effects of wave-body interactions and the wave breaking
direction is opposite to the mean flow. T sts of two parts, which deal with

i and numerical respectively. In Part |, ensem-
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bl d s are conducted, induding the overall flume flow, 2-D
particle image velocimetry (PIV) center-plane velocities, turbulence inside the breaking

wave, and bottom pressures under the breaking wave. A series of individual plunging
wave-breaking tests were conducted, which all followed a similar time line consisting
of startup, steep wave formation, plunging wave breaking, and chaotic wave breaking
swept downstream time phases. The plunging wave breaking process consists of four
repeated plunging events each with three [jet impact (plunge), oblique splash and
vertical jet] sub-events, which were identified first using a complementary computa-
tional fluid dynamics (CFD) study. Video images with red dye display the plunging wave
breaking events and sub-events. The wave profile at maximum height, first plunge,
bump and wave breaking vortex and entrapped air tube trajectories, entrapped air tube
diameters, kinetic, potential, and total energy are analyzed. Similarities and differences
are discussed with the previous deep water or sloping beach experimental and
computational studies. The numerical simulations using the exact experimental initial
and boundary conditions are presented in Part Il of this paper.
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Fig. 5. Wave breaking profiles: (a) L4: (b) S4; and (c) non-dimensional with wave length (4) and wave height (H,,)at t, in x and z directions, respectively
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Fig. 1. Major events of the plunging wave breaking over a submerged bump: (a) jet impact (plunge); (b} obligue splash; and (c) vertical jet.
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FIGURE 6-3
Hot-wire measurements showing turbulent velocity fluctuations: (a) typical trace of a single velocity compo-

nent in a turbulent flow; (b) trace showing intermittent turbulence at the edge of a jet.
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2.3 One-Point Statistics

Statistical analysis needed for U, 0 =V x U, p, and other
variables of interest. Reynolds decomposition

Is of central importance as it characterizes the strength of
the turbulence where “<  are the variances in the x;

coordinate directions, e.g., the inflow "/ characterizes
the free stream turbulence in a wind tunnel experiment.

If “ " "= the turbulence is isotropic, whereas more
generally “ * " *“ and the turbulence is non-isotropic,
e.g., for near wall turbulence |

Homogeneous turbulence: the time-averaged properties of the flow are uniform and independent of

position. For example, whereas u?, v2, w2 may differ from each other, each must be constant throughout
the system.

Isotropic turbulence: Turbulence in which the products and squares of the velocity components and their
derivatives are independent of direction, or, more precisely, invariant with respect to rotation and
reflection of the coordinate axes in a coordinate system moving with the mean motion of the fluid. Then
all the normal stresses are equal, and the tangential stresses are zero.

w=v2=w? ww=uw=ovw=_20

Homogeneous and isotropic turbulence play a fundamental
role in the physics and modeling of turbulence.
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The normal variances in combination with the off-diagonal
quadratic products form the Reynolds stress tensor =
symmetric second order tensor

: : X o ‘
VZ ¢ = U _ \ = e AAnr AL = AL J.*{"
LI 1 Lt C:.:;\/_/“J_,,Lj-:...,,.,_,\w /
Vv Lo o ) |
Dt = = Q2 (£
" B
S W A \ 5

| e T ™Y s of central importance for turbulence
modeling for canonical flows such as shear layers and wall
flows.

LNl
represents turbulent momentum fluxes
N'L:\ = (; D = /: 4 7
----- 3-7& = Q_<U Fu1e = R G =0
N

Flux of x momentum in the y direction due to turbulent u
= v fluctuation. Turbulent transport of momentum and
other quantities is one of the primary physical turbulent
flow processes.
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Higher-order statistics:

Probability density functions provide information about the
range of values u; or uiu; take and their likelihood to assume
specific values in that range.

— s = s 1
S BT .

13



2.4 Two-Point Velocity Correlations?

To reveal the structural characteristics of turbulence such
as vortical features (eddy size) two-point velocity
correlations are required. Dependence f(t) implies
ensemble averaging.

2 point
2 velocity

2 point
3 velocity

Letting r = y - x which is appropriate for homogeneous

turbulence where R;;(r,t) is the same for all x (R;; also
Important for inhomogeneous flows where f(x)
dependence is implied).

Rii(r,t) and S;(r,t) are of central importance for
Isotropic turbulence. Note that:

Velocities are uncorrelated for
distances greater than the largest eddy size.

! Related and originally used by Kolmogorov for his hypotheses are the 2" order velocity structure functions, which is the co-variance of the

. . . . .r:| r ' = | _'.--in'-l .'.r-___‘__ [ X.[
difference in velocity between two points x + r and x i, x . [ -
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Of special importance are the two-point longitudinal and
transverse correlation coefficients f(r) and g(r),
respectively:

Where both are f(t) for non-stationary flows. For stationary
flows time averaging implied.

Figure 2.1 (a) Longitudinal and (b) transverse velocities u U

appearing in the definitions of f(r) and g(r), respectively. — — — — — — — — — e
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The Taylor micro scales Ar and Ay are measures of the size
of the flow features where viscous effects are imporant, i.e.,
measures of the smaller scales of turbulence.

Whereas a measure of the largest “energetic” scales is
given by the integral length scales, i.e., the Taylor macro
scales:

Like the longitudinal correlation coefficient f(r) is the
temporal auto-correlation coefficient Re(t) = r11(7)

- I8 \
o FaFy \
e’

Vo EL(T)

Which can be obtained at a fixed point in space. Similarly,
for r» and rs3. Taylor micro and integral macro “time
duration” scales can be computed similarly as done
previously for the corresponding spatial length scales.
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FIGURE 12.5 Sample plot of an autocor-  r()
relation coefficient showing the integral time
scale A; and the correlation time t.. The 14
normalization requires r(0) = 1. In the limit
71— o, r(1)—0 and thereby indicates that the
random process used to construct » becomes
uncorrelated with itself when the time shift
is large enough.

