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XX Preface

knowledge of probability theory, and consequently the necessary material is
provided in the text (e.g., Sections 3.2-3.5).

For a less demanding pace, Parts I and II can be covered in two semesters
— there is ample material. Alternatively, if a coverage of modelling is not
required, Part I by itself provides a reasonably complete introduction to
turbulent flows.

Many of the exercises ask the reader to ‘show that ...,” and thereby intro-
duce additional results and observations. Consequently, it is recommended
that all the exercises be read, even if they are not performed. The book is
designed to be a self-contained text, but sufficient references are given to
provide an entry into the research literature.

However much care is taken in the preparation of a book of this nature,
it is inevitable that there will be errors in the first printing. A list of known
corrections is given at http://mae.cornell.edu/ pope/TurbulentFlows.
The reader is asked to report any further corrections to the author at
pope@nmae.cornell. edu.

I am profoundly grateful to many people for their help in the prepa-
ration of this work. For their support and technical input I thank my
colleagues at Cornell, David Caughey, Sidney Leibovich, John Lumley, Di-
etmar Rempfer, and Zellman Warhaft. For their valuable suggestions based
on reading draft chapters, I am grateful to Peter Bradshaw, Paul Durbin,
Rodney Fox, Kemo Hanjalic, Charles Meneveau, Robert Moser, Blair Perot,
Ugo Piomelli, P. K. Yeung, and Norman Zabusky. Similarly, I am grateful
to the following Cornell graduates for their feedback on drafts of the book:
Bertrand Delarue, Thomas Dreeben, Matthew Overholt, Paul Van Slooten,
Jun Xu, Cem Albukrek, Dawn Chamberlain, Timothy Fisher, Laurent Myd-
larski, Gad Reinhorn, Shankar Subramaniam, and Walter Welton. The first
five mentioned are also thanked for their assistance in producing the figures.
Most of the typescript was prepared by June Meyermann, whose patience,
accuracy, and enthusiasm are greatly appreciated. The accuracy of the bib-
liography has been much improved by the careful checking performed by
Sarah Pope. Above all, I wish to thank my wife, Linda, for her patience,
support, and encouragement during this project and over the years.



Nomenclature

The notation used is given here in the following order: upper-case Roman,
lower-case Roman, upper-case Greek, lower-case Greek, superscripts, sub-
scripts, symbols, and abbreviations. Then the symbols O( ), o( ), and ~ that
are used to denote the order of a quantity are explained.

Upper-case Roman

At van Driest constant (Eq. (7.145))

A control surface bounding V

B log-law constant (Eq. (7.43))

B, constant in the velocity-defect law (Eq. (7.50))

B, Loitsyanskii integral (Eq. (6.92))

B, log-law constant for fully-rough walls (Eq. (7.120))

B(s/s,) log-law constant for rough walls (Eq. (7.121))

C Kolmogorov constant related to E(x) (Eq. (6.16))

Co coefficient in the Langevin equation (Egs. (12.26) and
(12.100))

o Kolmogorov constant related to Eq;(x;) (Eq. (6.228))

C Kolmogorov constant related to Ex(x;) (Eq. (6.231))

& - Kolmogorov constant related to D;; (Eq. (6.30))

G constant in the IP model (Eq. (11.129))

& constant in the model equation for ©* (Eq. (12.194))

Ce LES dissipation coefficient (Eq. (13.285))

Ce skin-friction coefficient (z,,/(1pU?))

Cr Rotta constant (Eq. (11.24))

Cs Smagorinsky coefficient (Eq. (13.128))

G constant in Reynolds-stress transport models

(Eq. (11.147))



XX11 Nomenclature

C, constant in the model equation for ¢ (Eq. (11.150))

C., Ca2 constants in the model equation for ¢ (Eq. (10.53))

C, turbulent-viscosity constant in the k—¢ model
(Eq. (10.47))

C, LES eddy-viscosity coefficient (Eq. (13.286))

Cy constant in the IEM mixing model (Eq. (12.326))

Ca constant in the definition of Q (Eq. (12.193))

Coi, Co2 constants in the model equation for @ (Eq. (10.93))

Co Kolmogorov constant (Eq. (12.96))

c; cross stress (Eq. (13.101))

D pipe diameter

D;; second-order velocity structure function (Eq. (6.23))

Dy (s) second-order Lagrangian structure function (Eq. (12.95))

D;; longitudinal second-order velocity structure function

Dy longitudinal third-order velocity structure function
(Eq. (6.86))

Dyy transverse second-order velocity structure function

D,(r) nth-order longitudinal velocity structure function
(Eq. (6.304))

D/Dt substantial derivative (¢/0t + U - V)

D/Dt mean substantial derivative (0/0t + (U) - V)

D/Dt substantial derivative based on filtered velocity

E Cartesian coordinate system with basis vectors e;

E Cartesian coordinate system with basis vectors €;

E(x,1) kinetic energy (U - U)

E(x,1) kinetic energy of the mean flow (3(U) - (U))

E(x) kinetic energy flow rate of the mean flow

E(x) energy-spectrum function (Eq. (3.166))

E;;(xy) one-dimensional energy spectrum (Eq. (6.206))

E(x) energy-spectrum function of filtered velocity (Eq. (13.62))

E(w) frequency spectrum (defined for positive frequencies,
Eq. (3.140))

E () frequency spectrum (defined for positive and negative
frequencies, Eq. (E.31))

F determinant of the normalized Reynolds stress
(Eq. (11.52)) _

F(V) cumulative distribution function (CDF) of U (Eq. (3.7))

Fp(y/d) velocity-defect law (Eq. (7.46))

F 1 Fourier transform (Eq. (D.1))

P

inverse Fourier transform (Eq. (D.2))



Nomenciature

AALLL

Fourier integral operator (Eq. (6.116))
coeflicient in the GLM (Eqs. (12.26) and (12.110))
LES filter function

LES filter transfer function

shape factor (6°/0)

Heaviside function (Eq. (C.33))

identity matrix

indicator function for intermittency (Eg. (5.299))
principal invariants of the second-order tensor s
(Egs. (B.31)—-(B.33))

kurtosis of the longitudinal velocity derivative
kurtosis of ¢

Knudsen number

modified Bessel function of the second kind
lengthscale (k% /€)

lengthscale (u” /¢)

longitudinal integral lengthscale (Eq. (3.161))
lateral integral lengthscale (Eq. (6.48))
characteristic lengthscale of the flow

length of side of cube in physical space

resolved stress (Eq. (13.252))

Leonard stress (Eq. (13.100))

momentum flow rate of the mean flow

scaled composite rate-of-strain tensor (Eq. (13.255))

normalized nth moment of the longitudinal velocity
derivative (Eq. (6.303))

Mach number

normal distribution with mean p and variance ¢’
quantity of big order A

quantity of little order A

pressure (Eq. (2.32))

probability of event A

particle pressure (Eq. (12.225))

projection tensor (Eq. (6.133))

production: rate of production of turbulent kinetic
energy (Eq. (5.133))

rate of production of Reynolds stress (Eq. (7.179))

rate of production of residual kinetic energy
(Eq. (13.123))
rate of production of scalar variance (Eq. (5.282))



