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ABSTRACT 
 
Additional analyses of the Four-dimensional particle 
tracking velocimetry (4DPTV) static drift β = 10 deg 
results for the 5415 sonar dome vortices have been 
done to realize its full potential for the assessment of 
the turbulence structure and vortex breakdown and 
interactions and for providing data for scale resolved 
computational fluid dynamics (CFD) validation.  The 
4DPTV has a significantly larger measurement 
volume size and sampling rate compared to the 
previous tomographic particle image velocimetry 
(TPIV), but it has less spatial resolution. The focus is 
on the strongest primary sonar dome vortex (SDVP) at 
x/L = 0.12 (just downstream of the sonar dome) and its 
interaction with the second strongest (SDVS) of the 
multiple sonar dome vortices. Both vortices are 
counterclockwise and due to cross flow separations 
with SDVP and SDVS onset from the windward (port) 
and leeward (starboard) sides of the sonar dome. The 
macro-scale analysis showed agreement between 
4DPTV and TPIV for the SDVP elliptically shaped 
cross plane streamlines and Gaussian and Bell 
distribution for the Q-criteria and axial vorticity. The 
macro-scale turbulence is stronger for the 4DPTV 
compared to the TPIV, whereas the vortex strength has 
the opposite trend, and the anisotropy shows both 
similarities and differences. The detached eddy 
simulation (DES) shows similar trends as the 
experiments, but there are large quantitative 
differences. The micro-scale analysis used model 
spectrums based on the 4DPTV and TPIV macro-
scales as benchmarks, which were about half the size 
of their spatial resolutions and indicate that sub-
millimeter resolution is needed to accurately resolve 
the micro-scales. The temporal and spatial 
autocorrelation functions were used to compute micro-
scale results. The Taylor micro-scales ( 𝜆𝜆𝑓𝑓 ) were 
consistently larger than their benchmarks and roughly 
twice their spatial resolutions. The larger 𝜆𝜆𝑓𝑓 resulted 
in significantly smaller dissipation 𝜀𝜀  than the 
benchmark. The Kolmogorov length scale 𝜂𝜂  values 
were also larger than the benchmark, but the 
differences with the benchmark were not as large as 

that for the 𝜆𝜆𝑓𝑓. The temporal 4DPTV analysis resolved 
the energy containing range and a large portion of the 
inertial sub-range of the turbulence. The spatial 
4DPTV analysis resolved a narrower band compared 
to the temporal analysis, and primarily resolved the 
inertial subrange. The anisotropy analysis of the 
4DPTV, TPIV, and DES highlights their strengths and 
limitations for characterizing the turbulence structure. 
The DES predicts an almost 2D turbulence state 
whereas the 4DPTV and TPIV display Reynolds stress 
ellipsoids that resemble oblate and prolate spheroids, 
respectively. The analysis of the Reynolds stress 
ellipsoids suggests that the principal axes are largely 
affected by the differences in the normal components 
of the Reynolds stresses; however, sensitivity analysis 
is needed to confirm this postulation. The 4DPTV 
measurements and DES provide strong evidence that 
SDVP undergoes a spiral vortex breakdown/helical 
mode instability like KVLCC2 and 5415 at static 
drift β = 30 and 20 deg, respectively, and delta wings. 
The SDVS vortex is shed periodically with visually 
evident interactions between SDVP and SDVS, which 
suggests that such vortex interactions induce the 
SDVP spiral vortex breakdown/helical mode 
instability at smaller swirl number than what is 
observed for other flows without such interactions. 
 
INTRODUCTION 
 
The physics, measurement, and prediction of 3D 
vortex onset and progression, including turbulence 
structure and vortex breakdown and interactions 
remains an ongoing fluid dynamics challenge, as 
evidenced for ship hydrodynamics by the CFD 
Workshop T2015 (Hino et al., 2020), NATO Working 
Group AVT-253 (NATO STO, 2021), and the 
Workshop on Verification and Validation of Ship 
Maneuvering Simulation Methods 
(https://www.simman2020.kr/).  Recently, Sanada et 
al. (2023) made significant progress on the physics of 
the 3D vortex onset and progression for the 5415 sonar 
dome vortices for straight ahead, static drift β = 10 
deg, and pure sway βmax = 10 deg via 4DPTV 
measurements due to its significantly larger 

https://www.simman2020.kr/


 

measurement volume and data rate in comparison to 
the previous TPIV measurements (Yoon and Stern, 
2017; Bhushan et al., 2019 and 2021).   

The objective of the present research is the 
additional analysis of the 4DPTV static drift β = 10 
deg results to realize its full potential for the 
assessment of (1) the turbulence structure and vortex 
breakdown and interactions and for (2) providing data 
for scale resolved CFD validation.  Another objective 
(3) is to identify its limitations for future 
advancements in instrumentation. The approach 
includes the macro features and large scales, spectral 
analysis and small scales, turbulence anisotropy, 
vortex breakdown and interactions, and conclusions 
and future research, including the additional analysis 
of not only the 4DPTV data but also the previous TPIV 
and DES. 

Figure 1 (top and middle) shows the overall 
structure and onset and progression of the 5415 sonar 
dome vortices, including the primary vortices SDVP, 
SDVS, SDVT, and SDVT2, whereas Figure 1 
(bottom) shows the location for the turbulence 
structure and vortex breakdown and interaction 
analysis for the SDVP vortex core at x/L = 0.12. It 
should be recognized that the current analysis is 
subject to the current 4DPTV 2 – 4 mm spatial 
resolution, which will be addressed in future 
experiments via the purchase of a new lens enabling 1 
mm spatial resolution. The analysis methods are 
largely based on Bernard (2019) and Pope (2000) with 
detailed derivations provided by Stern et al. (2023). 
 
EXPERIMENTAL AND DES METHODS 
 
Experimental Methods 
 
Sanada et al. (2023) mainly focused on the 
visualization of the 3D vortical structures for 5415 
sonar dome vortices and statistical comparisons with 
the previous TPIV (and DES) results, such that a 
moving average filter was used to interpolate missing 
data and to match the data rate with the TPIV.  In this 
case, the filter size was determined so that the cutoff 
frequency of the moving average filter was 7.5 Hz, 
which corresponds to the Nyquist frequency of the 
TPIV with a sampling rate of 15 Hz. In the initial stage 
of this study, the temporal and spatial autocorrelation 
functions and energy spectrums were also evaluated 
using the time series data after applying the filter, but 
a periodic ripple attenuation due to the moving 
average filter can be observed in the spectrums and the 
overall results were under resolved compared to the 
unfiltered data.  Therefore, the final analysis uses 
nearest-neighbor interpolation to interpolate the 
missing data in the raw data. It should be noted that 

almost no missing values exist (less than 0.2%) in the 
raw time series at the vortex core of SDVP. The time-
series of one voxel is extracted mainly using the 4 mm 
resolution datasets, after extracting vortex cores by a 
3D voxel labeling technique with sub-voxel analysis 
(Sanada et al., 2023). The time-series at the SDVP core 
at x/L=0.12 is used to obtain the temporal 
autocorrelation and energy spectrum, whereas the time 
series at 4.3 mm intervals upstream and downstream 
of x/L=0.12 is used to obtain the spatial 
autocorrelations and spectrums. 
 
DES Methods 
 
Bhushan et al. (2021) CFD simulations utilized the 
same 10M and 48M cell grids used by Bhushan et al. 
(2019) with a modification of the vortex core 
refinement grid to align it in the direction of the SDVP 
(previously referred to as SDTV) progression. The 
DES results were used to extract the time series at the 
SDVP core at x/L=0.12. The simulations of the 48M 
and 10M grids were performed at time-steps of dt = 
0.002L/U = 0.00398 s. However, simulation results 
were written at every fourth time-step due to file size 
constraints. Therefore, the time-step after resampling 
of the DES data for the medium grid was dt = 
0.008L/U = 0.0159 s. The temporal autocorrelation 
function and energy spectrum were obtained from the 
extracted vortex core time series using the resampled 
time-step size. The grid resolution near the vortex core 
on the YZ-plane at x/L = 0.12 core was approximately 
4.572 mm in the y-direction and 2.438 mm in the z-
direction.  The Bhushan et al. (2019 and 2021) results 
were also contributed to the NATO AVT-253 and its 
predecessor AVT-183 Working Groups (NATO STO, 
2017 and 2021), which used the TPIV data for 
validation and evaluation of the contributed prediction 
methods.  The present DES was obtained many years 
ago and herein the results on the finest grids are not 
used. Nonetheless, in consideration of its performance 
compared to the other methods, the present results are 
representative of current state-of-the-art methods, and 
they are an indication of the direction needed for 
improvements of hybrid-RANS/LES methods. 
 
MACRO FEATURES AND LARGE SCALES 
 
Figure 2 shows the Q-criteria and mean axial vorticity 
<ωx> contours for the TPIV, 4DPTV, and DES.  The 
TPIV and 4DPTV results are similar with both 
indicating elliptically shaped cross plane streamlines 
and substantial interactions between the SDVP and the 
other vortices, especially SDVS.  The DES is similar 
but clearly less resolved than both experiments. Figure 
2 also includes an outline of the viewing window 
pertaining to the 3D perspective shown later. Figure 3  



 

 

  

  

  
Figure 1: SDVP, SDVS, SDVT, and SDVT2 vortices (top and middle) and turbulence analysis location for SDVP 
core (bottom) 
 
shows the comparisons of the normalized Q/Qmax and 
mean axial vorticity 〈ω𝑥𝑥〉 〈ω𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥〉⁄ vs. r/R for the 
horizontal YY and vertical ZZ cuts through the vortex 
core, as indicated in Figure 2, along with Gaussian and 
Bell distributions for comparisons. r is the radial 
distance from the vortex core location normalized by 
the R=W⁄2 value at Q/Qmax = 0.5, where W is the half-
width of the vortex. The Q/Qmax and 
〈ω𝑥𝑥〉 〈ω𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥〉⁄  distributions in Figure 3 are compared 
with the Gaussian function, 𝑓𝑓(𝑟𝑟) = 𝑒𝑒−(5𝑟𝑟/3𝑊𝑊)2 , and 
Bell function, 𝑓𝑓(𝑟𝑟) = (1 + |2𝑟𝑟/𝑤𝑤|2)−1, respectively. 

Table 1 provides the core locations and R 
values. Here again, the experiments show similar 
trends with good agreement to the distributions; 
however, the TPIV core location is closer to the center 
plane but at a similar depth, and its average R is 23% 
smaller than the 4DPTV. The DES shows less 

agreement with the distributions than the experiments, 
especially for the ZZ cut in the negative direction, and 
the core location and size are closer to the 4DPTV than 
the TPIV; however, its R value is nearly 40% larger 
than the 4DPTV and 80% larger than the TPIV.  The 
reason for the differences in the ZZ cut is a secondary 
peak for the DES, which is attributed to its larger 
diffusion and increased interactions between the 
SDVP and SDVS vortices than that shown by the 
experiments.  

Figure 4 shows the 3D contours of Q for the 
4DPTV (4 mm resolution), TPIV, and the DES with 
overlaying meshes. The 4DPTV and TPIV indicate 
that the vortex patterns are nearly symmetric, whereas 
the DES is asymmetric, all of which are consistent 
with Figure 3. The 4 mm 4DPTV has less points within 
the vortex than the 2 mm resolution (not shown) and 



 

the TPIV and DES. Based on these figures, the 
estimate of the vortex diameter, based on the Q 
contour level of zero, is approximately l0 = 25 mm for 
the 4DPTV. In comparison, it is 14 mm for the TPIV 
and 30 mm for the DES. The vortex diameter estimates 
based on Q contour level are larger than the estimates 
in Table 1 (i.e., 4-5R ≈ l0). 
 

 

 

 
Figure 2: Axial vorticity (ωx) contour with Q isolines 
for (a)4DPTV, (b)TPIV, and (c) DES. 
 

The model scale length is L = 3.048 m, and 
the carriage speed is U = 1.531 m/s. The kinematic 
viscosity is ν = 1.182E-06 m2/s. The Reynolds (Re) = 

 
1 By dimensional reasoning, ε ~ 𝑢𝑢03/𝑙𝑙𝑜𝑜, where 𝑙𝑙𝑜𝑜 is the length scale 
representative of the largest eddies in the flow based on geometric 
characteristics and u0  is their characteristic velocity, which is 
assumed = √𝑘𝑘. 𝑙𝑙0 is proportional to the Taylor macro-scale 𝐿𝐿11, both 
representing the dimension of the vortices in the energy-containing 
range.    To determine the relationship between the Taylor and 
Kolmogorov scales the turbulent length scale is defined as L =
𝜀𝜀/𝑘𝑘3/2  with turbulent Reynolds number 𝑅𝑅𝑒𝑒L = √𝑘𝑘L

𝜈𝜈
.  The relation 

between 𝐿𝐿  and 𝐿𝐿11  is obtained using the model spectrum, as per 
Pope (2000) Figure 6.24, showing that the ratio 𝐿𝐿11

L
~ 0.43  for 

and Froude (Fr) numbers are 3.948E06 and 0.28, 
respectively. 

Table 2 provides the macro-scale vortex core 
parameters.  The 4DPTV shows mean velocity <U> is 
0.80U. The turbulent velocity scale uo=k1/2 is 17.4% of 
the mean velocity <U> and is on the order of the rms 
turbulence intensity, defined as 𝑢𝑢′ ≡ (2/3k)1/2. The 
turbulent length scale is defined as L = l0/0.43 1 , 
resulting in ReL = k1/2L/ν= 10780 and a dissipation 𝜀𝜀 =
𝑢𝑢03 /l0 =  0.181 m2/s3. The TPIV has 13.9% smaller 
<U>, 33.3% smaller <u2> and 37.5% smaller k such 
that u0 is 21% smaller. Since l0 is 44% smaller, 𝜀𝜀 is 
11.6% smaller, and the resulting ReL is 55.7% smaller 
than that for the 4DPTV. The turbulence is much 
stronger for the 4DPTV vs. the TPIV, and both are 
much stronger than the DES.  However, the 
anisotropy, which is discussed in detail later, has  

 
Figure 3 : Q/Qmax and ωx/ ωx,max Distribution Plots. 

𝑅𝑅𝑒𝑒L =  3
20
𝑅𝑅𝜆𝜆2 > 100 .  We have assumed that 𝑙𝑙𝑜𝑜 = 𝐿𝐿11  in our 

analysis and therefore L = 𝐿𝐿11
0.43

 = 𝑙𝑙0
0.43

.  However, in retrospect, and 
based on our micro scale analysis 𝑙𝑙0 shows larger values than 𝐿𝐿11 
and it is closer to L, i.e., 𝐿𝐿11/𝑙𝑙0~0.35.  This result is in line with the 
idea that 𝑙𝑙0 characterizes the dimension of the 3D eddies, whereas 
𝐿𝐿11 is based on the 1D autocorrelation. For the evaluation of L, it 
would be more accurate to consider L = 𝑙𝑙0, instead of using L =
𝑙𝑙0/0.43 = 2.33𝑙𝑙0. 
 



 

Table 1: Core location and vortex width on cutline distribution 
Measurement Core 𝑅𝑅 = 𝑊𝑊/2 at 𝑄𝑄/𝑄𝑄_𝑚𝑚𝑚𝑚𝑚𝑚 = 0.5 

y [-] z [-] YY [-] ZZ [-] Mean [-] Mean [m] 
4DPTV (2mm) 0.0076 -0.0573 0.0014 0.0015 0.0015 0.0045 

TPIV  0.0048 -0.0577 0.0011 0.0011 0.0011 0.0034 
DES 0.00710 -0.05270 0.00200 0.00200 0.00200 0.00610 

similarities of 3⟨𝑢𝑢2⟩/2𝑘𝑘 = 0.56 for the 4DPTV vs. 0.6 
for the TPIV and 0.29 for the DES; and differences, 
i.e. ⟨𝑣𝑣2⟩ ≈ 1.3⟨𝑤𝑤2⟩ ≈ 2.5 ⟨𝑢𝑢2⟩  for the 4DTPV vs. 
⟨𝑣𝑣2⟩ ≈ 0.5⟨𝑤𝑤2⟩ ≈ 1.5 ⟨𝑢𝑢2⟩ for the TPIV and  ⟨𝑣𝑣2⟩ ≈
0.56⟨𝑤𝑤2⟩ ≈ 3.4 ⟨𝑢𝑢2⟩ for the DES. 