HT) <<
T>> N5

==

Te i_s obtained from the curvature of the ri1(t) peak and
Indicates where ua(t) is well correlated with itself.

More generally for two random variables u; (x4, t;) and
u’] (Q: tZ)

Rij specifies how similar u; (x4, t1) and u;(x,,t;) are to
each other. o
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For temporally stationary flows with u; sampled at the same
point in space x = x; = x5, the listing of x _is not required

and the statistics are independent of the time origin such
that T = t, — t; = time lag and
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2.5 Spatial Spectra

Rij(x1,t) = wi(x, Oui(x + r,t) [Mm%s]

where r = y — x. For homogeneous turbulence R;; # f(x)

. often the dependence is not shown, but implied for
inhomogeneous flows.

The wave number space vector is defined by k = (k1,kz,Kks).
The purpose of the Fourier transform is to map various
functions from physical space x = (X1,X2,X3) t0 k space,
which is useful for structural analysis such as distributions
of eddy sizes etc.

where:

e’®T = cos(k - ) + isin(x - r) = spatial Fourier mode,

which varies sinusoidal with wavelength A = %

dr = dr;dr,dr, = differencial volume in physical space
dk = dk,dk,dk, = differencial volume in wave number
space. Admittedly poor nomenclature as dr and dk are
not and should not be confused as vectors.
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SU(E, t) = energy spectrum tensor/velocity spectrum
tensor [m®/s?], which along with R;;(r,t) decompose
turbulence into Fourier modes.

Forr =0:
fRij(O, t) = fV gl](E' t) dE - (ulu])

E:;(x, t) represents the variance and covariance (u;u;) of
velocity modes with wave number k.

1— 1
k(x,t) = U = (uf +us + u%) [m?/s%]
TKE per unit mass where integration is from -co to oo.

Rj; and &jj contain two different kinds of information. The
dependence of Rijon r and &;; on k give information about

directional dependence of the correlations, while their
components give information on the direction of the
velocities. Their implicit dependence on x provides the
ability of decomposing the turbulence correlations into a
range of scales as represented by the Fourier components

ellk,
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k() == [ tr&;(t) de== [ €4k t) dr
%tré'ij = %81'1' (E, t)
Ei:(x, t) = density energy in k space

It is useful to collect the energy onto shells of fixed distance
k = |k| from the origin, which energy spectrum

k(t) = joo[%j 8,:,:(&, t)}czd.Q] dk
0

dk = k*dQ dk
dQ = elemental solid angle

%f Eii(x, t)k?dQ = E(xk, t) = energy spectrum = TKE per

unit k and shows how the kinetic energy is distributed
across the different scales of the flow, which has units
[m3/s7].

k(t) = fOOE(K, t) dk
0

E(k, t) dk represents the contribution to the TKE = %uiui

from all modes with |k| in the range k < |k| <k + dk.
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Calculate the surface area of a sphere with a radius of R:

dS = Cdl

where dl = Rd@; C is the perimeter
(circumference) of the red circle, and
C = 2mx = 2nRsin(0)

dS(R) = 2nRsin(6)RAE

T

fde (k) = f 2rtksin(0)kdo
0

=-2mk?*cos(0)|§
=2mk? — (—2mk?) = 4rmk?
¢ dS(k) = 4mk?

Alternately, the area element can be written asdS (k) = k2sinpd0de according to the

(6.194)

following figure.
‘11‘ rsing d@
reng L /
\t><](\\&}‘[\\ rde
/’/ { \ /
7 ‘;.;M
/ b
./ etk \ : :
dcjs /‘;\ ’/l/\i):»/____:x\: dA dA = rsingdf rd¢ = r?singpdpdo
.‘T_—:t—:j:—\\\ % v \\ l);l\
/ Sk | ol ‘
i SN _— _
| e \‘-\ = 1 di = di, di,die;=dV (not vector)
B g =x2d0d x
i f/a ] dQ = singdgdo
) P dS(x) = k2dQ
F'e

T 2T T
5‘5 dSk) = [ k?singpdedb = f 2nk2singde = —2mk?cos@|§ = 4mk?
0 Jo 0
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~Spherical shell

In geometry, a spherical shell is a generalization
of an annulus to three dimensions. It is the region of
a ball between two concentric spheres of differing
radii.l1

Volume

The volume of a spherical shell is the difference
between the enclosed volume of the outer sphere

and the enclosed volume of the inner sphere: spherical shell, right: two halves
4 4
V= E—WR3 - §7r7'3
V= —3—7r(R3 —13)

V= %w(R —1)(R? + Rr + %)

~“where 7 is the radius of the inner sphere and R is the radius of the outer sphere.

An approximation for the volume of a thin spherical shell is the surface area of the inner sphere
multiplied by the thickness t of the shell:[2]

V ~ 4nr?t,
when t is very small compared to r (t < 7).

Total surface area of spherical shell is 4(pi)r?
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2.6 Time Spectra

[s]

£ (@) = 2u?Rz (@)
E;; [m?%/s]

Note: Re(tr) (temporal auto-correlation coefficient) and

thus E;;(w) can be obtained from single point
measurements vs. E(k,t) which requires volume or line
measurements and if Taylors frozen turbulence hypothesis
IS used it can be transformed from time to space as

approximation for spatial spectra, e.g., As = Ut; and
Ei1(ky) = %E\n(w) where U is the mean velocity.
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