XX1V Nomenclature

R pipe radius

R(s) autocovariance (Eq. (3.134))

Rij(r,x;1) two-point velocity correlation (Eq. (3.160))

R;(x) Fourier coefficient of two-point velocity correlation
(Eq. (6.152))

Ry turbulent Reynolds number (Eq. (5.85))

R; Taylor-scale Reynolds number (Eq. (6.63))

Re Reynolds number

Re Reynolds number (2U6/v)

Reg Reynolds number (Uyd/v)

Re; turbulence Reynolds number (k'/2L/v = k?/(ev))

Ret turbulence Reynolds number (¢'L;;/v)

Re, Reynolds number (Uyx/v)

Res Reynolds number (Uyd/v)

Re;s- Reynolds number (Uyd*/v)

Rey Reynolds number (Uyf/v)

Re, Reynolds number based on friction velocity (u.0/v)

Rij pressure—rate-of-strain tensor (Eq. (7.187))

R SGS Reynolds stress (Eq. (13.102))

Rff) redistribution term (anisotropic part of II;;, Eq. (11.6))

Rii(v,x,1) conditional pressure-rate-of-strain tensor (Eq. (12.20))

’R,fj’) redistribution term used in elliptic-relaxation model
(Eq. (11.198))

RY rapid pressure-rate-of-strain tensor (Eq. (11.13))

’R,S].) slow pressure-rate-of-strain tensor

S spreading rate of a free shear flow

S velocity-derivative skewness (Eq. (6.85))

S(¢) chemical source term (Eq. (12.321))

S’ velocity structure function skewness (Eq. (6.89))

S rate-of-strain tensor (3(0U;/dx; + 0U;/0x;))

Sij mean rate-of-strain tensor (1(8(U;)/0x; + o(U;)/0x;))

§fj normalized mean rate-of-strain tensor ((k/¢)S;;)

E—ij filtered rate-of-strain tensor (Eq. (13.73))

Sij doubly filtered rate-of-strain tensor

Si(r, t) two-point triple velocity correlation (Eq. (6.72))

S¢ skewness of ¢

So mean source of turbulence frequency (Eq. (12.184))

S

characteristic mean strain rate (25’175’[1)5 (S =0(U,)/ox,
in simple shear flow)



T
TY
TS
TL
T(4)
T

Tor

U(r)
U(x,t)
U(x,y,z2)
Ux,r,0)

Ut
U

Nomenclature XXV

filtered rate-of-strain invariant (2§[j§ij)%

doubly filtered rate-of-strain invariant (2S,;S,;)z
sphere in wavenumber space of radius «

principal mean strain rate: largest eigenvalue of S;
time interval

turbulent timescale defined by Eq. (11.163)

rate of energy transfer to Fourier mode of wavenumber
k from other modes (Eq. 6.162)

flux of Reynolds stress (Eq. (7.195))

flux of Reynolds stress due to fluctuating pressure
(Eq. (7.193))

isotropic flux of Reynolds stress due to fluctuating
pressure (Eq. (11.140))

flux of Reynolds stress due to turbulent convection
(<ukuiuj>)

diffusive flux of Reynolds stress (Eq. (7.196))
Lagrangian integral timescale (Eq. (12.93))

rate of transfer of energy from eddies larger than ¢ to
those smaller than ¢

rate of transfer of energy from large eddies to small
eddies

rate of transfer of energy into the dissipation range
(¢ < fpy) from larger scales

random process

Eulerian velocity

x component of velocity

x component of velocity

bulk velocity in channel (Eq. (7.3)) and pipe flow
(Eq. (7.94))

fluid-particle velocity

model for the fluid-particle velocity

filtered (resolved) velocity field

mean centerline velocity in channel and pipe flow
mean centerline velocity in a jet

freestream velocity

characteristic convective velocity

jet-nozzle velocity

velocity of high-speed stream in a mixing layer
velocity of low-speed stream in a mixing layer
characteristic velocity difference



Nomenclature

u

Vv

Vv
V(x,r,0)
Vix,y,2)
1%

W(t)
W)
W(x,r,0)
W(x,y,z)
Xt Y)

X'
Y

e(t)

é;

ro

i f
f(r,1)
f(v)
fV;x,1)
f'(V;x,1)
f(Vix,1)
[ (Vix;t)
f(V;x,t)
[V, 0;x,0)
FV s x,1)
fZII(VZIVl)

characteristic velocity scale of the flow

sample space variable corresponding to U

sample space variable corresponding to velocity U
r component of velocity

y component of velocity

control volume in physical space bounded by A
Wiener process

vector-valued Wiener process

0 component of velocity

z component of velocity

fluid-particle position: position at time ¢ of fluid particle
that is at Y at the reference time t,

model for fluid-particle position (Eq. (12.108))
fluid particle position at the reference time ¢,

Lower-case Roman

drift coefficient of a diffusion process (Eq. (J.27))
anisotropic Reynolds stresses ((uu;) — %k&,j)
direction cosines (Eq. (A.11))

LES filter constant (Eq. (13.77))

diffusion coefficient of a diffusion process (Eq. (J.27))
normalized Reynolds-stress anisotropy (a;;/(2k))
skin-friction coefficient (z,,/(1pU3))

Smagorinsky coefficient (Eq. (13.253))

jet-nozzle diameter

unit wavevector (Eq. (11.84))

unit vector in the i-coordinate direction

friction factor (Eq. (7.97))

self-similar mean axial velocity profile

longitudinal velocity autocorrelation function (Eq. (6.45))
probability density function (PDF) of U (Eq. (3.14))
Eulerian PDF of velocity (Eq. (3.153))

fine-grained Eulerian PDF of velocity (Eq. (H.1))
modelled Eulerian PDF of velocity (Eq. (12.116))
conditional PDF of particle velocity (Eq. (12.205))
filtered density function (Eq. (13.287))

joint PDF of velocity and turbulence frequency
velocity-composition joint PDF

PDF of U, conditional on U; = V; (Eq. (3.95))



fi(V,x;tY)
fitV,x;1)
fuly;x,0)
fr(w;x,t)
fw(y™)
fx(x;t]Y)
Fx(x50)
fu
fo(w;x,1)
fol(0;x,1)
g 8

g

g

g(r,1)
g(v;x,1)
h, h

h

k

k(r,t)

p(x, 1)
p'(x,1)

Nomenclature XXVil

Lagrangian velocity—position joint PDF (Eq. (12.76))
joint PDF of U™(r) and X' (z)

non-turbulent conditional PDF of scalar ¢(x, )
turbulent conditional PDF of scalar ¢(x, )

law of the wall (Eq. (7.37))

PDF of fluid-particle position

PDF of X'(t)

damping function in k-¢ model (Eq. (11.155))

PDF of scalar ¢(x,1)