Table 3 provides the time mean circulation 
⟨𝛤𝛤⟩ , normalized time mean circulation ⟨𝛤𝛤⟩ ⟨𝑈𝑈⟩𝑙𝑙0⁄ , 
time mean tangential velocity of the vortex core ⟨𝑈𝑈𝜃𝜃⟩, 
and corresponding swirl number 𝑆𝑆 = ⟨𝑈𝑈𝜃𝜃⟩ ⟨𝑈𝑈⟩⁄ . Based 
on Stoke’s theorem, ⟨𝛤𝛤⟩ is obtained by line integrating 
⟨𝑈𝑈𝜃𝜃⟩ along a route surrounding the vortex core, or area 
integration of the inner product of the time mean 
vorticity vector ⟨𝜴𝜴⟩ = �⟨𝛺𝛺𝑥𝑥⟩, �𝛺𝛺𝑦𝑦�, ⟨𝛺𝛺𝑧𝑧⟩�  and the 
normal vector in the y-z plane 𝒏𝒏 = (1,0,0) inside the 
core, i.e., the summation of ⟨𝛺𝛺𝑥𝑥⟩  inside the core: 
⟨𝛤𝛤⟩ = ∮ ⟨𝑼𝑼⟩ ⋅ 𝑑𝑑𝒓𝒓𝐶𝐶 = ∫ ⟨𝜴𝜴⟩ ⋅ 𝒏𝒏𝑑𝑑𝑑𝑑𝐴𝐴 = ∫ ⟨𝛺𝛺𝑥𝑥⟩𝑑𝑑𝑑𝑑𝐴𝐴 . ⟨𝑈𝑈𝜃𝜃⟩ is 
obtained by dividing ⟨𝛤𝛤⟩ by the perimeter of the line 
integral (𝐿𝐿𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟): ⟨𝑈𝑈𝜃𝜃⟩ = ⟨𝛤𝛤⟩/𝐿𝐿𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟 . Table 3 
uses the average values of the two approaches. 

 The 4DPTV dimensional ⟨𝛤𝛤⟩  is larger than 
the TPIV, whereas the non-dimensional ⟨𝛤𝛤⟩/
(⟨𝑈𝑈⟩ 𝑙𝑙0)  is smaller. The swirl numbers are all smaller 
for the 4DPTV than for the TPIV.  Thus, the vortex 
strength is larger for the TPIV than for the 4DPTV. 
The DES shows better agreement with the 4DPTV 
than the TPIV, but here again with large errors. The 
swirl numbers are all much less than the critical values 
provided in the literature for vortex breakdown for 
wing tip (Sc  ≈ 2 − 3)  and delta wing (Sc ≈ 1) 
vortices.  Nonetheless, as shown in Sanada et al. 
(2023), SDVP undergoes vortex breakdown, which, as 
discussed later, and is attributed to vortex-vortex 
interactions. 

The macro-scale turbulence is larger for the 
4DPTV than the TPIV, and vice-versa for the vortex 
strength.  It is not possible to say with confidence 
which measurement is more accurate, as the TPIV has 
somewhat higher spatial resolution, whereas the 
4DPTV has much higher temporal resolution and 
lower uncertainties. The DES shows similar trends as  
the experiments, but there are large quantitative 
differences.  

 
 

 
SPECTRAL ANALYSIS AND SMALL SCALES 
 
The 1D axial velocity (𝑢𝑢(𝑡𝑡) ) spectral analysis and 
evaluation of the small scales is done using both 
temporal and spatial (along the time mean vortex core) 
autocorrelations and energy spectrums. 3D energy 
spectrums are also obtained from the 1D energy 
spectrums using isotropic tensor theory. The results 
are compared with model energy spectrums 
constructed based on both the 4DPTV and TPIV 
macro-scale results. 

Preliminary to the analysis of the axial 
velocity energy spectrum, an analysis is made of its 
time series along the SDVP vortex core upstream and 
downstream of x/L = 0.12 and its FFT at x/L = 0.12, as 
shown in Figures 5(a)-(d).  A dominant frequency is 
clearly observed at frequencies 10.0 and 7.47 Hz 
(Strouhal numbers (St=fL/U) are 19.9 and 14.9, 
respectively) for the 4DPTV and DES, respectively.  
The Sanada et al. (2023) analysis indicates that SDVP 
has helical streamlines (refer to Figures 5 and 18 in the 
paper for the 4DPTV and DES, respectively). The 
SDVP core undergoes spiral vortex breakdown 
followed by helical mode instability and with scaling 
like the previous TPIV and DES results for 5415 at 
β=20 deg, DES for KVLCC2 at β=30 deg, and delta 
wing vortices (refer to Figure 25(b) in Sanada et al. 
2023). Note that the Figure 5(a)-(b) results differ from 
Sanada et al. (2023) Figures 24 and 25(a) since the 
present results do not use the moving average filter. 

 
Table 2: Macro-scale vortex core parameters 

Parameter 4DPTV TPIV DES 
<U> [m/s] 1.255 1.081 1.313 
⟨𝑢𝑢2⟩ [m2/s2] 0.018 0.012 0.002 
𝑘𝑘 [m2/s2] 0.048 0.030 0.014 
uo [m/s] 0.219 0.173 0.095 
u' [m/s] 0.179 0.141 0.077 
l0 [m] 0.025 0.014 0.030 
L [m] 0.058 0.033 0.070 

ε [m2/s3] 0.181 0.160 0.012 
ReL 10780.2 4771.7 5600.5 

 
Figure 5(c) shows the 𝑢𝑢(𝑚𝑚, 𝑡𝑡)  contours 

upstream and downstream of x/L = 0.12 for -0.03 ≤ x/L 
≤ 0.03 and 0 ≤ t ≤ 8 s; and Figure 5(d,e) shows zoomed 
in views for -0.03 ≤ x/L ≤ 0.03 and 0 ≤ t ≤ 0.5 s.  The 



 

temporal oscillations for the 4DPTV and DES are 
shown to occur at periods of approximately 0.1 and 
0.13 s, respectively, which correspond to frequencies 
10 and 7.47 Hz and are attributed to the spiral vortex 
breakdown/helical mode instability. Figure 5(d,e) also 
clearly shows the existence of 𝑢𝑢(𝑚𝑚, 𝑡𝑡)  spatial waves 
traveling in the positive x direction.  The wave speed 
dx/dt is estimated for the 4DPTV and DES to be 1.25 
and 1.33 m/s, which coincides with their estimated 
mean vortex core velocities <U> shown in Table 3.  
The turbulence is transported by the mean velocity, 
which supports the later use of the Taylor hypothesis. 
The spatial waves are also due to the spiral vortex 
breakdown/helical mode instability with wavelengths 
λ estimated at x/L = 0.12 based on the wave speed 
times the wave period, i.e., λ =0.125 and 0.133 m for 
the 4DPTV and DES, respectively.   

 
Temporal Spectrum 
 
The temporal autocorrelation function: 
 

𝑅𝑅𝐸𝐸(𝜏𝜏) = ⟨𝑢𝑢(𝑝𝑝)𝑢𝑢(𝑝𝑝+𝜏𝜏)⟩
⟨𝑢𝑢2⟩

,   (1) 
 
is shown in Figure 6(a) and its Fourier transform 
𝑅𝑅�𝐸𝐸(2𝜋𝜋𝜋𝜋) is given by Equation (2). 
 

𝑅𝑅�𝐸𝐸(2𝜋𝜋𝜋𝜋) = 2∫ 𝑅𝑅𝐸𝐸(𝜏𝜏) 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝜏𝜏) 𝑑𝑑𝜏𝜏 ∞
0                       

   
= 1

𝑢𝑢2
lim
𝑇𝑇→∞

1
2𝑇𝑇

 ∫ 𝑢𝑢(𝑡𝑡)𝑒𝑒−𝑝𝑝𝜔𝜔′𝑝𝑝𝑑𝑑𝑡𝑡𝑇𝑇
−𝑇𝑇�����������

𝑢𝑢�(𝜔𝜔)

∫ 𝑢𝑢(𝑡𝑡)𝑒𝑒𝑝𝑝𝜔𝜔′𝑝𝑝𝑑𝑑𝑡𝑡∞
−∞�����������

𝑢𝑢�∗(𝜔𝜔)

,   (2) 

 
𝑅𝑅�𝐸𝐸(2𝜋𝜋𝜋𝜋) is shown in Figure 7(a) (note that 𝜋𝜋 is the 
frequency in Hz and 𝜋𝜋′ = 2𝜋𝜋𝜋𝜋 in rad/s). The second 
equality in Equation (2) shows that 𝑅𝑅�𝐸𝐸(𝜋𝜋′) can also be 
computed using the Fourier transform pair for 𝑢𝑢(𝑡𝑡) 
and its complex conjugate where the limit is taken 
using the duration of the 4DPTV and DES time series 
for 𝑢𝑢(𝑡𝑡). 

The temporal micro and macro (𝜏𝜏𝐸𝐸  and 𝛵𝛵 , 
respectively) scales are given by Equations (3) and (4). 
 

𝜏𝜏𝐸𝐸 = � −2
𝑓𝑓″(0)

�
1
2,                             (3) 

 
𝛵𝛵 = ∫ 𝑅𝑅𝐸𝐸(𝜏𝜏)∞

0 𝑑𝑑𝜏𝜏                         (4) 
 

The Taylor micro, 𝜆𝜆𝑓𝑓 , and macro, 𝛬𝛬𝑓𝑓, length scales are 
calculated using the Taylor hypothesis and the 

resulting dissipation 𝜀𝜀 and Kolmogorov length scale 𝜂𝜂 
are: 

𝜆𝜆𝑓𝑓 = 𝑈𝑈�𝜏𝜏𝐸𝐸,                                 (5) 
 

𝛬𝛬𝑓𝑓 = 𝑈𝑈�𝛵𝛵,                                  (6) 
 

𝜀𝜀 = 30𝜈𝜈𝑢𝑢′
2

𝜆𝜆𝑓𝑓
2 ,                                 (7) 

 

𝜂𝜂 = �𝜈𝜈
3

𝜀𝜀
�
1
4,                                 (8) 

 
Table 4 provides the values for the micro-scale vortex 
core parameters 𝜏𝜏𝐸𝐸 ,  𝛵𝛵 , 𝜆𝜆𝑓𝑓 ,  𝛬𝛬𝑓𝑓 ,  𝑅𝑅𝜆𝜆 = 𝑢𝑢′𝜆𝜆𝑔𝑔 𝜈𝜈⁄  (where 
𝜆𝜆𝑔𝑔 = 𝜆𝜆𝑓𝑓 √2⁄ ), 𝜀𝜀, and 𝜂𝜂. 
 

 
(a) 

 
(b) 

 
(c) 
Figure 4: Q/Qmax 3D Contour with Mesh for (a) 

4DPTV 4mm, (b) TPIV, and (c) DES 



 

 
(a) 

  
(b) (c)  4DPTV 

  
(d)  4DPTV (Dotted lines: dx/dt = 1.25) (e)  DES (Dotted lines: dx/dt = 1.33) 

  
(f) (g) 

Figure 5: 𝑢𝑢(𝑡𝑡) at SDVP core: time series (a) and FFT analysis (b) at x/L = 0.12 (b); 𝑢𝑢(𝑚𝑚, 𝑡𝑡) vs. time and space 
upstream and downstream of x/L = 0.12 (c,d,e); and variation of St and StDS (=fDS/U) vs. distance from onset (f,g). 

 
Figures 7(b) and (c) show the 1D energy 

spectrum in time 𝐸𝐸�11(𝜋𝜋) and space  𝐸𝐸11(𝑘𝑘1) , 
respectively, in the latter case using the Taylor 
hypothesis: 

 
𝐸𝐸�11(𝜋𝜋) = 2⟨𝑢𝑢2⟩𝑅𝑅�𝐸𝐸(2𝜋𝜋𝜋𝜋) = lim

𝑇𝑇→∞

1
𝑇𝑇

|𝑢𝑢�(𝜋𝜋)|2,    (9) 
 

𝐸𝐸11(𝑘𝑘1) = 𝑈𝑈�

2𝜋𝜋
𝐸𝐸�11(𝜋𝜋),                   (10) 

 
where 𝑘𝑘1 = 2𝜋𝜋𝜋𝜋 𝑈𝑈�⁄ .  The second equality in Equation 
(9) shows that 𝐸𝐸�11(𝜋𝜋)  can also be computed from 
|𝑢𝑢�(𝜋𝜋)|2 , i.e., power spectral density or convolution 
integral approach in contrast to using the temporal 
autocorrelation.  

 



 

Table 3: Vortex circulation and swirl numbers 
Parameter 4DPTV TPIV DES 
⟨𝛤𝛤⟩ [m2/s] 0.0302 0.0226 0.0341 

⟨𝛤𝛤⟩/(⟨𝑈𝑈⟩𝑙𝑙0) [-] 0.9683 1.4650 0.8808 
⟨𝑈𝑈𝜃𝜃⟩ [m/s] 0.3533 0.3748 0.2229 
⟨𝑈𝑈𝜃𝜃⟩/𝑈𝑈 [-] 0.2308 0.2448 0.1456 

𝑆𝑆 = ⟨𝑈𝑈𝜃𝜃⟩/⟨𝑈𝑈⟩  [-] 0.2829 0.3398 0.1740 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6: Longitudinal autocorrelation: (a) temporal 
with analytic function 𝑅𝑅𝐸𝐸(𝜏𝜏) = 𝑒𝑒−𝜏𝜏2 𝜏𝜏𝐸𝐸2⁄ , (b) 
symmetric with 𝑓𝑓(𝑟𝑟) = 𝑒𝑒−𝑟𝑟

2 𝜆𝜆𝑓𝑓
2� , and (c) 

unsymmetric. 
 

Figure 8(a) shows the Kolmogorov 
�𝐸𝐸11(𝑘𝑘1) (𝜀𝜀𝜈𝜈5)1 4⁄⁄ � and Figures 8(b) and (c) shows 

the compensated �𝜀𝜀−2 3⁄ 𝑘𝑘1
5 3⁄ 𝐸𝐸11(𝑘𝑘1)�  spectrums vs. 

𝑘𝑘1𝜂𝜂  using log/linear and linear/log scaling, 
respectively. 

 
Spatial Spectrum: Symmetric 𝒇𝒇(𝒓𝒓) and Isotropic 𝜺𝜺 
 
The symmetric/homogeneous spatial autocorrelation 
function, 𝑓𝑓(𝑟𝑟), is given by  
 

𝑓𝑓(𝑟𝑟) = ⟨𝑢𝑢(𝑥𝑥)𝑢𝑢(𝑥𝑥+𝑟𝑟)⟩
⟨𝑢𝑢2⟩

,                     (11) 
 
and is shown in Figure 6(b). Its Fourier transform, 
𝐸𝐸11(𝑘𝑘1), is calculated by  
 

𝐸𝐸11(𝑘𝑘1) = 2
𝜋𝜋
⟨𝑢𝑢2⟩ ∫ 𝑓𝑓(𝑟𝑟1) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘1𝑟𝑟1)𝑑𝑑𝑟𝑟1,∞

0  (12) 
 

and is plotted in Figure 7(c). The Taylor micro and 
macro length scales are given by Equations (13) and 
(14). 