PDF of turbulence frequency

self-similar shear-stress profile in a free shear flow
gravitational acceleration

gravitational force per unit mass

transverse velocity autocorrelation function (Eq. (6.45))
Eulerian PDF of the fluctuating velocity
self-similar mean lateral velocity profile

grid spacing

turbulent kinetic energy (3 (u - u))

longitudinal two-point triple correlation (Eq. (6.73))
residual kinetic energy (Eq. (13.92))

turbulent kinetic energy in the wavenumber range
(Kaa Kb)

lengthscale defined as vr/u

lengthscale

characteristic eddy size

lengthscale of the largest eddies

demarcation lengthscale between the dissipation range
(¢ < £p1) and the inertial subrange (¢ > /py)

demarcation lengthscale between the energy-containing
range of eddies (¢ > fg;) and smaller eddies (¢ < fg;)

mixing length (Eq. (7.91))

mixing length in wall units (¢,,/9,)

Smagorinsky lengthscale (Eq. (13.128))

distance between x and the nearest solid surface
mass flow rate of the mean flow

unit normal vector

small order / (Eq. (J.34))

exponent in power-law spectrum (Eq. (G.5))
modified pressure

fluctuating (modified) pressure
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Nomenclature

p(h)(x, t)
p(x,1)
p(x, 1)
po(x)
pw(x)

q

r

r1/2(x)

u(x,t)
a(k,t)

u'(x,1)
Up(x)

Yo.(x)

Yi2(x)
Yp

harmonic pressure (Eq. (2.49))

rapid pressure (Eq. (11.11))

slow pressure (Eq. (11.12))

freestream pressure

wall pressure

exponent in power-law structure function (Eq. (G.6))
radial coordinate

half-width of jet or wake

time interval

lengthscale of wall roughness

fluctuating rate-of-strain tensor (g(aui/ax, + 0u;/0x;))
time

x component of fluctuating velocity
characteristic velocity of an eddy of size ¢
fluctuating velocity

Fourier coefficient of velocity (Eq. (6.102))

r.m.s. velocity .
fluctuating component of particle velocity (Eq. (12.207))
mean velocity normalized by the friction velocity
residual (SGS) velocity field (Eq. (13.3))

r.m.s. axial velocity

velocity scale of the largest eddies

propagation velocity of the viscous superlayer
Kolmogorov velocity (Eq. (5.151))

friction velocity (y/1,/v)

y or r component of fluctuating velocity

sample space variable corresponding to u

z or § component of fluctuating velocity

law of the wake function (Eq. (7.149))

position

Cartesian or polar cylindrical coordinate

virtual origin

Cartesian coordinate

distance from the wall normalized by the viscous
lengthscale, §,

cross-stream location in mixing layer (also yyo(x) etc.,
see Eq. (5.203))

half-width of jet or wake
distance from the wall at which wall functions are
applied
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Ve

B

half-width of scalar profile
Cartesian coordinate

Upper-case Greek

molecular diffusivity

gamma function (Eq. (3.67))

effective diffusivity (I't + T')

turbulent diffusivity (Eq. (4.42))

filter width

grid filter width in the dynamic model

test filter width in the dynamic model
effective width of combined test and grid filters
(Eq. (13.247))

temporal increment operator (Eq. (J.4))

filter width in direction i

longitudinal velocity increment (Eq. (6.305))
wake-strength parameter (Eq. (7.148))
velocity—pressure-gradient tensor (Eq. (7.180))

universal velocity-gradient function for channel flow
(Eq. (7.31))

kinetic energy of Fourier mode with wavenumber s
(Eq. (6.103))

velocity-spectrum tensor (Eq. (3.163))

gravitational potential (g = —V¥)

characteristic function (Eq. (I.1))

characteristic mean rotation rate (2€2;;€3;)"/?
conditional mean turbulence frequency (Eq. (12.193))
rate-of-rotation tensor (3(0U;/0x; — dU;/0x;))

mean rate-of-rotation tensor (3(6(U;)/dx; — d(U;)/0x;))
normalized mean rate-of-rotation tensor ((k/&)<Y;)
rate of rotation of coordinate axes (Eq. (2.97))

Lower-case Greek

constant in the exponential spectrum (Eq. (6.253))
intermittency factor (Eq. (5.300))

half-height of channel

Dirac delta function

characteristic flow width
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o(x) boundary-layer thickness

6" (x) displacement thickness

di Kronecker delta (Eq. (A.1))

Ot Kronecker delta defined by Eq. (6.111)

S, viscous lengthscale (Eq. (7.26))

€ error

e rate of dissipation of turbulent kinetic energy (2v(s,;s;;))

_ c e ou; Ou;

f pseudo-dissipation (v(a; a;))

E(xarcy) dissipation in the wavenumber range (,, k)

& instantaneous dissipation rate (2vs;;s;;)

& one-dimensional surrogate for & (Eq. (6.314))
e ou; Ouy

&ij dissipation tensor 2v(5x—k 5>Z>>

Eijk alternating symbol (Eq. (A.56))

&;(v, x,1) conditional dissipation tensor (Eq. (12.21))

eg(p, x, 1) conditional scalar dissipation rate (Eq. ( 12.346))

& average of ¢ over volume of radius r (Eq. (6.313))

g one-dimensional surrogate for ¢, (Eq. (6.315))

&4 scalar dissipation rate (Eq. (5.283))

{n nth-order structure function exponent (Eq. (6.307))

7 Kolmogorov lengthscale (Eq. (5.149))

7 normalized lateral coordinate in free shear flows

7 invariant of the Reynolds-stress anisotropy tensor

(Eq. (11.28))

7] circumferential coordinate

0 sample-space variable corresponding to @*

f(x) displacement thickness (Eq. (7.127))

3 specific volume (9 = 1/p)

K von Karman constant (Eq. (7.43))

K wavenumber

K wavenumber vector

k(1) ) time-dependent wavenumber vector (Eq. (11.80))

Ko lowest wavenumber

Ke filter cutoff wavenumber (x, = n/A)

Kp1 demarcation wavenumber between the dissipation range

(x > xpy) and the inertial subrange (x < xp;)
Kgj demarcation wavenumber between the energy-containing

range (k < kgp) and the inertial subrange (x > xg)
A mean free path



Nomenclature XXX1

S N
9 =

=

=

=T ERT R R

P12
Puv

longitudinal Taylor microscale (Eq. (6.53))
transverse Taylor microscale (Eq. (6.57))

viscosity

internal intermittency exponent (Eq. (6.317))

mean of a distribution

nth central moment (Eq. (3.25))

standardized nth central moment (Eq. (3.37))
kinematic viscosity (v = u/p)

effective viscosity (vr + v)

residual (SGS) eddy viscosity (Eq. (13.127))
turbulent viscosity (Eq. (4.45))

normalized lateral coordinate in free shear flows
invariant of the Reynolds-stress anisotropy tensor
(Eq. (11.29))

density

autocorrelation function (Eq. (3.135))

correlation coefficient between u; and u, (Eq. (3.93))
correlation coefficient between u and v (Eq. (3.93))
standard deviation

Prandtl number

turbulent Prandtl number for kinetic energy (Eq. (10.41))
turbulent Prandtl number (vy/T't)

r.m.s. fluid-particle dispersion (Eq. (12.149))
turbulent Prandtl number for dissipation (Eq. (10.53))
turbulence timescale (k/¢)

integral timescale (Eq. (3.139))

characteristic timescale of an eddy of size ¢

total shear stress in simple shear flow (Eq. (7.10))
timescale of largest eddies (14/4;)

stress tensor (Eq. (2.32))

residual (SGS) stress tensor (Eq. (13.90))
deviatoric residual (SGS) stress tensor (Eq. (13.93))
wall shear stress

Kolmogorov timescale (Eq. (5.150))

scalar timescale ((¢?)/e4)

conserved passive scalar

self-similar profile of a conserved passive scalar
sample-space variable corresponding to ¢

Stokes stream function (Eq. (5.86))

frequency



w(x, 1)

(1)

.

ad
= +

S 00O
Z-—a~ -

=

det(A)

3(z)

turbulence frequency &/k
vorticity (o =V x U)
enstrophy (0’ = o * @)

model for turbulence frequency

Superscripts

complex conjugate of ¢

indicates Lagrangian variable (Eq. (2.9))
indicates Fourier coefficient at wavenumber x of
function ¢(x) (Eq. (6.113))

indicates standardized random variable or PDF
rate of change of ¢ (¢ = d¢/dr)

fluctuating component (¢’ = ¢ — (¢P))
conditional turbulent r.m.s. of ¢ (Eq. (5.304))
conditional non-turbulent r.m.s. of ¢

derivative (f'(x) = df(x)/dx)

residual (from filtering, Eq. (13.3))

component of v(x) parallel to x (Eq. (6.129))
component of v(x) perpendicular to x (Eq. (6.131))
transpose of A4

filtered quantity (filter width A or A)

filtered quantity (filter width é)

filtered quantity (filter width A)

Subscripts

volume average of Q(x) over a cube of side £

(Eq. (3.175))

mean of Q over an ensemble of N samples (Eq. (3.108))
non-turbulent conditional mean of Q

quantity evaluated at y, in wall functions

time average of Q(r) over time interval T (Eq. (3.173))
turbulent conditional mean of Q

quantity evaluated at y

Symbols

determinant of 4
imaginary part of z
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k0
max(a, b)
min(a, b)
R(z)
sdev(U)
trace(A)
var(U)
\Y

V-

Vx

VZ

( )dS(r)

Q QX

- R
lle
RN

ASM

CFD

DFT

DNS

FFT

GLM

IEM

Lid.

IP

LES
LES-NWM
LES-NWR
LIPM
LMSE
LRR

PDF
POD
RANS

Nomenclature XX X111

the limit as the positive quantity 4 tends to zero

the greater of a and b

the lesser of a and b

real part of z

standard deviation of U (Eq. (3.24))
trace of tensor 4 (Eq. (B.3))
variance of U (Eq. (3.23))
gradient operator (Eq. (A.48))
divergence operator (Eq. (A.52))
curl operator (Eq. (A.60))
Laplacian operator (Eq. (A.53))
vector cross product (Eq. (A.57))

integral over the surface of the sphere of radius r

mean or expectation of Q

mean of Q conditional on U =V (Eq. (3.97))
the random variable U has the distribution f
f varies as (or scales with) g

Abbreviations

algebraic stress model

computational fluid dynamics

discrete Fourier transform

direct numerical simulation

fast Fourier transform

generalized Langevin model

interaction by exchange with the mean
independent and identically distributed
isotropization of production

large-eddy simulation

LES with near-wall modelling

LES with near-wall resolution

Lagrangian isotropization of production model
linear mean-square estimation

Reynolds-stress model of Launder, Reece, and Rodi
(1975)

probability density function

proper orthogonal decomposition
Reynolds-averaged Navier-Stokes



XXX1V Nomenclature

RDT rapid distortion theory

r.m.s. root-mean square

SGS subgrid scale

SLM simplified Langevin model

SSG Reynolds-stress model of Speziale, Sarkar, and Gatski
(1991)

VLES very-large-eddy simulation

Use of symbols for order and scaling

The statement that ‘the variable f is of order g’ has different meanings
depending on the context and the type of ‘order’ implied. The symbols O(h)
(read ‘big order h’ or ‘big O of k) and o(h) (read ‘little order h’ or ‘little O
of #’) indicate quantities, dependent on h, such that

lim % = A4, for |[A]| < oo,
=0 h

._o(h)
= =0

Thus, for example, the Taylor series for a function f(x) can be written

f(x+h) = f(x) + hf'(x) + O(K?)
= f(x) + hf'(x) + o(h).

In the expression f(h) ~ h?, the symbol ~ can be read ‘varies as’ or ‘scales
with’, and it indicates that the quantity f(h)/h? is approximately constant
(possibly over a limited range of 4). In some contexts this type of relation is
also stated as ‘f(h) is of order h?’: for example, the FFT of N data points
can be computed in of order Nlog N operations.

A statement such as ‘f is of order 100’ is used to indicate the approximate
magnitude of f to the nearest power of ten. Thus, in this case, the value of
f is roughly between 30 and 300.
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Introduction

I.I The nature of turbulent flows

There are many opportunities to observe turbulent flows in our everyday
surroundings, whether it be smoke from a chimney, water in a river or
waterfall, or the buffeting of a strong wind. In observing a waterfall, we
immediately see that the flow is unsteady, irregular, seemingly random and
chaotic, and surely the motion of every eddy or droplet is unpredictable. In
the plume formed by a solid rocket motor (see Fig. 1.1), turbulent motions
of many scales can be observed, from eddies and bulges comparable in size
to the width of the plume, to the smallest scales the camera can resolve. The
features mentioned in these two examples are common to all turbulent flows.

More detailed and careful observations can be made in laboratory exper-
iments. Figure 1.2 shows planar images of a turbulent jet at two different
Reynolds numbers. Again, the concentration fields are irregular, and a large
range of length scales can be observed.

As implied by the above discussion, an essential feature of turbulent flows
is that the fluid velocity field varies significantly and irregularly in both
position and time. The velocity field (which is properly introduced in Section
2.1) is denoted by Ul(x,t), where x is the position and ¢ is time.

Figure 1.3 shows the time history U,(t) of the axial component of velocity
measured on the centerline of a turbulent jet (similar to that shown in
Fig. 1.2). The horizontal line (in Fig. 1.3) shows the mean velocity denoted
by (U,), and defined in Section 3.2. It may be observed that the velocity
U,(r) displays significant fluctuations (about 25% of (U,)), and that, far
from being periodic, the time history exhibits variations on a wide range of
timescales. Very importantly, we observe that U,(t) and its mean (U,) are in
some sense ‘stable’: huge variations in U,(t) are not observed; neither does
U,(r) spend long periods of time near values different than (U,).

3



Fig. 1.1. A photograph of the turbulent plume from the ground test of a Titan IV
rocket motor. The nozzle’s exit diameter is 3 m, the estimated plume height is 1,500 m,
and the estimated Reynolds number is 200 x 10%. For more details see Mungal and
Hollingsworth (1989). With permission of San Jose Mercury & News.

Figure 1.4 shows the profile of the mean velocity (U;) measured in a
similar turbulent jet as a function of the cross-stream coordinate x,. In
marked contrast to the velocity U,, the mean velocity (U;) has a smooth
profile, with no fine structure. Indeed, the shape of the profile is little different
than that of a laminar jet.