𝜆𝜆𝑓𝑓 = � −2
𝑓𝑓″(0)

�
1
2,                               (13) 

𝛬𝛬𝑓𝑓 = 1
2 ∫ 𝑓𝑓(𝑟𝑟)∞

−∞ 𝑑𝑑𝑟𝑟 = ∫ 𝑓𝑓(𝑟𝑟)∞
0 𝑑𝑑𝑟𝑟,        (14) 

 
Table 4 provides the values for the micro-

scale vortex core parameters and Figure 8 shows the 
Kolmogorov and compensated spectrums. 
 

Spatial Spectrum: Asymmetric 𝒇𝒇(±𝒓𝒓)  and 
Anisotropic 𝜺𝜺 

 
The asymmetric/non-homogeneous spatial 
autocorrelation function, 𝑓𝑓(±𝑟𝑟), is given by  
 

𝑓𝑓(𝑟𝑟) = ⟨𝑢𝑢(𝑥𝑥)𝑢𝑢(𝑥𝑥±𝑟𝑟)⟩
⟨𝑢𝑢2⟩

,                     (15) 

 
and is shown in Figure 6(c). Its Fourier transform, 
𝐸𝐸11(𝑘𝑘1), is calculated by  
 

𝐸𝐸11(𝑘𝑘1) = �𝑢𝑢2�
𝜋𝜋 ∫ 𝑓𝑓(𝑟𝑟1) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘1𝑟𝑟1)𝑑𝑑𝑟𝑟1,∞

−∞  (16) 
 

and is plotted in Figure 7(c). The Taylor micro and 
macro length scales are given by Equations (17) and 
(18), respectively. 
 



 

𝜆𝜆𝑓𝑓 =

�−𝑓𝑓′(0)−��𝑓𝑓′(0)�
2
−2𝑓𝑓″(0)�

1
2
�

𝑓𝑓″(0)
,                (17) 

 
𝛬𝛬𝑓𝑓 = 1

2 ∫ 𝑓𝑓(𝑟𝑟)∞
−∞ 𝑑𝑑𝑟𝑟,                       (18) 

 
Equation (17) is equivalent to Equation (13) if 𝑓𝑓′(0) is 
equal to zero, which is true if the autocorrelation 
function is symmetric. The dissipation is calculated 
directly from its definition in Equation (19) with the 
repeated index implying summation. 
 

𝜀𝜀 = 𝜈𝜈 �𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
�,                 (19) 

 
Figure 9 summarizes the results of the direct 

calculation of 𝜀𝜀, and 𝜂𝜂 is calculated from Equation (8). 
Table 4 provides the values for the micro-scale vortex 
core parameters and Figure 8 shows the Kolmogorov 
and compensated spectrums. 

Model and 3D Spectrum 
 
The 3D model spectrum is defined as: 
 

𝐸𝐸(𝜅𝜅) = 𝐶𝐶𝜀𝜀
2
3𝜅𝜅−

5
3𝑓𝑓𝐿𝐿(𝜅𝜅𝐿𝐿)𝑓𝑓𝜂𝜂(𝜅𝜅𝜂𝜂),               (20) 

     𝑓𝑓𝐿𝐿(𝜅𝜅𝐿𝐿) = � 𝜅𝜅𝐿𝐿

[(𝜅𝜅𝐿𝐿)2+𝑐𝑐𝐿𝐿]
1
2
�

5
3+𝑝𝑝0

,               (21) 

𝑓𝑓𝜂𝜂(𝜅𝜅𝜂𝜂) = 𝑒𝑒𝑚𝑚𝑒𝑒 �−𝛽𝛽 ��(𝜅𝜅𝜂𝜂)4 + 𝑐𝑐𝜂𝜂4�
1
4 − 𝑐𝑐𝜂𝜂��,      (22) 

 
with the Table 2 values used for 𝐿𝐿 and 𝑘𝑘. A model 
spectrum was evaluated for both the 4DPTV and TPIV 
values. The values of the coefficients 𝐶𝐶 = 1.5, 𝑒𝑒0 =
2 , 𝛽𝛽 = 5.2 , 𝑐𝑐𝐿𝐿 ≈ 6.78 , and 𝑐𝑐𝜂𝜂 ≈ 0.40  are the 
suggested values for high Re. However, 𝑐𝑐𝐿𝐿 and 𝑐𝑐𝜂𝜂  can 
be determined by ensuring that the integrals of 𝐸𝐸(𝜅𝜅) 
and 2𝜈𝜈𝜅𝜅2𝐸𝐸(𝜅𝜅)  over the entire wavenumber range 
recover 𝑘𝑘 and 𝜀𝜀, respectively. This process was done 
by a trial-and-error method which varied the 𝑐𝑐𝐿𝐿 and 𝑐𝑐𝜂𝜂 
values and evaluated the integrals numerically. Values 
of 𝑐𝑐𝐿𝐿 = 5.76 and 𝑐𝑐𝜂𝜂 = 0.40 𝑐𝑐𝐿𝐿 were determined to be 
best for both 4DPTV and TPIV. Benchmark (BM) 
comparison values based on the model spectrum and 
scaling estimates for 𝜆𝜆𝑓𝑓 ,  𝛬𝛬𝑓𝑓 ,  𝑅𝑅𝜆𝜆, 𝜀𝜀 , and 𝜂𝜂  are as 
follows: 

𝜆𝜆𝑓𝑓 =  √20𝐿𝐿𝑅𝑅𝑒𝑒𝐿𝐿
−12,                           (23) 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7: (a) Temporal autocorrelation: Fourier 
transform, (b) temporal 1D energy spectrum, and (c) 
spatial 1D energy spectrum. 
 

 𝛬𝛬𝑓𝑓 = 𝐿𝐿11,                                    (24) 
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1
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Table 4: 4DPTV micro-scale vortex core parameters 
Parameter 4DPTV BM Temporal 

4DPTV 
Spatial 

Symmetric  
Spatial Asymmetric 

and Anisotropic  TPIV BM DES 
Temporal 

𝜆𝜆𝑓𝑓 [m] 2.50E-03 4.59E-03 6.87E-03 7.20E-03 2.11E-03 3.48E-02 
𝛬𝛬𝑓𝑓[m] =L11=lo 2.50E-02 7.59E-03 8.69E-03 9.63E-03 1.40E-02 4.60E-02 

𝑅𝑅𝜆𝜆 3.27E+02 4.92E+02 7.35E+02 7.71E+02 2.19E+02 1.61E+03 
𝜀𝜀 [m2/s3] 1.81E-01 5.38E-02 2.40E-02 2.19E-02 1.60E-01 1.76E-04 
𝜂𝜂 [m] 5.50E-05 7.44E-05 9.10E-05 9.32E-05 5.70E-05 3.11E-04 

 
These values are included in Table 4 for the 4DPTV 
and TPIV. Additional estimates for 𝐿𝐿11  values for 
4DPTV and TPIV are obtained from the model 
spectrum using the integral relationship for isotropic 
turbulence shown in Equation (28). 
 

𝐿𝐿11 = 3𝜋𝜋
4𝑘𝑘 ∫

𝐸𝐸(𝜅𝜅)
𝜅𝜅
𝑑𝑑𝜅𝜅∞

0 ,                   (28) 
 
Both values were approximately 15% larger than the 
macro-scale estimate counterparts.  

The 1D model energy spectrum can be 
obtained from the 3D model spectrum under isotropic 
turbulence assumptions as follows: 
 

 𝐸𝐸11(𝜅𝜅1) = ∫ 𝐸𝐸(𝜅𝜅)
𝜅𝜅

∞
𝜅𝜅1

�1 − 𝜅𝜅12

𝜅𝜅2
� 𝑑𝑑𝜅𝜅.        (29) 

The integration was done numerically within a loop 
over increasing values of 𝜅𝜅1 to obtain the 1D model 
spectrum as a function of 𝜅𝜅1 values. This is done to 
account for contributions from all wavenumbers 𝜅𝜅 
greater than 𝜅𝜅1 to 𝐸𝐸11(𝜅𝜅1), a phenomenon referred to 
as aliasing. Equations (29) or (10), (12), and (16) can 
be inverted using isotropic turbulence theory to 
determine the three-dimensional energy spectrum 
from the 𝐸𝐸11(𝜅𝜅1) spectrums as given by Equation (30) 
 

𝐸𝐸(𝜅𝜅) = 1
2
𝜅𝜅3 𝑑𝑑

𝑑𝑑𝜅𝜅
�1
𝜅𝜅
𝑑𝑑𝐸𝐸11(𝜅𝜅)

𝑑𝑑𝜅𝜅
�,               (30) 

 
which was used and similarly evaluated to convert the 
experimental 𝐸𝐸11(𝜅𝜅1)  to its corresponding 3D 
spectrum 𝐸𝐸(𝜅𝜅). 

Discussion 

The DES employed only the power spectral 
density/convolution integral approach for temporal 
analysis, while 4DPTV utilized both the temporal 
autocorrelation and power spectral 
density/convolution integral approaches, both of 
which yielded identical results. 
 The 4DPTV data rate is 444.2 Hz such that 
the temporal resolution is equal to 0.00225 s.  The data 

acquisition time interval is about 8 s such that the 
number of images per towing tank carriage run is 
about 8 × 444.2  ≈  3600. Therefore, the 4DPTV 
resolution limitations are ωmin = 444.2/3600 = 0.123 
Hz and ωmax = 444.2/2 = 222 Hz. Converting these 
values to wavenumber space, κ1min = 2πωmin/<U> = 
0.618 m-1 and κ1max = 2πωmax/<U> = 1111.95 m-1, and 
the length scale values are l1min = 2π/κ1max = 0.006 m 
and l1max = 2π/κ1min = 10.171 m. The data acquisition 
time interval of the DES is approximately 3.60 s 
Therefore, the DES has frequency limitations of ωmin 

= 1/3.60 = 0.278 Hz and ωmax = 1/ (2×0.0159) = 31.1 
Hz. In wavenumber space these values are κ1min = 
2πωmin/<U> = 1.329 m-1 and κ1max = 2πωmax/<U> = 
148.92 m-1, and the corresponding length scales are 
l1min = 2π/ κ1max = 0.042 m and l1max = 2π/ κ1min = 4.729 
m. The intervals between the points for the 4DPTV 
and DES in Figure 6(a) correspond to the previously 
mentioned dt intervals, and the tmax of the 4DPTV is 
truncated to match the DES tmax according to the DES 
data acquisition interval. The 4DPTV and DES 
Figures 7(a) and (b) ωmin and ωmax and Figure 7(c) κ1min 
and κ1max values similarly correspond the values 
detailed above. 

The 4DPTV spatial resolution used for the 
current analysis is about 0.004277 m such that l1min = 
2dx = 0.009 m and l1max = 0.222 m, the latter of which 
corresponds to the length of the measurement volume 
The corresponding κ1min and κ1max values are 28.303 
m-1 and 734.532 m-1, respectively.  The 4DPTV Figure 
6(b) and (c) dr intervals and rmax correspond to the 
previously mentioned dx and l1max values, 
respectively; however, the rmax value of Figures 6(b) 
and (c) are truncated at 0.2 m and 0.1 m, respectively. 
The 4DPTV Figure 7(c) spatial spectrum κ1min and 
κ1max values correspond to previously mentioned 
values. As already mentioned, the DES spatial 
resolution is 4.572 mm. 

Both the 4DPTV and DES temporal 
autocorrelations, as shown in Figure 6(a), exhibit the 
anticipated Gaussian profile for small values of τ. 
Additionally, they display oscillations for τ greater 
than approximately 0.02 s and 0.03 s, respectively. 



 

These observations align closely with the analytical 
solution of the dissipation range, exp(−𝑡𝑡2/𝜏𝜏𝐸𝐸2 ), for τ 
values preceding the onset of the oscillations. The 
periods of the 4DPTV and DES oscillations are 0.1 s 
and 0.138 s, respectively, which correspond to their 
peaks in Figure 5(b), as discussed earlier, and Figures 
7(a)-(c) and Figure 8(a), to be discussed.  

The 4DPTV and DES Figure 7(a) 𝑅𝑅�𝐸𝐸(2𝜋𝜋𝜋𝜋) 
and Figure 7(b) 𝐸𝐸�11(𝜋𝜋) show similar trends for ω < 15 
Hz, although the DES magnitudes are somewhat and 
significantly smaller for 𝑅𝑅�𝐸𝐸(2𝜋𝜋𝜋𝜋)  and 𝐸𝐸�11(𝜋𝜋) , 
respectively, and in both cases clearly less resolved.  
The larger differences for 𝐸𝐸�11(𝜋𝜋) than 𝑅𝑅�𝐸𝐸(2𝜋𝜋𝜋𝜋) are 
due to the differences in their scaling and the much 
larger ⟨𝑢𝑢2⟩ for the 4DPTV vs. the DES. The 4DPTV 
and DES show clear peaks around 10 and 7.47 Hz, 
respectively, as per Figure 5(b) and the oscillations in 
Figure 6(a).  For ω > 15 Hz, the 4DPTV shows gradual 
dissipation, whereas the DES shows rapid dissipation 
and much less resolution.  The frequency resolution of 
DES is degraded compared to 4DPTV because of the 
duration of DES time series data being shorter than 
that of the 4DPTV (initially stored in HPC but 
discarded due to resource limitation). The resampling 
of the DES with a larger time-step also degrades the 
frequency resolution. A longer duration and/or a finer 
time step of the DES data set is required to improve 
the frequency resolution. A finer grid would also 
improve the resolution.  

Figure 6(b) 𝑓𝑓(𝑟𝑟) shows a Gaussian shape and 
good agreement with the dissipation range analytical 
solution exp(−𝑟𝑟2/𝜆𝜆𝑓𝑓2). Figure 6(c) 𝑓𝑓(±𝑟𝑟) shows an 
asymmetric Gaussian shape, which needs analysis as 
to the nature of its asymmetry. Both distributions show 
periodic behavior with wavelength 𝜆𝜆  = 0.0171 m, 
which is attributed to the previously discussed vortex 
breakdown, as discussed later. 

Figure 7(c) 𝐸𝐸11(𝜅𝜅1) shows all four spectrums 
(4DPTV and DES temporal and 4DPTV 
symmetric/isotropic and asymmetric/anisotropic); and 
includes both the 4DPTV and TPIV model spectrums. 
The trends for the temporal spectrums using the Taylor 
hypothesis are similar as discussed for 𝑅𝑅�𝐸𝐸(2𝜋𝜋𝜋𝜋) and 
𝐸𝐸�11(𝜋𝜋) ; however, 𝐸𝐸11(𝜅𝜅1)  shows that the 4DPTV 
resolves a larger portion of the inertial subrange with 
the Kolmogorov -5/3 slope, whereas the DES is only 
able to partially resolve the inertial sub range and then 
dissipates rapidly. The rapid dissipation is likely 
because of the lack of filter/grid resolution as often 

exhibited in LES.  The spatial spectrum ranges are 
limited to the inertial sub-range, showing less energy 
than the 4DPTV temporal spectrum using the Taylor 
hypothesis, and exhibit kinks in the region of their 
largest wave numbers, which is attributed to the 
4DPTV minimum spatial resolution. The 4DPTV and 
TPIV model spectrums overlap in the inertial and 
dissipation ranges, whereas the 4DPTV has larger 
magnitudes than the TPIV in the energy containing 
ranges as expected due to its larger 𝑢𝑢′  value. The 
4DPTV temporal spectrum using the Taylor 
hypothesis shows better agreement with the TPIV 
model spectrum than the 4DPTV model spectrum. 