In engineering applications turbulent flows are prevalent, but less easily
seen. In the processing of liquids or gases with pumps, compressors, pipe
lines, etc., the flows are generally turbulent. Similarly the flows around
vehicles — e.g., airplanes, automobiles, ships, and submarines — are turbulent.
The mixing of fuel and air in engines, boilers, and furnaces, and the mixing
of the reactants in chemical reactors take place in turbulent flows.
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Fig. 1.2. Planar images of concentration in a turbulent jet: (a) Re = 5,000 and
(b) Re = 20,000. From Dahm and Dimotakis (1990) .

U,
(ms—1*

0.0 0.1 0.2 0.3
t(s)

Fig. 1.3. The time history of the axial component of velocity U,(t) on the centerline
of a turbulent jet. From the experiment of Tong and Warhaft (1995).

An important characteristic of turbulence is its ability to transport and
mix fluid much more effectively than a comparable laminar flow. This is well
demonstrated by an experiment first reported by Osborne Reynolds (1883).
Dye is steadily injected on the centerline of a long pipe in which water is
flowing. As Reynolds (1894) later established, this flow is characterized by a
single non-dimensional parameter, now known as the Reynolds number Re.
In general, it is defined by Re = UUL/v, where U and L are characteristic



w)
{Upo

0.0 : *
0.2 0.0 0.2

x2/x1

Fig. 1.4. The mean axial velocity profile in a turbulent jet. The mean velocity (Uy)
is normalized by its value on the centerline, {Uy)g; and the cross-stream (radial)
coordinate x, is normalized by the distance from the nozzle x;. The Reynolds number
is 95,500. Adapted from Hussein, Capp, and George (1994).

velocity and length scales of the flow, and v is the kinematic viscosity of the
fluid. (For pipe flow, ¢/ and L are taken to be the area-averaged axial velocity
and the pipe diameter, respectively.) In Reynolds’ pipe-flow experiment, if
Re is less than about 2,300, the flow is laminar ~ the fluid velocity does not
change with time, and all streamlines are parallel to the axis of the pipe. In
this (laminar) case, the dye injected on the centerline forms a long streak
that increases in diameter only slightly with downstream distance. If, on the
other hand, Re exceeds about 4,000, then the flow is turbulent.! Close to the
injector, the dye streak is jiggled about by the turbulent motion; it becomes
progressively less distinct with downstream distance; and eventually mixing
with the surrounding water reduces the peak dye concentration to the extent
that it is no longer visible.

(Visualizations from a reproduction of Reynolds’ experiment, and from
other canonical turbulent flows, are contained in Van Dyke (1982). There is
great educational value in studying this collection of photographs.)

The effectiveness of turbulence for transporting and mixing fluids is of
prime importance in many applications. When different fluid streams are
brought together to mix, it is generally desirable for this mixing to take
place as rapidly as possible. This is certainly the case for pollutant streams

! As the Reynolds number is increased, the transition from laminar to turbulent flow occurs over a
range of Re, and this range depends on the details of the experiment.
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released into the atmosphere or into bodies of water, and for the mixing of
different reactants in combustion devices and chemical reactors.

Turbulence is also effective at ‘mixing’ the momentum of the fluid. As a
consequence, on aircraft’s wing and ships’ hulls the wall shear stress (and
hence the drag) is much larger than it would be if the flow were laminar.
Similarly, compared with laminar flow, rates of heat and mass transfer at
solid—fluid and liquid—gas interfaces are much enhanced in turbulent flows.

The major motivation for the study of turbulent flows is the combination
of the three preceding observations: the vast majority of flows is turbulent;
the transport and mixing of matter, momentum, and heat in flows is of great
practical importance; and turbulence greatly enhances the rates of these
processes.

[.2 The study of turbulent flows

Many different techniques have been used to address many different ques-
tions concerning turbulence and turbulent flows. The first step toward pro-
viding a categorization of these studies is to distinguish between small-scale
turbulence and the large-scale motions in turbulent flows.

As is discussed in detail in Chapter 6, at high Reynolds number there is a
separation of scales. The large-scale motions are strongly influenced by the
geometry of the flow (i.e., by the boundary conditions), and they control the
transport and mixing. The behavior of the small-scale motions, on the other
hand, is determined almost entirely by the rate at which they receive energy
from the large scales, and by the viscosity. Hence these small-scale motions
have a universal character, independent of the flow geometry. It is natural
to ask what the characteristics of the small-scale motions are. Can they be
predicted from the equations governing fluid motion? These are questions
of turbulence theory, which are addressed in the books of Batchelor (1953),
Monin and Yaglom (1975), Panchev (1971), Lesieur (1990), McComb (1990),
and others, and that are touched on only slightly in this book (in Chapter
6).

The focus of this book is on turbulent flows, studies of which can be
divided into three categories.

(i) Discovery: experimental (or simulation) studies aimed at providing
qualitative or quantitative information about particular flows.

(i) Modelling: theoretical (or modelling) studies, aimed at developing
tractable mathematical models that can accurately predict properties
of turbulent flows.
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(iii) Control: studies (usually involving both experimental and theoretical
components) aimed at manipulating or controlling the flow or the
turbulence in a beneficial way — for example, changing the boundary
geometry to enhance mixing; or using active control to reduce drag.

The remainder of Part I of this book is based primarily on studies in the
first category, the objective being to develop in the reader an understanding
for the important characteristics of simple turbulent flows, of the dominant
physical processes, and how they are related to the equations of fluid motion.
The description of turbulent flows contained in Part I is not comprehensive:
additional material can be found in the books of Monin and Yaglom (1971),
Townsend (1976), Hinze (1975), and Schlichting (1979).

For studies in the second category, that aim at developing tractable math-
ematical models, the word ‘tractable’ is crucial. For fluid flows, be they
laminar or turbulent, the governing laws are embodied in the Navier-Stokes
equations, which have been known for over a century. (These equations
are reviewed in Chapter 2.) Considering the diversity and complexity of
fluid flows, it is quite remarkable that the relatively simple Navier—Stokes
equations describe them accurately and in complete detail. However, in the
context of turbulent flows, their power is also their weakness: the equations
describe every detail of the turbulent velocity field from the largest to the
smallest length and time scales. The amount of information contained in the
velocity field is vast, and as a consequence (in general) the direct approach
of solving the Navier-Stokes equations is impossible. So, while the Navier—
Stokes equations accurately describe turbulent flows, they do not provide a
tractable model for them.

The direct approach of solving the Navier-Stokes equations for turbu-
lent flows is called direct numerical simulation (DNS), and is described in
Chapter 9. While DNS is intractable for the high-Reynolds-number flows of
practical interest, it is nevertheless a powerful research tool for investigating
simple turbulent flows at moderate Reynolds numbers. In the description
of wall-bounded flows in Chapter 7, DNS results are used extensively to
investigate the physical processes involved.

For the high-Reynolds-number flows that are prevalent in applications,
the natural alternative is to pursue a statistical approach. That is, to describe
the turbulent flow, not in terms of the velocity U (x, 1), but in terms of some
statistics, the simplest being the mean velocity field (U(x,)). A model based
on such statistics can lead to a tractable set of equations, because statistical
fields vary smoothly (if at all) in position and time. In Chapter 3 we present
the concepts and techniques used in the statistical representation of turbulent
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flow fields; while in Part IT we describe statistical models that can be used to
calculate the properties of turbulent flows. The approaches described include:
turbulent viscosity models, e.g., the k— model (Chapter 10); Reynolds-stress
models (Chapter 11); models based on the probability density function (PDF)
of velocity (Chapter 12); and large-eddy-simulations (LES) (Chapter 13).

The statistical models described in Part II can be used in some studies in
the third category mentioned above — that is, studies aimed at manipulating
or controlling the flow or the turbulence. However, such studies are not
explicitly discussed here. '

A broad range of mathematical techniques is used to describe and model
turbulent flows. Appendices on several of these techniques are provided to
serve as brief tutorials and summaries. The first of these is on Cartesian
tensors, which are used extensively. The reader may wish to review this
material (Appendix A) before proceeding. There are exercises throughout
the book, which provide the reader with the opportunity to practice the
mathematical techniques employed. Most of these exercises also contain
additional results and observations. A list of nomenclature and abbreviations
is provided on page xxi.



2
The equations of fluid motion

In this chapter we briefly review the Navier-Stokes equations which gov-
ern the flow of constant-property Newtonian fluids. More comprehensive
accounts can be found in the texts of Batchelor (1967), Panton (1984), and
Tritton (1988). Two topics that are important in the study of turbulent flows,
that are not extensively discussed in these texts, are the Poisson equation
for pressure (Section 2.5), and the transformation properties of the Navier—
Stokes equations (Section 2.9). The equations of fluid motion are expressed
either in vector notation or in Cartesian tensor notation, which is reviewed
in Appendix A.

2.1 Continuum fluid properties

The idea of treating fluids as continuous media is both natural and familiar.
It is, however, worthwhile to review the continuum hypothesis — that reconciles
the discrete molecular nature of fluids with the continuum view — so as to
avoid confusion when quantities such as ‘fluid particles’ and ‘infinitesimal
material elements’ are introduced.

The length and time scales of molecular motion are extremely small
compared- with human scales. Taking air under atmospheric conditions as
an example, the average spacing between molecules is 3 x 107 m, the mean
free path, 4, is 6 x 10~® m, and the mean time between successive collision
of a molecule is 107'° s. In comparison, the smallest geometric length scale
in a flow, 4, is seldom less than 0.1 mm = 10~* m, which, for flow velocities
up to 100 m s7!, yields a flow timescale larger than 10~° s. Thus, éven for
this example of a flow with small length and time scales, these flow scales
exceed the molecular scales by three or more orders of magnitude.

an
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The separation of the length scales is quantified by the Knudsen number
Kn=i/¢ (2.1)

In the above example, Kn is less than 1073, while in general the continuum
approach is appropriate for Kn < 1.

For very small Kn, because of the separation of scales, there exist interme-
diate length scales £*, such that ¢ is large compared with molecular scales,
yet small compared with flow scales (ie., A < £ < £). Roughly speaking,
the continuum fluid properties can be thought of as the molecular properties
averaged over a volume of size V = 23, Let V, denote a spherical region of
volume V centered on the point x. Then, at time ¢, the fluid’s density p(x,)
is the mass of molecules in V,, divided by V.

Similarly the fluid’s velocity U(x, 1) is the average velocity of the molecules
within V.. Because of the separation of scales, the dependence of the contin-
uum properties on the choice of ¢ is negligible.

(While the approach presented in the previous paragraph is standard (see,
e.g2., Batchelor (1967) and Panton (1984)), as Exercise 2.1 illustrates, more
care is needed to provide a proper definition of the continuum properties in
terms of averaging over a scale £°. In fact, continuum fields are best defined
as expectations of molecular properties, see Chapter 12.)

It is important to appreciate that, once we invoke the continuum hypothe-
sis to obtain continuous fields, such as p(x,t) and U(x,t), we can leave behind
all notions of the discrete molecular nature of the fluid, and molecular scales
cease to be relevant. We can talk meaningfully of ‘the density at x,t, even
though (in the microscopic view) in all likelihood there is no matter at (x,¢).
Similarly, we can consider differences in properties over distances smaller
than molecular scales: indeed we do so when we define gradients,

0 . (1
—p =lim| [p(xl + h’ X2, X3, t) - p(xl’xZ’ X3,t)] . (2'2)
6x1 h—0 h
EXERCISE
2.1 In the flow of an ideal gas, let m?",x(¢) and u”(z) be the mass,

position, and velocity of the ith molecule. As a generalization of the
standard continuum hypothesis, consider the definition

}:.m(")u(")K(lr(")l)
)= =4 2.3
where ) = x» — x, and K(r) is a smooth kernel such as

K(r) = exp(—3r?/£?), (2.4)



with £” being a specified length scale. Show that the velocity gradients
are
OU _ o, mu — UK (" )ry /)

= 2.5
o 5= K (r) 23)

where K'(r) = dK(r)/dr.

(Evidently, the continuum field defined by Eq. (2.3) inherits the
mathematical continuity properties of the kernel. If, as in the standard
treatment, K (r) is piecewise constant, i.e.,

1, ifr<e
_! > =5 2.6
K(r) {Q if r>r, (2:6)

then U(x,t) is piecewise constant, and hence not continuously differ-
entiable.)

2.2 Eulerian and Lagrangian fields

The continuum density and velocity fields, p(x,t) and U(x,t), are Eulerian
fields in that they are indexed by the position x in an inertial frame. The
starting point for the alternative Lagrangian description is the definition of
a fluid particle — which is a continuum concept. By definition, a fluid particle
is a point that moves with the local fluid velocity: X*(¢, Y) denotes the
position at time ¢ of the fluid particle that is located at Y at the specified
fixed reference time o, see Fig. 2.1. Mathematically, the fluid particle position

X’-(r]’Y)T

fo fl t

Fig. 2.1. A sketch of the trajectory X*(r, ¥) of a fluid particle in x-—t space, showing
its position Y at the reference time to. and at a later time ¢,.



2.2 Eulerian and Lagrangian fields 13

X*(1, Y) is defined by two equations. First, the position at the reference time
to is defined to be

X, ¥Y) =Y. 2.7
Second, the equation

%,\H(t, Y)=UX™(1Y),1), (2-8)

expresses the fact that the fluid particle moves with the local fluid velocity.
Given the Eulerian velocity field U(x,t), then, for any Y, Eq. (2.8) can be
integrated backward and forward in time to obtain X*(t, Y) for all ¢.

Lagrangian fields of density and velocity, for example, are defined in terms
of their Eulerian counterparts by

pH(, Y)=p(XT(1, Y),0), (2.9)

U, Y)= UX™(1,Y),1). (2.10)

Note that the Lagrangian fields p* and U* are indexed not by the current
position of the fluid particle, but by its position Y at the reference time z,.
Hence, Y is called the Lagrangian coordinate or the material coordinate.