The benchmark 𝜆𝜆𝑓𝑓 is 2.5 mm which is about 
half the size of the 4DPTV spatial resolution used for 
the present analysis. Therefore, the current 4DPTV 
spatial resolution is insufficient as sub-millimeter 
spatial resolution is required to resolve the Taylor 
micro-scale. This is seen in the spatial symmetric and 
asymmetric results for 𝜆𝜆𝑓𝑓, which were approximately 
twice the spatial resolution and almost three times 
larger than the benchmark. The 4DPTV temporal 
resolution is also too large as the smallest resolvable 
length scale mentioned earlier was 0.006 m which 
explains why the temporal micro-scale from the 
autocorrelation function is almost twice as large as the 
benchmark. 

The spatial and temporal L11 values reported 
in Table 4 are smaller than the Table 2 l0 values. This 
is attributed to l0 representing the size of the largest 
eddies of the flow whereas L11 is a measure of the 
largest eddies along the vortex core. This is an 
important distinction, as the turbulent fluctuations of 
𝑢𝑢 are weaker than 𝑣𝑣 and 𝑤𝑤 along the vortex core. In 
contrast, l0 and L11 are roughly equivalent for isotropic 
turbulence as the eddy size is not directionally 
dependent. 

The 𝑅𝑅𝜆𝜆, 𝜀𝜀 , and 𝜂𝜂  values in Table 4 differ 
solely due to the discrepancies of the Taylor micro-
scale since the macro-scale values are the same 
between each analysis and the benchmark. The 𝑅𝑅𝜆𝜆 
values have identical difference compared with the 
benchmark as the 𝜆𝜆𝑓𝑓  results since 𝑅𝑅𝜆𝜆  scales directly 
with 𝜆𝜆𝑓𝑓 . The  𝜀𝜀  values for the temporal and spatial 
micro-scales are smaller than the benchmark value due 
to 𝜀𝜀 being inversely proportional to 𝜆𝜆𝑓𝑓2. Therefore, the 
larger 𝜆𝜆𝑓𝑓 values for the temporal and spatial analyses   
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Figure 8: 1D longitudinal velocity spectra shown for (a) Kolmogorov scaling using (left) macro-scale values and 
(right) micro-scale values, (b) log/linear compensated scaling using (left) macro-scale values, (middle) micro-scale 
values, and (right) model spectra only, and (c) linear/log compensated scaling using (left) macro-scale values, (middle) 
micro-scale values, and (right) model spectra only. 
 
resulted in an underprediction of the 𝜀𝜀 . Both the 
temporal and spatial results for 𝜂𝜂  had much smaller 
differences relative to the benchmark values. This is 
attributed to the 𝜂𝜂 being proportional to 𝜆𝜆𝑓𝑓

1/2  instead 
of 𝜆𝜆𝑓𝑓. 

Table 4 provides micro-scale benchmarks 
based on the macro-scales of the 4DPTV and TPIV 
measurements and micro-scale results for the 4DPTV 
and DES. Both the micro-scale benchmark estimates 
for the 4DPTV and TPIV are of similar orders of 
magnitude; however, the TPIV estimates for the 
Taylor micro and macro-scales and turbulent 
Reynolds number are smaller and its Kolmogorov 



 

length scale is larger. As observed for the 4DPTV the 
𝜆𝜆𝑓𝑓  benchmark is based on the order of their spatial 
resolutions. This reiterates the need for a sub-
millimeter spatial resolution to resolve the Taylor 
micro-scale. The 𝜂𝜂 estimates are 0.550 and 0.567 mm 
for the 4DPTV and TPIV, respectively (note that the 
diameter of human hair is about 17-181 µm).  

 Isotropic relationships for elements of the 
dissipation tensor components prior to contraction are: 
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However, as shown in Figure 9, the elements of the 
dissipation tensor components prior to contraction 
mostly show large anisotropy. ⟨(𝜕𝜕𝑤𝑤 𝜕𝜕𝜕𝜕⁄ )2⟩ ≈ 
⟨(𝜕𝜕𝑢𝑢 𝜕𝜕𝑚𝑚⁄ )2⟩  shows isotropic behavior, whereas 
⟨(𝜕𝜕𝑣𝑣 𝜕𝜕𝜕𝜕⁄ )2⟩ ≈ 2⟨(𝜕𝜕𝑢𝑢 𝜕𝜕𝑚𝑚⁄ )2⟩ . ⟨(𝜕𝜕𝑣𝑣 𝜕𝜕𝑚𝑚⁄ )2⟩ ≈
⟨(𝜕𝜕𝑣𝑣 𝜕𝜕𝜕𝜕⁄ )2⟩ ≈ 2⟨(𝜕𝜕𝑢𝑢 𝜕𝜕𝑚𝑚⁄ )2⟩  shows isotropic 
behavior, whereas ⟨(𝜕𝜕𝑢𝑢 𝜕𝜕𝜕𝜕⁄ )2⟩ ≈ ⟨(𝜕𝜕𝑢𝑢 𝜕𝜕𝜕𝜕⁄ )2⟩ ≈
⟨(𝜕𝜕𝑤𝑤 𝜕𝜕𝑚𝑚⁄ )2⟩ ≈ ⟨(𝜕𝜕𝑤𝑤 𝜕𝜕𝜕𝜕⁄ )2⟩ ≈ ⟨(𝜕𝜕𝑢𝑢 𝜕𝜕𝑚𝑚⁄ )2⟩. ⟨𝜕𝜕𝑢𝑢 𝜕𝜕𝜕𝜕⁄ ⋅
𝜕𝜕𝑣𝑣 𝜕𝜕𝑚𝑚⁄ ⟩  is over an order of magnitude smaller and 
⟨𝜕𝜕𝑢𝑢 𝜕𝜕𝜕𝜕⁄ ⋅ 𝜕𝜕𝑤𝑤 𝜕𝜕𝑚𝑚⁄ ⟩  ≈ ⟨𝜕𝜕𝑣𝑣 𝜕𝜕𝜕𝜕⁄ ⋅ 𝜕𝜕𝑤𝑤 𝜕𝜕𝜕𝜕⁄ ⟩  are half an 
order of magnitude smaller than the isotropic 
behavior, i.e., should = −1

2
⟨(𝜕𝜕𝑢𝑢 𝜕𝜕𝑚𝑚⁄ )2⟩. 

Figure 8(a) is equivalent to 7(c) but with 
Kolmogorov scaling and, here again, includes the 
4DPTV and TPIV model spectrums for comparison. 
Figure 8(a) left and right use the macro and micro-
scale 4DPTV values, respectively, for the dissipation 
and Kolmogorov length scale. Clearly using the 
macro-scale values provides a more reasonable 
presentation of the results, as is also the case for the 
compensated spectrum results shown in Figures 8(b) 
and (c). It should be noted that the model spectrums 
for the 4DPTV and TPIV overpredict the energy 
magnitude (i.e. ⟨𝑢𝑢2⟩ ) within the energy-containing 
range as isotropic turbulence assumptions scale the 
model spectrum by 𝑢𝑢′2. 

The κ1 values corresponding to the beginning 
of the inertial subrange, κ1,EI  = 160 m-1, and dissipation 
range, κ1,DI = 1910 m-1, are labeled in Figure 8(a). In 
isotropic turbulence, 80% of the turbulent kinetic 
energy is contained within the range of 1/6L11 < l < 

6L11. To determine the demarcation of the inertial 
subrange in κ1 space, a similar criteria was used, and 
the k1,EI  values correspond to the range (i.e. 0 < k1 < 
κ1,EI)  containing 80% of the integral value of the 
model E11 spectrum, 𝑢𝑢′2.  The beginning of the 
dissipation range is estimated to be at 60η, based on 
Kolmogorov’s hypothesis of local isotropy. From the 
proposed analysis, the 4DPTV can resolve a large 
portion of the inertial subrange including the correct 
Kolmogorov constant. The linear behavior observed 
for large wave numbers (κ1η > 0.3) indicates 
exponential decay. 
 
TURBULENCE ANISOTROPY 
 
Reynolds Stress, Anisotropic Tensor, and 
Realizability 
 
Schumann (1977) investigated the realizability of 
Reynolds-stress turbulence models and in doing so 
provided the following realizability conditions for the 
Reynolds stress tensor based on the physical 
considerations discussed below: 
 

ℛ𝑝𝑝𝑖𝑖 ≥ 0    𝑓𝑓𝑐𝑐𝑟𝑟 𝑖𝑖 = 𝑗𝑗,               (34) 
 

ℛ𝑝𝑝𝑖𝑖
2 ≤ ℛ𝑝𝑝𝑝𝑝ℛ𝑖𝑖𝑖𝑖    𝑓𝑓𝑐𝑐𝑟𝑟 𝑖𝑖 ≠ 𝑗𝑗,               (35) 

 
det�ℛ𝑝𝑝𝑖𝑖� ≥ 0.             (36) 

 
Equation (34) is a consequence of real velocities, and 
it requires nonnegative energy. Equation (35) is a 
consequence of the Schwarz’ inequality and it states 
that the cross-correlation between the velocity 
components 𝑢𝑢𝑝𝑝 and 𝑢𝑢𝑖𝑖 is bounded by the magnitude of 
the autocorrelations. Equation (36) states that the three 
cross-correlations cannot take on arbitrary values. 
These three equations represent five checks. 

However, it is also shown that if a stronger 
condition is satisfied, i.e., if ℛ𝑝𝑝𝑖𝑖  is a positive semi-
definite matrix: 
 

𝑄𝑄 = 𝑚𝑚𝑝𝑝ℛ𝑝𝑝𝑖𝑖𝑚𝑚𝑖𝑖 ≥ 0,            (37) 
 

for arbitrary real nonvanishing vectors 𝑚𝑚𝑝𝑝  then not 
only are Equations (34) - (36) satisfied but additionally 
nonnegative eigenvalues and principal invariants are 
implied.  The necessary and sufficient conditions for 
the positive semi-definiteness of ℛ𝑝𝑝𝑖𝑖  for 𝑖𝑖, 𝑗𝑗 = {1,2,3} 
are the following. 



 

 
𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝 ≥ 0,           

𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝 + 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖 ≥  2�𝑢𝑢𝑝𝑝𝑢𝑢𝑖𝑖�,      (38) 
det(ℛ𝑝𝑝𝑖𝑖) ≥ 0    

 
Equation (38) has the advantage of only requiring 
three checks vs. five for Equations (34)-(36). 

The Reynolds stresses can be decomposed 
into their isotropic and anisotropic components: 
 

𝑅𝑅𝑝𝑝𝑖𝑖 = 𝑚𝑚𝑝𝑝𝑖𝑖 + 2
3
𝑘𝑘𝛿𝛿𝑝𝑝𝑖𝑖,             (39) 

 
where 𝑚𝑚𝑝𝑝𝑖𝑖  is the anisotropic Reynolds stress tensor and 
𝑘𝑘  is the turbulent kinetic energy. 𝑚𝑚𝑝𝑝𝑖𝑖  can be 
normalized using a factor equal to 2𝑘𝑘  to obtain the 
normalized anisotropic Reynolds stress 𝑏𝑏𝑝𝑝𝑖𝑖: 
 

𝑏𝑏𝑝𝑝𝑖𝑖 =
𝑚𝑚𝑖𝑖𝑗𝑗
2𝑘𝑘

.       (40) 
 
The conditions for the positive semi-definiteness of 
the Reynolds stress tensor can also be expressed as 
constraints on the values of 𝑏𝑏𝑝𝑝𝑖𝑖  (Banerjee et al., 2007): 
 
−1

3
≤ 𝑏𝑏11, 𝑏𝑏22, 𝑏𝑏33 ≤

2
3

 and − 1
2
≤ 𝑏𝑏𝑝𝑝𝑖𝑖 ≤

1
2

, 𝑖𝑖 ≠ 𝑗𝑗,(41) 
 
which was confirmed to be satisfied by the 4DPTV, 
TPIV, and DES. 
 
Lumley Triangle, Anisotropic Invariant Map 
(AIM) and Reynolds Stress Ellipsoid 
 
The eigenvalue problem for 𝑅𝑅𝑝𝑝𝑖𝑖 and 𝑏𝑏𝑝𝑝𝑖𝑖  provides their 
characteristic equations (cubic polynomials) with 
three principal invariants which are independent of 
reference frame and functions of their respective 
components, i.e., 𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝  and 

𝑚𝑚𝑖𝑖𝑗𝑗
2𝑘𝑘

, respectively.  The 
solutions to the cubic polynomials provide the 
eigenvalues and eigenvectors for 𝑅𝑅𝑝𝑝𝑖𝑖  and 𝑏𝑏𝑝𝑝𝑖𝑖 , which 
must be real because of the realizability conditions. 
The eigenvalues are the principal values (i.e. the 
magnitude of the normal stresses in the principal axes), 
and the eigenvectors are the principal directions for 
𝑅𝑅𝑝𝑝𝑖𝑖  and 𝑏𝑏𝑝𝑝𝑖𝑖 . The 𝑅𝑅𝑝𝑝𝑖𝑖  and 𝑏𝑏𝑝𝑝𝑖𝑖  cubic polynomials and 
invariants as a function of their components are given 
by: 
 

 
Figure 9: Dimensional and normalized by 
⟨(𝜕𝜕𝑢𝑢 𝜕𝜕𝑚𝑚⁄ )2⟩ dissipation components. 

 
𝜆𝜆3 − Iδ 𝜆𝜆2 + IIδ 𝜆𝜆 − IIIδ = 0,    (41) 

 
where Iδ , IIδ , and IIIδ  are given by Equations (42)-
(44). 
 

Iδ = 𝛿𝛿11 + 𝛿𝛿22 + 𝛿𝛿33 = 𝜆𝜆𝛿𝛿1 + 𝜆𝜆𝛿𝛿2 + 𝜆𝜆𝛿𝛿3,  (42) 
 

IIδ = 𝛿𝛿11𝛿𝛿33 + 𝛿𝛿22𝛿𝛿33 + 𝛿𝛿11𝛿𝛿22 − 𝛿𝛿23𝛿𝛿32 − 𝛿𝛿12𝛿𝛿21
− 𝛿𝛿13𝛿𝛿31 

 
= 𝜆𝜆𝛿𝛿1𝜆𝜆𝛿𝛿3 + 𝜆𝜆𝛿𝛿2𝜆𝜆𝛿𝛿3 + 𝜆𝜆𝛿𝛿1𝜆𝜆𝛿𝛿2,       (43) 

 
III𝛿𝛿 = 𝛿𝛿11𝛿𝛿22𝛿𝛿33 − 𝛿𝛿11𝛿𝛿23𝛿𝛿32 − 𝛿𝛿12𝛿𝛿21𝛿𝛿33

+ 𝛿𝛿12𝛿𝛿23𝛿𝛿31 
+𝛿𝛿13𝛿𝛿21𝛿𝛿32 − 𝛿𝛿13𝛿𝛿31𝛿𝛿22  

 
= 𝜆𝜆𝛿𝛿1𝜆𝜆𝛿𝛿2𝜆𝜆𝛿𝛿3,   (44) 

 
𝛿𝛿𝑝𝑝𝑖𝑖  can be either 𝑅𝑅𝑝𝑝𝑖𝑖  or 𝑏𝑏𝑝𝑝𝑖𝑖 . The system of equations 
presented in Equations (42) - (44) shows the non-
linear relation between the nine components of a 2nd 
order tensor and its corresponding eigenvalues.  