For fixed Y, X*(¢t, Y) defines a trajectory (in x—t space) that is the fluid-
particle path, and similarly p*(t, Y) is the fluid-particle density. The partial
derivative Op*(t,Y)/0t is the rate of change of density at fixed Y, ie,
following a fluid particle. From Eq. (2.9) we obtain

%P*(t, Y) = ﬁp(X*(t, Y) 1)

0 0
p(x > + —Xi+(t’ Y) (—p(x’t)>
( x=X1(Y) ot axi x=Xt(Y)
0
( B+ Ui(x, 1) =—p(x, f))
xi =Xxt(Y)
( bt ) , 1)
=Xt(Y)
where the material derivative, or substantial derivative, is defined by
D ¢ 0 0

— == = - V. 2.12
D~ ot ' Ox; ar+UV 212)
Thus the rate of change of density following a fluid particle is given by the
partial derivative of the Lagrangian field (ie., dp*/d¢) and by the substantial
derivative of the Eulerian field (i.e., Dp/Dzt).
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Similarly, for fixed ¥, U*(t, Y) is the fluid particle velocity , and

0 D
Ut ,Y)=| =U(xt 2.13
Lurey) (Dt (x ))me) 2.13)

is the rate of change of fluid particle velocity, i.e., the fluid particle accelera-
tion.

A fluid particle is also called a material point and we have seen that it
is defined by its position Y at time f, and by its movement with the local
fluid velocity (Eq. (2.8)). Material lines, surfaces, and volumes are defined
similarly. For example, consider at time ¢, a simple closed surface S, that
encloses the volume V,. The corresponding material surface S(t) is defined
to be coincident with S, at time t,, and by the property that every point of
S(t) moves with the local fluid velocity. Thus S(z) is composed of the fluid
particles X*(z, Y), which at f, compose the surface Sy:

S ={X*t, Y)Y € S} (2.14)

Because a material surface moves with the fluid, the relative velocity between
the surface and the fluid is zero. Consequently a fluid particle cannot cross
a material surface; neither is there a mass flux across a material surface.

EXERCISE
2.2 Consider two fluid particles that, at the reference time ¢, are located
at Y and Y +dY, where dY is an infinitesimal displacement. At time
t, the line between the two particles forms the infinitesimal line element

(=X, Y +dY)— X*(t, Y). (2.15)
Show that s(z) evolves by
. ds

G =8 V)eexriry (2.16)

(Hint: expand U*(t, Y+dY) = U(X™(¢, Y )+s(t), t) in a Taylor series.
Since s is infinitesimal, only the leading-order terms need be retained.)

2.3 The continuity equation

The mass-conservation or continuity equation is
op
o

The derivation and interpretation of this equation in terms of control volumes
and material volumes should be familiar to the reader and are not repeated

+V-(pU)=0. (2.17)
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here. A further useful interpretation is in terms of the specific volume of the
fluid $(x,t) = 1/p(x,t). Manipulation of Eq. (2.17) yields

DIn 3§

Dt

The left-hand side is the logarithmic rate of increase of the specific volume,
while (as Exercises 2.3 and 2.4 show) the dilatation V- U gives the logarithmic
rate of increase of the volume of an infinitesimal material volume. Hence
the continuity equation can be viewed as a consistency condition between
the change of the specific volume following a fluid particle, and the change
in the volume of an infinitesimal material volume element.

In this book we consider constant-density flows (i.e., flows in which p is
independent both of x and of 7). In this case the evolution equation Eq. (2.17)
degenerates to the kinematic condition that the velocity field be solenoidal
or divergence-free:

=V-U. (2.18)

V-U=0. (2.19)

EXERCISES
2.3 Let V(r) be a material volume bounded by the material surface S(r).
Show from geometry that the volume of fluid V(¢) within V(z) evolves

by
dV(t / / U-ndA, (2.20)
S(

where d4 is an area element on S(t), and n is the outward pointing
normal. Use the divergence theorem to obtain

dV(t /// V-Udx (2.21)

Show that, for the infinitesimal volume dV(t) of an infinitesimal
material volume dV,

d
5 ndv()=V-U. (2.22)
2.4 The determinant of the Jacobian
0Xt(t,Y)
= et 2 i 2.23
J(t, Y) det( oY ) (2.23)

gives the volume ratio between an infinitesimal material volume
dV(t) at time ¢, and its volume dV(t,) at time . To first order in
the infinitesimal dz, show that

Xt (to+dr, Y) = Yi+ Ud(Y, 15)dt, (2.24)
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&Xfag;;h,Y):=5U+_(g%%)nmdn (2.25)
J(to+dt,Y) =14 (V- U)y,dt (2.26)
Hence show that
(% InJ{(t, Y)>I=[0 = (V- Uy, (2.27)
25 The volume V(t) defined in Exercise 2.3 can be written

v [ [ ax // /V _Jevay. (228)

Differentiate the first and last expressions in this equation with
respect to time, and compare the result with Eq. (2.21) to obtain

% InJ(t, ¥) = (V- Uyrop) - (2.29)

Hence argue that, in constant-density flows, J(z, Y) is unity.

2.4 The momentum equation

The momentum equation, based on Newton’s second law, relates the fluid
particle acceleration DU /Dr to the surface forces and body forces experi-
enced by the fluid. In general, the surface forces, which are of molecular
origin, are described by the stress tensor 1;;(x,t) — which is symmetric, i.e.,
17;; = 1. The body force of interest is gravity. With P being the gravitational
potential (i.e., the potential energy per unit mass associated with gravity), the
body force per unit mass is

g=-VV. (2.30)

(For a constant gravitational field the potential is ¥ = gz, where g is the
gravitational acceleration, and z is the vertical coordinate.) These forces
cause the fluid to accelerate according to the momentum equation

DUj _ 61,«j oY

Dt ﬁ—x, —f 6xj ’

We now specialize the momentum equation to flows of constant-property

Newtonian fluids — the fundamental class of flows considered in this book.
In this case, the stress tensor is

(2.31)

mg+am)

T (2.32)

Tij =—P(§,j+ﬂ(
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where P is the pressure, and p is the (constant) coefficient of viscosity.
Recalling that (for the constant-density flows considered) the velocity field is
solenoidal (i.e., dU;/0x; = 0), we observe that Eq. (2.32) expresses the stress
as the sum of isotropic (—PJ;;) and deviatoric contributions.

By substituting this expression for the stress tensor (Eq. (2.32)) into the
general momentum equation Eq. (2.31) (and exploiting the facts that p and
u are uniform and that V - U = 0), we obtain the Navier—Stokes equations

DU, U, P Y

= -0 - . 2.
PDr =H 0x;0x;  0Xx; P 0x; (2.33)
Further, defining the modified pressure, p, by
p=P+pY?, (2.34)
this equation simplifies to
DU 1
~ =__Vy VU, 2.3
Dr o P +v (2.35)

where v = u/p is the kinematic viscosity. In summary: the flow of constant-
property Newtonian fluids is governed by the Navier-Stokes equations
Eq. (2.35) together with the solenoidal condition V- U = 0 stemming from
mass conservation.