Since 𝑏𝑏𝑝𝑝𝑖𝑖  has zero trace, only two of its 
invariants/eigenvalues are independent.  Additionally, 
the eigenvalues of 𝑅𝑅𝑝𝑝𝑖𝑖 , here referred to as 𝜆𝜆𝑢𝑢𝑝𝑝 , are 
related to the eigenvalues of 𝑏𝑏𝑝𝑝𝑖𝑖  as follows: 
 

𝜆𝜆𝑏𝑏𝑝𝑝 = −1
3

+ 𝜆𝜆𝑢𝑢𝑖𝑖
𝜆𝜆𝑢𝑢1+𝜆𝜆𝑢𝑢2+𝜆𝜆𝑢𝑢3

.    (45) 

 
Once the three eigenvalues of 𝑅𝑅𝑝𝑝𝑖𝑖 are determined, it is 
possible to obtain the corresponding eigenvectors 
from the solution of the equations: 
 

�𝜆𝜆𝑢𝑢𝑘𝑘𝛿𝛿𝑝𝑝𝑖𝑖 − 𝑅𝑅𝑝𝑝𝑖𝑖�𝑚𝑚𝑘𝑘 = 0,                 (46) 



 

where 𝜆𝜆𝑢𝑢𝑘𝑘, 𝑘𝑘 = {1,2,3}  represent the three 
eigenvalues of 𝑅𝑅𝑝𝑝𝑖𝑖.  
 The eigenvectors obtained by the solution of 
Equation (46) are invariant with respect to addition or 
multiplication by a constant. Therefore, the 
eigenvectors of 𝑅𝑅𝑝𝑝𝑖𝑖 and 𝑏𝑏𝑝𝑝𝑖𝑖  are the same. 

The Lumley triangle graphically exhibits the 
states of realizable turbulence in terms of the 
invariants (𝛱𝛱𝑏𝑏  and 𝐼𝐼𝐼𝐼𝐼𝐼𝑏𝑏 ) or eigenvalues (𝜂𝜂 and 𝜉𝜉) of 
𝑏𝑏𝑝𝑝𝑖𝑖: 

 
𝐼𝐼𝐼𝐼𝑏𝑏 = −3𝜂𝜂2 = −�𝜆𝜆𝑏𝑏1

2 + 𝜆𝜆𝑏𝑏1𝜆𝜆𝑏𝑏2 + 𝜆𝜆𝑏𝑏2
2�,  (47a) 

 
𝐼𝐼𝐼𝐼𝐼𝐼𝑏𝑏 = 2𝜉𝜉3 = −𝜆𝜆𝑏𝑏1𝜆𝜆𝑏𝑏2�𝜆𝜆𝑏𝑏1 + 𝜆𝜆𝑏𝑏2�,    (47b) 

 
Figures 10(a) and (b) show the Lumley triangle in 
terms of (𝜂𝜂  and 𝜉𝜉) and ( 𝛱𝛱𝑏𝑏  and 𝐼𝐼𝐼𝐼𝐼𝐼𝑏𝑏 ), respectively.  
The limiting cases and their physical significance 
when the invariants/eigenvalues lie on the boundaries 
of the Lumley triangle are indicated in the figures.  

The Reynolds stress ellipsoid is defined by 
the expected value equation: 
 

𝐸𝐸(𝑈𝑈,𝛼𝛼) ≤ 1,        (48) 
 
for given constant 𝛼𝛼 ≥ 0  with solution given in 
Equation (49). 

 

�𝑈𝑈1−𝑈𝑈1
𝛼𝛼�𝜆𝜆𝑢𝑢1

�
2

+ �𝑈𝑈2−𝑈𝑈2
𝛼𝛼�𝜆𝜆𝑢𝑢2

�
2

+ �𝑈𝑈3−𝑈𝑈3
𝛼𝛼�𝜆𝜆𝑢𝑢3

�
2
≤ 1,  (49) 

 
Equation (49) represents an ellipsoid centered at 
�𝑈𝑈1,𝑈𝑈2,𝑈𝑈3� with the half-lengths of the principal axes 
being 𝛼𝛼�𝜆𝜆𝑢𝑢𝑝𝑝 , 𝑖𝑖 = (1,2,3) , where α = 1  will be 
assumed, such that Equation (49) represents the 
surface of the ellipsoid. Therefore, the ellipsoid 
represents the volume in velocity space of the 
realizable fluctuations of the turbulence at the vortex 
core. 

 
Discussion 
 
Figures 11 and 12 provide the 𝑅𝑅𝑝𝑝𝑖𝑖  and 𝑏𝑏𝑝𝑝𝑖𝑖  values for 
the 4DPTV, TPIV, and DES, using bar chart 
representations.  The 4DPTV exhibits larger values for 
all three normal stresses compared to TPIV and DES. 
On the other hand, the DES displays the smallest 
values for  𝑢𝑢𝑢𝑢 , 𝑣𝑣𝑣𝑣  and 𝑤𝑤𝑤𝑤 . Consequently, the 
turbulent kinetic energy of the 4DPTV is 
approximately three times larger than that of the DES. 

 
(a) 

 
(b) 

Figure 10: (a) Lumley triangle (Muthu and Bhushan, 
2020) and (b) anisotropic invariant map (Subhasiah et 
al.,2020), 𝜎𝜎𝑝𝑝  represents the Reynolds stress tensor 
eigenvalues. 
 
The trend for 𝑢𝑢𝑣𝑣  and 𝑢𝑢𝑤𝑤  is similar among all three 
methods, with differences in magnitude. DES shows 
the opposite sign compared to 4DPTV and TPIV for 
𝑣𝑣𝑤𝑤 . The normal components of 𝑏𝑏𝑝𝑝𝑖𝑖  show that DES, 
4DPTV, and TPIV have the largest values for 𝑏𝑏11, 𝑏𝑏22, 
𝑏𝑏33, respectively. It is important to notice that 𝑏𝑏22 for 
TPIV and DES shows the opposite sign compared to 
the 4DPTV; 4DPTV shows the largest value for 𝑏𝑏12, 
whereas DES for 𝑏𝑏13 . DES also shows the opposite 
sign for 𝑏𝑏23 compared to the 4DPTV and TPIV. The 
components of  𝑅𝑅𝑝𝑝𝑖𝑖  and 𝑏𝑏𝑝𝑝𝑖𝑖  are related to their 
eigenvalues by the non-linear system shown in 
Equations (42)-(44).  It is not trivial to understand the 
contribution of each element of the Reynolds stress 
tensor in the anisotropy. However, the magnitudes of 
the normal stresses are much larger compared to the 
shear stress terms, which could indicate that they play 
a dominant role in determining the eigenvalues and 
potentially the eigenvectors of the Reynolds stress 
tensor. 

Table 5 provides 𝑅𝑅𝑝𝑝𝑖𝑖  and 𝑏𝑏𝑝𝑝𝑖𝑖  eigenvectors 
(direction cosines) for the 4DPTV, TPIV, and DES; 
and Figures 13 and 14 provide their eigenvalues via 



 

bar chart representations. The eigenvalues of the 
Reynolds stress are ordered in descending order, i.e., 
𝜆𝜆𝑢𝑢1  is the largest. The 4DPTV exhibits the largest 
eigenvalues for 𝑅𝑅𝑝𝑝𝑖𝑖, followed by the TPIV, and DES. 
Since the trace of a tensor is an invariant, the sum of 
the Reynolds stress eigenvalues must be equal to two 
times the turbulent kinetic energy.  Note that while 𝜆𝜆𝑢𝑢1 
is the largest eigenvalue for the Reynolds stress, the 
eigenvalues of 𝑏𝑏𝑝𝑝𝑖𝑖  are not ordered in descending order 
but given by Equation (45). Largest values for 𝜆𝜆𝑏𝑏2 and 
𝜆𝜆𝑏𝑏3 are for the DES, whereas the TPIV exhibits the 
maximum 𝜆𝜆𝑏𝑏1. The sign of 𝜆𝜆𝑏𝑏2 is negative for TPIV 
and DES and positive for 4DPTV. This fact has 
important consequences for the location of the 
turbulence in the Lumley triangle, as will be shown 
later. 
 

 
Figure 11: Comparison of Reynolds stress 
components: 4DPTV, TPIV, and DES. 
 

 
Figure 12: Comparison of anisotropic Reynolds stress 
components: 4DPTV, TPIV, and DES. 
 

Based on the eigenvalues of 𝑏𝑏𝑝𝑝𝑖𝑖 , the 
invariants of the turbulence are evaluated and 
represented on the Lumley triangle and Anisotropic 
Invariant Map (AIM) in Figures 15(a) and (b), 
respectively. The 4DPTV shows a negative value for 
𝜉𝜉 (𝐼𝐼𝐼𝐼𝐼𝐼𝑏𝑏), whereas this quantity is positive for both the 
DES and TPIV. The magnitude of 𝜂𝜂 (−𝛱𝛱𝑏𝑏) is largest 
for the DES, and almost two times larger than the 
TPIV and 4DPTV. DES predicts a turbulence state 

very close to the two-component limit, whereas the 
4DPTV is closer to an axisymmetric contraction. For 
the TPIV and DES, the change of sign in 𝜆𝜆𝑏𝑏2  
determines a positive value for 𝜉𝜉 (𝐼𝐼𝐼𝐼𝐼𝐼𝑏𝑏) . 
Consequently, for the TPIV the turbulence state is 
almost on the right border of the Lumley triangle, 
corresponding to an axisymmetric expansion. 
 
Table 5: Reynolds Stress and Anisotropic Reynolds 
Stress Tensor Eigenvectors for 4DPTV, TPIV, and 
DES. 

 4DPTV TPIV DES 

𝑚𝑚𝑅𝑅1 �
0.219
−0.927
0.306

� �
0.143
−0.329
0.934

� �
0.295
0.199
0.935

� 

𝑚𝑚𝑅𝑅2 �
−0.103
0.290
0.951

� �
−0.326
0.875
0.358

� �
0.297
−0.949
0.109

� 

𝑚𝑚𝑅𝑅3 �
0.970
0.240
0.032

� �
0.934
0.356
0.358

� �
0.908
0.245
0.109

� 

 

 
Figure 13: Comparison of Reynolds stress 
eigenvalues: 4DPTV, TPIV, and DES. 

 

 
Figure 14: Comparison of anisotropic Reynolds stress 
eigenvalues: 4DPTV, TPIV, and DES. 
 

The corresponding shapes of the Reynolds 
stress ellipsoid for the 4DPTV, TPIV, and DES are 
shown in Figures 16(a), (b) and (c), respectively. For 
the 4DPTV, �𝜆𝜆𝑢𝑢1~1.2�𝜆𝜆𝑢𝑢2~1.7�𝜆𝜆𝑢𝑢3  implies that 
the semi-axes in the 𝑚𝑚𝑅𝑅1  and 𝑚𝑚𝑅𝑅2  directions are very 
close in magnitude, whereas the third direction is 



 

almost half in length. This confirms that the shape of 
the ellipsoid is close to an oblate spheroid, where 
�𝜆𝜆𝑢𝑢1 = �𝜆𝜆𝑢𝑢2 > �𝜆𝜆𝑢𝑢3 . For the TPIV, 

�𝜆𝜆𝑢𝑢1~1.5�𝜆𝜆𝑢𝑢2~1.8�𝜆𝜆𝑢𝑢3 such that the semi-axis in 
the 𝑚𝑚𝑅𝑅1  direction is larger than the other two 
directions. In this case, the ellipsoid resembles a 
prolate spheroid, where �𝜆𝜆𝑢𝑢1 > �𝜆𝜆𝑢𝑢2 = �𝜆𝜆𝑢𝑢3. DES 
exhibits a more flattened shape, with 
�𝜆𝜆𝑢𝑢1~1.4�𝜆𝜆𝑢𝑢2~7.4�𝜆𝜆𝑢𝑢3 and the ellipsoid collapses 
into an almost 2D elliptical disc, where �𝜆𝜆𝑢𝑢1 > �𝜆𝜆𝑢𝑢2 
and �𝜆𝜆𝑢𝑢3 = 0. This characteristic shape is typical of 
2D turbulence.  The principal axis associated with the 
largest eigenvalue indicates the direction where the 
velocity fluctuations are most pronounced. For the 
4DPTV, this almost coincides with the second 
component of the velocity (V), whereas both the TPIV 
and DES exhibit a predominant alignment with the 
third component (W). 
 

(a) 
 

(b) 
Figure 15: (a) Lumley and (b) anisotropic invariant 
map with 4DPTV, TPIV, and DES realizations. 
 

Similarly, the normal stresses for the 4DPTV 
show that 𝑣𝑣𝑣𝑣 is the largest, whereas for the TPIV and 
DES 𝑤𝑤𝑤𝑤 is the dominant term. Hence, it is postulated 
that the normal stresses play an important role in 

determining the principal axes for the Reynolds stress 
ellipsoid.  

For the 4DPTV and TPIV, the principal axis 
associated with the largest eigenvalue is nearly 
perpendicular to the direction of the mean velocity 
vector, as shown in Table 6 and Figure 16. This 
indicates that the maximum fluctuations of the 
velocity vector occur in a plane that is perpendicular 
to the mean velocity direction. In the case of the DES, 
the angle is around 71 deg. More generally, the plane 
generated by 𝑚𝑚ℛ1 and 𝑚𝑚ℛ2 is almost perpendicular to 
the velocity vector, such that the angle between 𝑚𝑚ℛ3 
and 𝑈𝑈 is less than 10 deg for the 4DPTV and TPIV, 
and 20 deg for DES. Consequently, the fluctuations of 
the instantaneous velocity mostly happen on the plane 
perpendicular to the mean velocity and vorticity 
vectors. Therefore, the turbulence, which is strongest 
at the vortex core, is diffused almost perpendicular to 
its axis. 
 
Conclusions 
 
The Reynolds stress tensor and its normalized 
anisotropic counterpart, the anisotropic Reynolds 
stress tensor, offer a comprehensive description of 
turbulence in terms of its normal stresses and 
anisotropy. The 4DPTV shows much larger normal 
stresses, resulting in a large magnitude of the turbulent 
kinetic energy compared to the TPIV and DES. The 
eigenvalues and eigenvectors of these tensors help 
identify the principal directions and magnitudes of the 
turbulent fluctuations. In particular, the analysis of the 
Lumley triangle or AIM further visualizes the different 
states of turbulence based on the invariants of the 
anisotropic Reynolds stress tensor. 

The shape of the Reynolds stress ellipsoid, 
determined by the eigenvalues, reflects the volume of 
realizable fluctuations in velocity space. The 4DPTV, 
TPIV, and DES reveal very different shapes for the 
ellipsoids caused by different locations of the 
turbulence in the Lumley triangle or AIM. DES 
predicts an almost 2D state of turbulence, such that the 
characteristic ellipsoid degenerates into an elliptical 
disc. The turbulence for the 4DPTV and TPIV shows 
similar magnitudes for the invariants, with the main 
difference due to the change in sign of 𝜆𝜆𝑏𝑏2 , which 
determines a shift towards positive 𝜉𝜉  for the TPIV. 
The dissipation tensor was decomposed into isotropic 
and anisotropic components (results not shown), 
which provided insights into the rate of energy 
dissipation (contributions of the 𝜀𝜀𝑝𝑝𝑖𝑖components to 𝜀𝜀)  



 

Table 6: Characteristics of the Reynolds Stress Ellipsoid and its Orientation vs. Mean Velocity and Mean Vorticity 
Vectors for 4DPTV, TPIV, and DES. 

 
Semi-axes of the RS ellipsoid Angle between RS ellipsoid principal 

axes and 𝑈𝑈 [deg] 
Angle between RS ellipsoid principal 

axes and 𝛺𝛺 [deg] 

�𝜆𝜆𝑢𝑢1 �𝜆𝜆𝑢𝑢2 �𝜆𝜆𝑢𝑢3 𝑚𝑚ℛ1 ∙ 𝑈𝑈 𝑚𝑚ℛ2 ∙ 𝑈𝑈 𝑚𝑚ℛ3 ∙ 𝑈𝑈 𝑚𝑚ℛ1 ∙ 𝛺𝛺 𝑚𝑚ℛ2 ∙ 𝛺𝛺 𝑚𝑚ℛ3 ∙ 𝛺𝛺 

4DPTV 0.219 0.180 0.127 91.14 98.07 8.13 99.63 96.37 11.57 
TPIV 0.189 0.128 0.105 93.81 95.60 6.02 94.28 90.49 4.33 
DES 0.139 0.098 0.019 70.80 73.13 26.01 73.99 87.10 16.28 

 

 
(a) 

 
(b) 

 
(c) 

Figure 16: Reynolds stress ellipsoids; (a) 4DPTV, (b) 
TPIV, and (c) DES. The velocity and vorticity vectors 
are scaled by their magnitude multiplied by a constant. 
 
and its anisotropic behavior and it was analyzed only 
for the 4DPTV. While the normal components show 
similar trends when compared between 𝜀𝜀𝑝𝑝𝑖𝑖(𝜀𝜀𝚤𝚤𝚤𝚤𝐴𝐴�)  and 

𝑅𝑅𝑝𝑝𝑖𝑖(𝑏𝑏𝑝𝑝𝑖𝑖), no conclusions could be drawn for the off-
diagonal components.  

Overall, these analyses reveal the distinct 
characteristics of turbulence captured by different 
measurement techniques such as 4DPTV and TPIV 
and the DES, highlighting their strengths and 
limitations in characterizing turbulent flow. 

Future research will focus on conducting a 
sensitivity analysis study for the relationship presented 
in Equations (42)-(44), which connects the invariants 
of 𝑏𝑏𝑝𝑝𝑖𝑖  with the components of the Reynolds stresses. 
This analysis will provide additional insights into the 
dominant components influencing the determination 
of the turbulence state, as indicated by the Lumley 
triangle, and will help understand the differences 
between the 4DPTV, TPIV, and DES. The anisotropy 
results will be compared with the isotropic eddy 
viscosity concept using the mean rate of strain. 
 
VORTEX BREAKDOWN AND INTERACTION 
 
Xing et al. (2012) identified spiral vortex 
breakdown followed by helical mode instability in 
their DES for KVLCC2 at β = 30 deg and its 
analogy with delta wing flows; however, 
experimental validation is still not available for 
KVLCC2.  The evidence for this was the transition 
of the vortex core streamlines from straight to 
helical, the nature of the variation of the vortex core 
variables (i.e., increase in TKE and p and decrease 
in u and ωx), and the same scaling for the vortex 
core Strouhal numbers based on ship length (L) and 
distance from onset location (DS) (St = fL/U and StDs 
= fDS/U) as delta wings.  For ship flows the 
transition was without an abrupt increase in vortex 
size, and less prominent and/or differences in the 
nature of the vortex core variables, which was 
attributed to the fact that for ship flows the vortices 
are embedded in the hull boundary layer. Bhushan 
et al. (2019, 2021) DES for 5415 at β = 20 deg 
showed similar vortex breakdown characteristic as 
KVLCC2 and this time with TPIV validation for St 
and StDs. It should be noted that ship flow 
geometries and separation types are mostly different 



 

than delta wings, i.e., smooth surfaces with 
crossflow and bubble type separations vs. sharp 
edges with sharp edge separations for delta wings, 
except for bilge keels and other similar appendages 
with sharp edges.   
 

 

 

 
 
Figure 17: Planar streamlines at x/L = 0.12 showing 
the spiral vortex (upper left); model for the helical path 
of the vortex core from x/L = 0.11 to x/L = 1 (upper 
right); and helical instability emerging from the spiral 
vortex breakdown at x/L = 0.11, including inserted 
plots showing the pitch of the helix, size of the helix, 
and helix core locations (lower). 
 
Figure 17 provides improved analysis of the DES 
vortex breakdown/helical mode instability.  Figure 17 
(top left) shows planar streamlines at x/L = 0.12.  The 
flow spirals inwards towards the vortex core. The 
shear layer due to the crossflow around the keel wraps 
around the vortex core. Figure 17 (bottom) shows the 
upstream streamline that merges into and emerges 

from the vortex core at x/L = 0.12. The vortex core is 
identified by the high Q =10000 value iso surface 
(red). The transparent iso surface in blue is for Q = 
100, which shows the primary vortex structure. The 
top inset plot shows the pitch of the helical vortex. The 
pitch increases linearly with progression with values 
of around 0.2 m at onset to 0.75 m aft of the stern. The 
middle-inset plot shows the estimated size of the 
helical vortex, which also increases linearly with 
distance from onset. The bottom inset plot shows the 
vortex core location that was manually extracted from 
the peak Q values at slices of x/L = 0.09 to 0.5 at every 
0.01L. The vortex core shows an upwards drift 
between x/L = 0.09 to 0.11, and then shows unsteady 
helical motion. Figure 17 (top right) shows a model for 
the helical path of the vortex core from x/L = 0.11 to 
x/L = 1. The inset plots show the view of the helical 
path in the y-z and x-z planes. The helical path is 
obtained using the equation 𝜕𝜕/𝐿𝐿 = 𝑑𝑑(𝑚𝑚/𝐿𝐿) sin(𝜋𝜋(𝑚𝑚/
𝐿𝐿) × 𝑚𝑚/𝐿𝐿)  and 𝜕𝜕/𝐿𝐿 = 𝑑𝑑(𝑚𝑚/𝐿𝐿) sin(𝜋𝜋(𝑚𝑚/𝐿𝐿) × 𝑚𝑚/𝐿𝐿) . 
The frequency 𝜋𝜋(𝑚𝑚/𝐿𝐿) is estimated from the pitch of 
the helical vortex, which gives  𝜋𝜋(𝑚𝑚/𝐿𝐿) = 2π𝐿𝐿/
(0.1 + 0.5664𝑚𝑚). The amplitude is estimated from the 
size of the helical vortex, which gives 𝑑𝑑(𝑚𝑚/𝐿𝐿) =
(0.001 + 0.0117𝑚𝑚)/𝐿𝐿.  

Clearly the streamlines in the SDVP vortex 
undergo transition from straight to helical with the spiral 
vortex breakdown estimated to occur at about x/L = .11.  
The wavelength of the 𝑢𝑢(𝑚𝑚, 𝑡𝑡) spatial waves and pitch of 
the helix vortex core at x/L = 0.12 closely agree.  The 
linear growth for the helix pitch indicates the same 
frequency scaling as shown previously for KVLCC2 and 
5415, as per Figure 5(e). 

 
Figure 18: Instantaneous SDVP vortex core (y, z) 
trajectory at x/L = 0.12. 
 
Figure 18 shows the instantaneous trajectory in the (y, 
z) plane at x/L = 0.12.  The FFT of the SDVP at x/L = 
0.12 core coordinates and displacement velocity were 
compared with the FFT of u.  All three 
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(b)  
Figure 19:  4DPTV streamwise vortex core (y, z) trajectory coordinates and FFT (a); and DES streamwise vortex 
core (y, z) trajectory coordinates and global view of the SDVP vortex (b). 
 
variables show similar behavior.  Thus, the turbulent 
axial velocity and vortex core displacement and 
velocity all show the footprint of the spiral vortex 
breakdown/helical mode instability. 

Figure 19 shows the 4DPTV streamwise 
vortex core (y, z) trajectory coordinates and FFT (a) 
and DES streamwise vortex core (y, z) trajectory 
coordinates and global view of the SDVP vortex (b). 
The SDVP y coordinate trajectory is in line with the 
drift angle β = 10 deg with somewhat larger values 
near its onset. The streamwise vortex core (y, z) 
trajectories show low-frequency oscillations that 
correspond to the spiral vortex breakdown/helical 
mode instability and high-frequency oscillations that 
correspond to those shown in the spatial 
autocorrelation Figure 6(b, c).  Sanada et al. (2023) 
figures 20 through 30 show what appear to be shear 
layer vortices covering the surface of both the SDVP 
and SDVS vortices with wave lengths like those 

shown in the streamwise vortex core (y, z) trajectories.  
It is hypothesized that the high frequency oscillations 
of the streamwise vortex core (y, z) trajectories are due 
to the shear layer that wraps around the spiral vortices 
as per Figure 17 (upper left) and its associated Kelvin-
Helmholtz instability.  However, it should be 
recognized that the resolution of the shear layer 
vortices and the Kelvin-Helmholtz instability is at the 
limit of the current 4DPTV resolution, and as is also 
the case with resolving the Taylor microscale, 
increased resolution is required.  Based on figures 18 
and 19, the SDVP wandering is due both to the spiral 
vortex breakdown/helical mode instability and the 
shear layer vortices. 

The 5415 β= 10 deg 4DPTV and DES clearly 
show that the SDVP vortex undergoes spiral vortex 
breakdown/helical mode instability with many 
features like the delta wing spiral vortex 
breakdown/helical mode instability. The swirl 
numbers are lower than expected based on the vortex 



 

breakdowns for delta wings and swirling jets and pipe 
flows; however, SDVP undergoes strong interaction 
with SDVS such that it is hypothesized that this 
interaction induces the vortex breakdown. Leweke 
(2016) shows that corotating vortex pairs are 
susceptible to shortwave instabilities produced by the 
strain induced from one vortex to the other.  Further 
research is ongoing. 
 
CONCLUSIONS AND FUTURE RESEARCH 
 
Additional analysis of the 4DPTV static drift β = 10 
deg results for the 5415 sonar dome vortices is made 
to realize its full potential for the assessment of the 
turbulence structure and vortex breakdown and 
interactions and for providing data for scale resolved 
CFD validation. Limitations of the current 4DPTV 
system are identified for future improvements. The 
4DPTV has increased capability compared to the 
previous TPIV in terms of measurement volume size 
and sampling rate, whereas it has less spatial 
resolution.  The assessment includes comparisons with 
both the previous TPIV and DES. The focus is on the 
strongest primary vortex SDVP at x/L = 0.12 (just 
downstream of the sonar dome) and its interaction 
with SDVS, which is the second strongest of the 
multiple sonar dome vortices.  Both vortices are 
counterclockwise and due to cross flow separations 
with SDVP and SDVS onset from the windward (port) 
and leeward (starboard) sides of the sonar dome.  

The macro-scale analysis showed agreement 
between 4DPTV and TPIV for the SDVP elliptically 
shaped cross plane streamlines and Gaussian and Bell 
distribution for the axial vorticity and Q-criteria. The 
macro-scale turbulence is larger for the 4DPTV vs. the 
TPIV, whereas the vortex strength has the opposite 
trend, and the anisotropy shows both similarities and 
differences. The DES shows similar trends as the 
experiments, but there are large quantitative 
differences.  

The micro-scale analysis used model 
spectrums based on the 4DPTV and TPIV macro-
scales, as benchmarks which were about half the size 
of their spatial resolutions and indicates that sub-
millimeter resolution is needed to resolve the micro-
scales accurately. The temporal and spatial 
autocorrelation functions were used to compute the 
micro-scales. The Taylor micro-scales ( 𝜆𝜆𝑓𝑓 ) were 
consistently larger than their benchmarks and roughly 
twice their spatial resolutions. The larger 𝜆𝜆𝑓𝑓 resulted 
in the dissipation 𝜀𝜀 being significantly smaller than the 
benchmark. The 𝜂𝜂  values were larger than the 

benchmark, but the difference with the benchmark 
were not as large as that for the 𝜆𝜆𝑓𝑓 . The temporal 
4DPTV analysis resolved the energy containing range 
and a large portion of the inertial sub range of the 
turbulence. The spatial 4DPTV analysis resolved a 
narrower band compared to the temporal analysis, and 
primarily resolved the inertial subrange. 
 The anisotropy analysis of the 4DPTV, 
TPIV, and DES showed similarities and distinct 
differences between the three results which highlights 
the strengths and limitations for characterizing the 
turbulence structure. The DES predicts an almost 2D 
turbulence state whereas the 4DPTV and TPIV display 
Reynolds stress ellipsoids that resemble oblate and 
prolate spheroids, respectively. The analysis of the 
Reynolds stress ellipsoids suggests that the principal 
axes are largely affected by the differences in the 
normal components of the Reynolds stresses; 
however, sensitivity analysis is needed to confirm this 
postulation.  

The 4DPTV measurements and DES provide 
strong evidence that SDVP undergoes a spiral vortex 
breakdown/helical mode instability like KVLCC2 and 
5415 at static drift β = 30 and 20 deg, respectively, and 
delta wings. The SDVS vortex is shed periodically 
with visually evident interactions between SDVP and 
SDVS, which suggests that such vortex interactions 
induce the SDVP spiral vortex breakdown/helical 
mode instability at smaller swirl numbers than what is 
observed for other flows without such interactions. 

Future research will focus on additional 
anisotropy analysis, including more points along a 
radial line perpendicular to the vortex core and along 
the vortex core upstream and downstream of x/L = 
0.12, for a more global determination of the turbulence 
state and for evaluation of the eddy viscosity concept. 
The vortex interactions will be investigated in more 
detail.  FFT analysis is needed to determine the period 
and wavelength of the SDVP and SDVS vortex cores 
and the SDVS vortex shedding, and a triple-
decomposition could be leveraged to remove the 
oscillation of the spiral vortex breakdown/helical 
mode instability for further temporal turbulence 
analysis. The interactions between SDVS and SDVP 
are complex, and future analysis will be done to 
determine the mechanism of the merging of SDVS and 
SDVP. To accomplish this, simultaneous and 
instantaneous vortex core tracking must be done for 
both SDVP and SDVS and distances between their 
cores must be evaluated over the entire measurement 
range and duration. Also, TKE budget analysis needs 
to be done for both SDVP and SDVS for better 



 

understanding their progressions and interactions, 
which requires evaluation of the pressure transport 
term. 
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DISCUSSION 1 (D1) 
 
Charles Meneveau, Department of Mechanical 
Engineering, Johns Hopkins University 
 
The paper is an excellent example of best practices of 
a joint experimental and computational data analysis 
in an interesting, highly complex flow of direct naval 
interest. The experimental resolution and that of the 
computations are approximately matched, focusing on 
large and intermediate scales rather than microscales. 
The computational (DES) data were obtained some 
time ago and the fact that they can still be used 
productively is definitely a plus. 
 

1. The comparison of spectra is of interest since 
both experimental data and DES are “eddy 
resolving”. For directly obtained spectra 
(even for the DES data where signals are 
probably shorter duration) one 
recommendation would be to use averaging 
to obtain less noisy experimental spectra 
(e.g., Fig 7,8). It is OK to forego resolving the 
lowest-frequency modes and average over 
(e.g.) 10 or 20 windowed segments of the 
signal. For spectra obtained from FT of the 
correlation function, perhaps first fitting the 
latter with a smooth function, and then doing 
the FT would reduce the large amount of 
noise visible in the spectra. Such large noise 
makes comparisons between simulation and 
experiments more difficult. Certainly, the use 
of model spectra to complete the unmeasured 
small scales is a good approach.   

 
2. The observations regarding vortex structures, 

anisotropy and characteristic length scales all 
contribute to a solid and important database 
for future simulations to compare with. The 
conclusions summarize the benchmark 
values methodically, which will be helpful 
for further follow-up studies. 
 

3. In the conclusions when discussing the start 
of the dissipation range, the authors state 
“...dissipation range is established at 60η, 
based on Kolmogorov’s hypothesis of local 
isotropy”. It was unclear to me how the 
Kolm-local isotropy hypothesis can be used 
to identify this range limit. Why not 40 eta or 
50 eta? 
 

4. Figure 2 caption needs to state what (c) is (I 
assume it is DES). 
 

5. As an overall conclusion and discussion 
topic, it appears that while the experiments 
and simulations provide similar trends, there 
are significant quantitative differences. What 
are the implications of the observed level of 
differences? The differences appear a bit 
larger than the differences among the two 
measurement methods (4DPTV and TPIV), 
but the latter also differ by quite a bit. How 
should such observations affect future 
LES/DES model developments and 
experimental tools? 

 
 
AUTHOR’S REPLY 
 
Thank you for your positive and helpful comments. 
 
Comment 1: We appreciate that you found our 
comparison of spectra of interest.  We hope you also 
find our evaluation of the Taylor micro and macro 
scales of equal interest, as in our field especially for 
practical geometries both spectral and especially 
Talyor scale analysis are seldom done.  Your comment 
resulted in our reinvestigating our spectra and Taylor 
macro and micro scale estimates.  In doing so we have 
preferred to use L = l0 in the analysis, as explained in 
the text.  Also, we found a minor error in our data 
reduction for the spectral and Talyor scale analysis, 
which we have corrected and explained below.  In 
summary, we find upon taking into consideration 
aliasing and the Nyquist criteria that the best approach 
is the use of a Butterworth filter, which leads to the 
most reasonable results for both the temporal and 
spatial analysis; however, in the latter case the results 
are less satisfactory, as they are much more sensitive 
to our coarse spatial resolution.  Lastly and in our 
opinion most importantly our reinvestigation has led 
to the following hypothesis: to achieve proper 
resolution of the energy containing range macro 
scales, turbulence anisotropy and organized 
oscillations it is necessary to simultaneously resolve 
both the temporal and spatial Taylor micro (λf) and 
macro (Λf) scales in experiments and/or simulations.  
The discussion that follows is organized to explain our 
new results in support of this hypothesis. 
 
 



 

Evidence 
 

1. The high frequency/large wave number tail of 
the energy spectrums shown in the 5415 
primary sonar-dome vortex SDVP core 
4DPTV measurements both without (Stern et 
al. 2024) and with the use of a moving 
average (MA) filter (Sanada et al. 2023) 2 
display anomalous behavior, which is 
attributed to aliasing due to the mismatch of 
the 4DPTV temporal (444.2 Hz) and spatial 
(2.1 – 4.2 mm) resolutions.   

2. The λf and Λf values for the MA filtered data 
are about five times larger than for the 
unfiltered data.  The unfiltered data λf value 
is on the order of the 4DPTV spatial 
resolution, which is about 3 times larger than 
the expected benchmark value, i.e., about 1 - 
2 mm.  Whereas the Λf values for the filtered 
vs. unfiltered data are likely too small vs. 
unreasonably too large.   

3. The turbulence in the SDVP core is shown to 
be transported by the mean flow such that the 
Taylor Frozen Turbulence Hypothesis 
(TFTH) is valid (Stern et al. 2024), which 
suggest that the proper time interval for data 
reduction to prevent aliasing should be 
determined by ∆t = ∆x/<U> where ∆t is the 
temporal resolution (444.2 Hz), ∆x is the 
spatial resolution (4.277E-03 m), and <U> 
(1.248 m/s) is the mean velocity.  Therefore, 
the frequencies that exceed f = 1/ ∆t (291.8 
Hz) should be excluded via use of filtering, 
which is also consistent with the use of a 
Nyquist sampling cutoff frequency criteria. 

4. Results shown below with the use of a 
Butterworth filter with the TFTH (sampling 
rate 291.8 Hz) and Nyquist cutoff frequency, 
i.e.,  fc = 291.8/2 = 145.9 Hz based on the 
above reasoning [vs. 222.1 if the Nyquist 
criteria is used with original sampling rate 
444.2 Hz and consistent with some authors 
(e.g., Bendat and Piersol, 1986) that advocate 
the use of 50-80% of the Nyquist value for 
the improvement of the spectrum in the 
inertial subrange] provide reasonable values 

 
2  Stern, F., ONR 2023 Hydrodynamics / Structural 
Acoustics Program Review, 12-16 June, San Diego, 
CA. 
3 Note that the current unfiltered results show small 
differences with those in our paper as we found an 

for both λf and Λf, i.e., the former on the order 
of the spatial resolution and the latter on the 
order of the vortex half width. 

 
Conclusions 
 
Increased spatial resolution of the 4DPTV 
measurement system to properly resolve the Taylor 
micro scale and prevent aliasing will also provide 
confidence in the proper resolution of the energy 
containing range macro scales, turbulence anisotropy 
and organized oscillations, which is the primary focus 
for the physical understanding of 3D vortex separation 
onset and progression for flows of practical interest 
such as the 5415 sonar dome vortices. 

Clearly the high frequency data 
resolution/data reduction influences the low frequency 
data resolution/data reduction.  The use of the 
Butterworth filter is helpful, but surely accurate 
resolution of the Taylor micro scale λf is required to 
have confidence that the Taylor macro scale Λf and 
other macro scale features are accurately resolved.  
The Kolmogorov hypotheses and scaling along with 
the Richardson cascade concept indicates that the 
small scales loose memory of the large scales; 
however, the small scales are created/driven by the 
large scales such that a balance exists between the 
large-scale motions/energy containing range and the 
dissipation/small scale motions, i.e., Λf and λf are 
inextricably connected.  Thus, achieving the 5/3 power 
law in the inertial subrange alone does not guarantee 
that the macro and micro scales are properly resolved 
and balanced. 
 
Discussion 
 
Table D1-1 shows the macro-scale parameters for the 
SDVP vortex determined using three different 
methods: the MA filter (fc = 7.5 Hz), the unfiltered3, 
and the Butterworth filter with TFTH sampling rate 
and Nyquist criteria (fc =145.9 Hz). The use of the MA 
filter weights the large scales and reduces the 
measured turbulence intensity, dissipation, and 𝑅𝑅𝑒𝑒𝐿𝐿 . 
Assuming 𝐿𝐿 = 𝑙𝑙0 results in a reduction in 𝑅𝑅𝑒𝑒𝐿𝐿 and in 
the model spectrum benchmark (BM) Taylor micro-
scale, as will be shown later. The Butterworth filter 

index error, which is corrected herein. The index error 
was due to the use of a one voxel outboard value for 
the mean vortex core location, which highlights the 
sensitivity of the turbulence to the spatial location.  See 
Tables 5 and 6 below. 



 

values are intermediate between the MA filter and 
unfiltered results.  

Figures D1-1 and D1-2 shows the temporal 
autocorrelation and its FFT for five different types of 
time series. (1) unfiltered with sampling rate 444.2 Hz; 
(2) unfiltered with sampling rate 444.2 Hz 
reconstructed from the averaged spectrum from all 
five realizations (towing tank runs) as recommended 
by Charles Meneveau; the Butterworth filter with 
sampling rate 444.2 and (3) fc = 145.9 Hz and (4) fc = 
291.8 Hz; and (5) down sampling.  Down sampling 
first uses a fc = 145.9 Hz and then samples at 291.8 Hz.  
The results of (1) and (2) are similar, whereas the 
results of (3), (4), and (5) are similar and in this case 
all three remove the high frequency anomalous 
behavior. Comparing the temporal autocorrelation 
from the Butterworth-filtered time series with that 
from the down-sampled time series, both results are 
well agreed. 

The micro-scale parameters are evaluated for 
the 4DPTV using the same three methods presented 
above for the macro-scale. The results are compared 
with the benchmarks, obtained as per Stern et al. 
(2024) and presented in Tables D1-2 and D1-3. The 
MA filtered results show unreasonably large Taylor 
micro and macro scales, with too small dissipation and 
too large Kolmogorov length scale. The unfiltered 
results show improvement in both Taylor micro and 
macro scales, that get closer to the benchmarks. The 
dissipation increases over two orders of magnitude. 
Using the Butterworth filter increases both 𝜆𝜆𝑓𝑓 and 𝛬𝛬𝑓𝑓, 
with 𝛬𝛬𝑓𝑓 approximately equal to half the size of 𝑙𝑙0. The 
Butterworth filter also causes a reduction in the 
dissipation value. The Butterworth filter results show 
similar percentage errors with their benchmark, 
compared to the unfiltered data. 
 
Comment 2: Thank you for your positive and helpful 
comments. 

Comment 3: The start of the dissipation subrange is 
established using the peak of dissipation spectrum as 
discussed in Pope (2000) and Bernard (2019). 
Kolmogorov’s hypothesis of local isotropy 
characterizes the dissipation range scales by a small 
number of relevant parameters of which the length 
scale η = (ν3 ε⁄ )1/4  is inversely proportional to the 
wave number kd correspondent to the peak of the 
dissipation spectrum, as shown in Bernard (2019) 
Figure 4.1. Pope (2000) Figure 6.16 shows that for 

isotropic decaying turbulence (for Rλ = 600) the peak 
of the dissipation spectrum is around l η⁄ ~ 24  and 
that the bulk of the dissipation occurs for 60 > l/η >
8 . Similarly, experimental studies mentioned by 
Bernard (2019) show that the peak of the dissipation 
spectrum is at kd ≈ α/η  with α =0.1-0.15, or 
equivalently in terms of length scale l η⁄ ~ 40 − 60.  

The other way to establish the start of 
dissipation subrange is using Taylor’s micro-scale, 
which represents the largest length-scale that takes 
part in the dissipation, or the scale when the molecular 
viscosity starts to play a role. Using the definition of η 
and  ε ~νurms2 /λ2  one can show that λ η⁄ = �Rλ , 
suggesting that the dissipation subrange is wider for 
larger Rλ. This is consistent with isotropic decaying 
turbulence experiments by Kang et al. (2003), wherein 
λ/η increased from 49 to 53 when Rλ increased from 
626 to 716.  

The averaged Rλ  estimate in this study is 570, 
thus based on λ η⁄  range above, a reasonable estimate 
should be lDI ~ 50η. Therefore lDI ~ 60η used in the 
study represents an upper limit of the demarcation 
between the inertial and dissipation range. 

  
Figure D1-1: Temporal autocorrelation 
 
The primary conclusion at this stage of our temporal 
analysis is that even though the errors are somewhat 
larger for the Butterworth filter vs. its BM than the 
unfiltered vs. its BM the results with the Butterworth 
filter are deemed the best as they remove the 
anomalous behavior shown in the high 
frequency/large wave number tail of the energy 
spectrum and both BM are only estimates. It is  

 

 
 



 

Table D1-1: Macro-scale parameters using MA filter, unfiltered data (SNH), and Butterworth filter 

Parameter 
4DPTV 

SD 2023 MA filter, fc= 7.5 Hz  SNH 2024, Unfiltered Butterworth filter, fc= 145.9 Hz 
𝑳𝑳 = 𝒍𝒍𝟎𝟎/𝟎𝟎.𝟒𝟒𝟒𝟒 𝑳𝑳 = 𝒍𝒍𝟎𝟎 𝑳𝑳 = 𝒍𝒍𝟎𝟎/𝟎𝟎.𝟒𝟒𝟒𝟒 𝑳𝑳 = 𝒍𝒍𝟎𝟎 𝑳𝑳 = 𝒍𝒍𝟎𝟎/𝟎𝟎.𝟒𝟒𝟒𝟒 𝑳𝑳 = 𝒍𝒍𝟎𝟎 

〈𝑈𝑈〉 [m/s] 1.249 1.249 1.248 1.248 1.248 1.248 
〈𝑢𝑢2〉 [m2/s2] 0.003 0.003 0.018 0.018 0.016 0.016 
𝑘𝑘 [m2/s2] 0.009 0.009 0.048 0.048 0.043 0.043 
𝑢𝑢0 [m/s] 0.097 0.097 0.219 0.219 0.207 0.207 
𝑙𝑙0 [m] 0.025 0.025 0.025 0.025 0.025 0.025 
𝐿𝐿 [𝑚𝑚] 0.058 0.025 0.058 0.025 0.058 0.025 
𝜀𝜀 [m2/s3] 0.016 0.037 0.182 0.422 0.152 0.354 
𝑅𝑅𝑒𝑒𝐿𝐿 4787.3 2058.6 10793.4 4641.2 10148.2 4374.2 

  
(a) All (b) Unfiltered and reconstruct from mean FFT 

  
(c) Unfiltered, Butterworth  

(fc: 222.1 Hz and 145.0 Hz) 
(d) Unfiltered, Butterworth (fc: 145.9 Hz), 

Downsample (fs: 291.8 Hz, fc: 145.9 Hz) 
 
Figure D1-2: Temporal autocorrelation FFT comparison 
 
 
 



 

Table D1-2: Micro-scale parameters for MA filter and unfiltered data: results and benchmarks. 

Parameter 

4DPTV BM 
(MA filter, fc =7.5 Hz) 

Temporal 
4DPTV (MA 
filter, fc=7.5 

Hz) 

Temporal 4DPTV (MA 
filter, fc =7.5Hz)% 

4DPTV BM (MA filter, 
fc =7.5Hz, 
𝑳𝑳 = 𝒍𝒍𝟎𝟎) 

4DPTV BM 
(unfiltered ) 

 

Temporal 
4DPTV (SNH 

2024, 
unfiltered)  

Temporal 4DPTV 
(unfiltered) % 

4DPTV BM (SNH 
2024, unfiltered 

𝑳𝑳 = 𝒍𝒍𝟎𝟎) 𝑳𝑳 = 𝒍𝒍𝟎𝟎 𝟎𝟎.𝟒𝟒𝟒𝟒⁄  𝑳𝑳 = 𝒍𝒍𝟎𝟎 𝑳𝑳
= 𝒍𝒍𝟎𝟎 𝟎𝟎.𝟒𝟒𝟒𝟒⁄  𝑳𝑳 = 𝒍𝒍𝟎𝟎 

𝝀𝝀𝒇𝒇 [m] 3.76E-03 2.46E-03 2.98E-02 -1109.93% 2.50E-03 1.64E-03 4.64E-03 -182.79% 
𝜦𝜦𝒇𝒇 [m] 2.50E-02 2.50E-02 3.52E-02 -40.85% 2.50E-02 2.50E-02 8.01E-03 67.95% 
𝑹𝑹𝝀𝝀 1.79E+02 1.17E+02 1.42E+03 -1109.93% 2.68E+02 1.76E+02 4.97E+02 -182.79% 

𝜺𝜺 [m2/s3] 1.58E-02 3.69E-02 2.52E-04 99.32% 1.82E-01 4.22E-01 5.28E-02 87.50% 
𝜼𝜼 [m] 1.01E-04 8.18E-05 2.85E-04 -247.84% 5.49E-05 4.45E-05 7.48E-05 -68.16% 

 
Table D1-3: Micro-scale parameters for Butterworth filter: results and benchmarks. 

Parameter 

4DPTV BM  
(Butterworth filter, fc = 145.9 Hz) 4DPTV (Butterworth filter, fc 

= 145.9 Hz) 

4DPTV (Butterworth 
filter, fc = 145.9 Hz) % 

4DPTV BM 
(Butterworth filter, fc = 

145.9 Hz, 𝑳𝑳 = 𝒍𝒍𝟎𝟎) 
𝑳𝑳 = 𝒍𝒍𝟎𝟎 𝟎𝟎.𝟒𝟒𝟒𝟒⁄  𝑳𝑳 = 𝒍𝒍𝟎𝟎 

𝝀𝝀𝒇𝒇 [m] 2.57E-03 1.69E-03 5.76E-03 -240.75% 
𝜦𝜦𝒇𝒇 [m] 2.50E-02 2.50E-02 9.01E-03 63.96% 
𝑹𝑹𝝀𝝀 2.60E+02 1.71E+02 5.82E+02 -240.75% 

𝜺𝜺 [m2/s3] 1.52E-01 3.54E-01 3.05E-02 91.39% 
𝜼𝜼 [m] 5.74E-05 4.65E-05 8.58E-05 -84.59% 

expected that the Taylor micro scale, once accurately 
determined, may be equal to or less than about 1 mm. 

We also investigated the use of the 
Butterworth filter on the spatial autocorrelations, 
spectra and Taylor macro and micro scale estimates 
both without and with the Nyquist criteria for the 
spatial sampling, i.e., sampling at cutoff dxc = 2dx = 
8.555 mm, as shown in Tables D1-4-1 and D1-4-2 and 
Figures D1-3 and D1-4. Tables D1-4-1 and D1-4-2 
show spatial micro scale summaries obtained by the 
following two methods: (1) The root of the parabola 
fitted to three points [ri, f(ri)] before and after the 
origin r=0 (method used in the paper). (2) Finding r 
where f(r) equals the half-peak value [f(r) = 0.5]. The 
Butterworth filter autocorrelations are like the 
unfiltered data as is E11 with dx, whereas E11 with dxc 
removes the anomalous behavior for the large wave 
numbers.  The results with the Butterworth filter and 
dx show larger Taylor macro and micro scales than the 
temporal analysis, as was the case using the unfiltered 
data.  The micro scale with the Butterworth filter and 
dxc as shown in Table 4-1, exhibit anomalous behavior 
that the micro scale is larger than the macro scale 
shown in Table 5. This anomaly is due to the 
coarseness of the spatial resolution affecting the 
parabola fitting method used in Table 4-1. Table 4-2 
shows the r value where f(r) reaches its half-peak value 
[f(r) = 0.5], detected by linear interpolation. This value 

is generally used as an index to evaluate the width of 
the autocorrelation function. The two cases (unfiltered 
and Butterworth with dx) other than Butterworth with 
dxc give results like those of parabola fitting used in 
the paper. As shown in Figures D1-3 and D1-4, the 
shapes of f(r) are almost the same, so it is suggesting 
that the microscale values will also be similar. This 
new index gives reasonable microscale values. We will 
use this index for future publications. 

We plan on using the Butterworth filtered 
results for the journal publication of our SNH paper. 

Comment 4: Thank you for pointing this out. We 
fixed this mistake. 
 
Comment 5: The differences in the experiments are 
because of differences in their measurement volumes, 
resolutions, and data rates. In general, we expect the 
4DPTV to be more accurate than the TPIV.  However, 
since the analysis focuses only on a single point, it may 
not be providing a complete picture of the strengths 
and advantages of the two measurements. This study 
provides a framework for the analysis methods, which 
will be applied for additional points along a radial line 
perpendicular to the vortex core at x/L= 0.12 and at 
points upstream and downstream from x/L = 0.12 
along vortex core that would aid evaluation turbulence 
structure and experimental methods better.

 
 



 

Table D1-4-1: Spatial Micro Scale (Parabola fitting, used in the paper) 
Micro scale  ∆r[mm] Three points parabola fitting and finding the root 

Spatial(symmetric) Spatial(antisymmetric) 
Unfiltered (SNH35th) 4.277 6.85E-03 7.17E-03 
Butterworth (fc,145.9Hz) without skip 4.277 7.06E-03 7.43E-03 
Butterworth (fc,145.9Hz) with skip 8.555 1.13E-02 1.14E-02 

 
 
Table D1-4-2: Spatial Micro Scale (Half peak) 

Micro scale ∆r [mm] Finding 𝒓𝒓 where half peak ( 𝒇𝒇(𝒓𝒓) = 𝟎𝟎.𝟓𝟓) 
Spatial(symmetric) Spatial(antisymmetric) 

Unfiltered (SNH35th) 4.277 6.55E-03 7.35E-03 
Butterworth (fc,145.9Hz) without skip 4.277 7.00E-03 7.73E-03 
Butterworth (fc,145.9Hz) with skip 8.555 7.40E-03 7.93E-03 

 
 
Table D1-5: Spatial Macro Scale  

Macro scale (Λf [m] by Simpson) ∆r[mm] Spatial(symmetric) Spatial(antisymmetric) 

Unfiltered (SNH35th) 4.277 8.67E-03 9.61E-03 

Butterworth (fc,145.9Hz) without skip 4.277 9.14E-03 1.00E-02 

Butterworth (fc,145.9Hz) with skip 8.555 8.94E-03 1.04E-02 

  

 
Figure D1-3: Spatial autocorrelation comparison: Symmetric (left) and Antisymmetric (right) 

  
Figure D1-4: E11 comparison original (unfiltered) (left), with Butterworth filter (fc: 145.9Hz, ∆r = 4.277 
mm) (middle), and with Butterworth filter (fc: 145.9Hz, ∆r = 8.555 mm) (right)  

 



 

Table D1-5:  Comparison Macro Scale SNH Paper and corrected values 
Parameter Table 2 (𝑳𝑳 = 𝒍𝒍𝟎𝟎 𝟎𝟎.𝟒𝟒𝟒𝟒⁄ ) Corrected%Original Original Corrected 
〈𝑈𝑈〉 [m/s] 1.255 1.248 0.53% 
〈𝑢𝑢2〉 [m2/s2] 0.018 0.018 -1.27% 
𝑘𝑘 [m2/s2] 0.048 0.048 -0.25% 
𝑢𝑢0 [m/s] 0.219 0.219 -0.12% 
𝑙𝑙0 [m] 0.025 0.025 0.00% 
𝐿𝐿 [𝑚𝑚] 0.058 0.058 0.00% 
𝜀𝜀 [m2/s3] 0.181 0.182 -0.37% 
𝑅𝑅𝑒𝑒𝐿𝐿 10780.2 10793.4 -0.12% 

 
 

Table D1-6: Comparison Micro Scale SNH Paper and corrected values 
Parameter 

Table 3 Temporal 4DPTV (𝑳𝑳 = 𝒍𝒍𝟎𝟎 𝟎𝟎.𝟒𝟒𝟒𝟒⁄ ) 
Corrected%Original Original Corrected 

〈𝑈𝑈〉 [m/s] 1.255 1.248 0.56% 
τ𝐸𝐸 [s] 3.66E-03 3.72E-03 -1.58% 
𝑇𝑇 [s]  6.05E-03 6.42E-03 -6.11% 
𝜆𝜆𝑓𝑓 [m] 4.59E-03 4.64E-03 -1.01% 
𝛬𝛬𝑓𝑓 [m]  7.59E-03 8.01E-03 -5.52% 
𝑅𝑅𝜆𝜆 4.92E+02 4.97E+02 -1.14% 

𝜀𝜀 [m2/s3] 5.38E-02 5.28E-02 1.76% 
𝜂𝜂 [m] 7.44E-05 7.48E-05 -0.44% 

The DES predictions predict the flow 
qualitatively well, but it is found to be more diffusive 
and dissipative than the experiment. One would expect 
to resolve these limitations by using even finer grids. 
However, considering our previous DES studies and 
in particular the DES submission in NATO-AVT 253 
wherein the grids were sufficiently fine to resolve the 
Taylor microscale; fine grid simulations accentuate 
the limitations of the DES models. For example,   
 

(1) they fail to preserve URANS in boundary 
layer on very fine grids resulting in modeled 
stress depletion and grid induced separation. 

(2) they lack dissipation in the LES region 
because of explicit LES modeling; and 

(3) on fine grids with 95% resolved turbulence 
and boundary layer resolved using URANS, 
they underpredict TKE and vorticity strength 
during vortex progression (Bhushan et al. 
2019).  
 

Nonetheless as our study has shown they provide 
useful information augmenting the measurements, 
e.g., concerning the spiral vortex breakdown and 
helical mode instability. 

Improved hybrid RANS/LES models are 
needed that can preserve URANS in the boundary 
layer, as well as address the modeled stress depletion 
issue by enhancing resolved turbulence at the 
RANS/LES interface. The underprediction of TKE in 

the vortex core in the well resolved LES region could 
be partly related to the under resolved turbulence at the 
core or partly because of numerical dissipation. Thus, 
higher order numerical schemes, such as 4th order 
schemes, should be investigated. The dynamic hybrid 
RANS/LES model (Bhushan and Walters, 2012) 
addresses those challenges, which has been validated 
for a wide range of engineering applications, including 
addressing grid sensitivity and modeled stress 
depletion issues (Zope et al., 2021). 
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DISCUSSION 2 (D2) 
 
Philippe Spalart, The Boeing Company (retired) 
 
I am new to Naval Hydrodynamics. In the last few 
years for Aerodynamics, I have been pleased by the 
excellent collaboration between experimental and 
CFD experts, with the turbulence-modeling experts 
regularly consulted; here, the experts are even 
members of one team. 
 

1. The ambition level is very high. The 
comparisons are searching and do not shy 
from detailing differences between the 
datasets. As an example, k in Table 2 takes 
the values 0.048, 0.030, and 0.014, and the 
dissipation numbers differ by fully a factor of 
15. This is very concerning. In fact, some of 
the findings are excessively negative in my 
opinion. 
 

2. It is a sign of the times and lessons learned 
that no RANS results are presented, even 
with vortex corrections. I agree that the 
present flow is complex enough to justify a 
turbulence-resolving approach. RANS 
results would have value to me but would 
inflate the paper, especially if several model 
versions were involved. 
 

3. It is also excellent that two experimental 
techniques are used, so that the report does 
not have the tone of a straightforward 
“experiment against CFD” exercise. This 
single-test situation has been an issue in some 

workshops in Aerodynamics. I expect the 
2024 SNH Symposium to, in addition, 
contain a variety of CFD datasets. 

 

4. The statement that DES returned two-
dimensional turbulence is too sweeping, 
considering that only one point is considered. 
I would also see much value in an 
instantaneous flow visualization that displays 
convincing LES content in that region, to rule 
out an ambiguous “RANS or LES?” situation 
there. Figure 7 shows that the DES is severely 
under-resolved. 
 

5. Before I move into low-level comments, let 
me express my fond hope that the distance 
between all our sources of knowledge will 
shrink fairly rapidly. 
 

6. There is much room for improvement in 
terms of completeness. I believe the 
quantities shown in Fig. 1 are not described, 
and also that the point where results in Figs. 
11 and 12 were taken is not known. The 
differences are strong. Is it possible the data 
are from the same (x,y,z) point, but it is not 
in the same position relative to a vortex? 
Remember Fig. 2. I also wonder how the DES 
dissipation was calculated. 
 

7. As always, I must object to distinctions 
between the three normal Reynolds stresses 
and the other three. Use a different 
orientation of the (x,y,z) axes, and the two 
categories communicate. Of course, in the 
principal axes, there are only normal stresses. 
Only the trace of the matrix has its own 
meaning. 
 

8. I note as always that the Q criterion, which 
was created to bring out vortices and not 
shear layers, brings out boundary layers on 
convex surfaces, which causes confusion. In 
due time, I’d like to see the effect of a minor 
modification I have concocted. 
 

9. I did not expect Gaussian or bell distributions 
for Q, since at the edge of a normal vortex, Q 
crosses 0 linearly, becomes negative, and 
gradually returns to 0. 
 



 

10. Instantaneous figures from the DES would be 
very valuable; it is essential to see where the 
solution starts having “LES Content.” It is 
possible that some of the vortex smearing see 
in Fig. 2c took place before the switch to 
LES. 
 

11. Are the points in Fig. 10a from DES? Or are 
they from Muthu’s simulation of another 
flow, and should be ignored? 
 

12. Personally, I would report non-dimensional 
quantities in Tables 1 and 2, and others. Many 
figures also mix dimensional and non-
dimensional quantities. 
 

13. Table 5 has a distracting feature. An 
eigenvector can be switched in sign. Thus, 
the agreement between TPIV and DES for 
x_R2 is actually fairly good. Somehow, the 
x_R3 row was “lucky.” 
 
 

AUTHOR’S REPLY 
 
Thank you and we appreciate all of your comments, 
which are addressed below. 
 
Comment 1: We would like to point out that the 
evaluation of turbulent autocorrelations, spectra, and 
Taylor and other macro and micro scales in our field 
especially for practical geometries are seldom if ever 
done, which is not to excuse the aforementioned 
differences but rather to make the point that this is the 
state-of-the-art and sets the bar for future 
improvements.  In our response to the Charles 
Meneveau discussion item #2 we have fully explored 
and explained the reasons for these differences and 
provided the following hypothesis: to achieve proper 
resolution of the energy containing range macro 
scales, turbulence anisotropy and organized 
oscillations it is necessary to simultaneously resolve 
both the temporal and spatial Taylor micro (λf) and 
macro (Λf) scales in experiments and/or simulations.  
We hope to convince our sponsors to support future 
experiments and/or simulations to enable us to provide 
proof of this hypothesis. 
 
Comment 2: In our previous study using the TPIV 
data for this flow, i.e., AVT-253, we had already 
assessed the RANS capability and therefore felt no 

need to include herein; especially as we have not 
observed new developments in RANS capabilities for 
our application. 
 
Comment 3: Thank you. 
 
Comment 4: Although our analysis is just for one 
point at the vortex core, we believe that the results are 
representative of the turbulence behavior of the vortex 
region at this location. Figure D2-1 shows the (a) LES 
and URANS region, (b) instantaneous velocity and (c) 
mean velocity components at x/L = 0.12 and highlights 
the degree to which the LES modeling was activated.  
Clearly, DES predicts significantly under-resolved 
turbulence even though the grid is fine enough to 
activate LES.  Note that AVT-253 analysis for this 
flow did include a section on hybrid-RANS/LES 
(HRLES) Quality and Regions, which included more 
extensive analysis of our and other results. 

As stated in our paper: “The present DES was 
obtained many years ago and herein the results on the 
finest grids are not used. Nonetheless, in consideration 
of its performance compared to the other methods, the 
present results are representative of current state-of-
the-art methods, and they are an indication of the 
directions needed for improvements of HRLES 
methods.” 
 
Comment 5: We also would like to see improvements 
both in our experimental and HRLES capabilities. 
 
Comment 6: Our precursory PoF paper 
(https://doi.org/10.1063/5.0165658) provides 
extensive discussion of the quantities shown in Fig. 1.  
All our analysis is at the mean vortex core position for 
SDVP at x/L=.12 as estimated by each of our analysis 
methods (see discussion Table 1). 

In Table 2, dissipation is computed using the 
equation: 𝜀𝜀 = 𝑢𝑢03 /L for both experiments and CFD. 
Footnote 1 provides details of the estimate. Yes, we 
agree that in CFD we can get RANS modeled 
dissipation from the ω equation. Since there is no 
explicit LES, we can directly estimate the dissipation 
by the LES modeling.  Considering that resolved 
turbulence is minimal at this location (see Figure D2-
2), the modeled dissipation calculation should be 
significantly larger than the LES modeling 
component. These estimates show significantly large 
dissipation ε ~ 1 m2/s3. A significantly large ε could be 
the source of the modeling issue.   
 
 
 

 
 



 

 
(a) 

 
(b) Instantaneous velocity 

  
(c) Mean Velocity 

 
Figure D2-1: (a) LES and URANS region, (b) instantaneous velocity and (c) mean velocity components. 

 
 

 
Figure D2-2: Modeled TKE and dissipation at x/L = 0.12. 
 



 

An order of magnitude lower ε in CFD compared to 
experiments as shown in Table 2 is mostly due to the 
lower TKE (and u0) predictions. 
 
Comment 7: We agree that Reynolds stresses in any 
reference system can be transformed into their 
representation in principal axes, where only the 
normal stresses are non-zero. We believed it would be 
valuable to present the Reynolds stress tensor 
components both as directly obtained from the 
experiments/CFD (Figures 11 and 12) and in the 
principal axes reference frame (Figures 13 and 14). 
 
Comment 8: Please provide us your Q modification 
and we will investigate it in our future research. 
 
Comment 9: We will investigate that in a normal 
vortex, Q crosses 0 linearly, becomes negative, and 
gradually returns to 0; and adjust our analysis, 
discussion, and conclusions as needed. 
 
Comment 10: See Figure D2-1 and the AVT-253 
Final Report. 
 
Comment 11: They are from a different study and 
have been removed in the final version of our paper.   
 
Comment 12: We found it useful in assessing our 
resolution capabilities to use dimensional “real” 
values while at the same time found it also useful to 
use non dimensional values. 
 
Comment 13: We agree that the eigenvectors can be 
switched in sign. Our intention in presenting the 
eigenvector components in Table 5 was to highlight 
the directions of the principal axes of the Reynolds 
stress ellipsoid. However, we believe that a more 
accurate assessment of the agreement between 
4DPTV, TPIV, and DES is given by the angles 
between the eigenvectors (the RS ellipsoid principal 
axes) and the mean velocity/vorticity, as shown in 
Table 6. 
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