At a stationary solid wall with unit normal n, the boundary conditions
satisfied by the velocity are the impermeability condition

n-U=0, (2.36)
and the no-slip condition
U—n@n-U)=0, (2.37)

(which together yield U = 0).
It is sometimes useful to consider the hypothetical case of an ideal (inviscid)
fluid, which is defined to have the isotropic stress tensor

Tij = —Pé,'j. (238)

The conservation of momentum is given by the Euler equations

DU 1

- - _ 2.39

B 5 Vp, (2.39)
which follow from Egs. (2.31), (2.34), and (2.38). Because the Euler equations
do not contain second spatial derivatives of velocity, they require different
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boundary conditions than those of the Navier-Stokes equations. At a sta-
tionary solid wall, for example, only the impermeability condition can be
applied, and in general the tangential components of velocity are non-zero.

While it is preferable to obtain the Euler equations (and other equa-
tions derived from them) directly from the definition of 7;; being isotropic
(Eq. (2.38)), it may nevertheless be observed that the Euler equations can
be obtained from the Navier—Stokes equations by setting v to zero. It is
important to appreciate, however, that v = 0 is a singular limit: solutions to
the Navier-Stokes equations in the limit of vanishing viscosity (v — 0) are
different than solutions to the Euler equations. For one thing, even in this
limit, the equations require different boundary conditions.

2.5 The role of pressure

The role of pressure in the (constant-density) Navier—Stokes equations re-
quires further comment. First we observe that isotropic stresses and conser-
vative body forces have the same effect, which is expressed by the modified
pressure gradient. Hence the body force has no effect on the velocity field
and on the modified pressure field. (This is, of course, in contrast to variable-
density flows, in which buoyancy forces can be important.) Henceforth, we
refer to p simply as ‘pressure’.

We may be accustomed to thinking of pressure as a thermodynamic
variable, related to density and temperature by an equation of state. However,
for constant-density flows, there is no connection between pressure and
density, and a different understanding of pressure is required.

To this end, we take the divergence of the Navier-Stokes equations
Eq. (2.35), without assuming the velocity field to be solenoidal, but instead
writing A for the dilatation rate (i.e., A = V - U). The result is

D 2
where
1 oU; oU;
R=—-2vp 212720
P p 3%, % (2.41)

Consider the solution to Eq. (2.40) with initial and boundary conditions
A = 0. The solution is A = 0 if, and only if, R is zero everywhere, which in
turn implies (from Eq. (2.41)) that p satisfies the Poisson equation
ov, U,

P o o (2.42)
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Thus, we conclude that the satisfaction of this Poisson equation is a necessary
and sufficient condition for a solenoidal velocity field to remain solenoidal.
At a stationary, plane solid surface, the Navier—Stokes equations Eq. (2.35)
reduce to
op 0’ U,
on Hon
where n is a coordinate in the wall-normal direction, and U, is the velocity
component normal to the wall. This equation provides a Neumann boundary
condition for the Poisson equation, Eq. (2.42). Given Neumann conditions of
this form, the Poisson equation Eq. (2.42) determines the pressure field p(x, )
(to within a constant) in terms of the velocity field at the same instant of time.
Thus, Vp is uniquely determined by the current velocity field, independent
of the flow’s history.
The solution to the Poisson equation Eq. (2.42) can be written explicitly
in terms of Green’s functions. Consider the Poisson equation

Vif(x) = S(x). (2.44)

(2.43)

in a domain V. The source S(x) can be written

S(x) = /// S(y)d(x — y)dy, (2.45)

where y is a point in V, and §(x — y) is the three-dimensional Dirac delta
function' at y. A solution to the Poisson equation

Vig(xly) = d(x — y) (2.46)

is
1

8(xly) = g (247)

(As implied by the notation, the solution depends both on x and on the
location of the delta function, y.) When it is multiplied by S(y) and integrated
over V, Eq. (2.46) becomes V’f = S (ie., Eq. (2.44)), and hence Eq. (2.47)
becomes a solution:

s = [[[ semswrar =72 [[[ 220 @an

The solution to the Poisson equation for pressure Eq. (2.42) is, therefore,

p oU; 0U; dy
p(x, 1) = p™(x, 1) E ///v (8x, . )yt P (2.49)

! The properties of Dirac delta functions are reviewed in Appendix C.
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where p is a harmonic function (V’p® = 0) dependent on the boundary
conditions. (It is possible to express p™ in terms of surface integrals over the
boundary of V, see e.g., Kellogg (1967).)

2.6

2.7

EXERCISES
Show that (away from the origin)

2

8 _
Vil = e () = 0 (2.50)

A simple numerical method for solving the Navier—Stokes equations
for constant-property flow advances the solution in small time steps
At, starting from the initial condition U(x,0). On the nth step the
numerical solution is denoted by U"(x), which is an approximation
to U(x,n At). Each time step consists of two sub-steps, the first of

which yields an intermediate result U (n+l)(x) defined by

~ 22Uy oury
Uj(‘nH)EU")-i-At(v - un—. (2.51)

0x; 8x1 Eoox,

The second sub-step is
0
U = g — A S ‘¢ (2.52)

where ¢™(x) is a scalar field.

(a) Comment on the connection between Eq. (2.51) and the
Navier-Stokes equations.

(b) Assuming that U" is divergence-free, obtain from Eq (2 51)
an expression (in terms of U™) for the divergence of U H)

(c) Obtain from Eq. (2.52) an expression for the divergence of
U("“).

(d) Hence show that the requirement V- U™ = 0 is satisfied if,
and only if, ¢ (x) satisfies the Poisson equation

au-ouy

Ve = — .
¢ ox; 0Ox

(2.53)

(e) What is the connection between ¢”(x) and the pressure?
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2.6 Conserved passive scalars

In addition to the velocity U(x,t), we consider a conserved passive scalar
denoted by ¢(x,t). In a constant-property flow, the conservation equation
for ¢ is

D¢

— T =TV,
Dr ¢ (2.54)

where T is the (constant and uniform) diffusivity. The scalar ¢ is conserved,
because there is no source or sink term in Eq. (2.54). It is passive because
(by assumption) its value has no effect on material properties (i.e., p, v, and
I'), and hence it has no effect on the flow.

The scalar ¢ can represent various physical properties. It can be a small
excess in temperature — sufficiently small that its effect on material properties
is negligible. In this case I' is the thermal diffusivity, and the ratio v/I is
the Prandtl number, Pr. Alternatively, ¢» can be the concentration of a trace
species, in which case I is the molecular diffusivity, and v/I" is the Schmidt
number, Sc.

An important property of the scalar is its boundedness. If the initial and
boundary values of ¢ lie within a given range

Gmin < @ < Prmax; (2.55)

then ¢(x,t) for all (x,t) also lies in this range: values of ¢ greater than ¢
or less that ¢, cannot occur.

To show this result we examine local maxima in the scalar field. Suppose
that there is a local maximum at ¥ at time ¢, and we choose a coordinate
system such that d°¢/(0x; 0x;) is in principal axes there. The mathematical
properties of a maximum imply that

(Vo)e: =0, (2.56)

and that the second derivatives d°¢/0x], 0°¢/0x3, and 6>¢ /x5 are negative
or zero. Consequently, for their sum, the Laplacian, we have

(V¢)z7 < 0. 2.57)
Then, from the conservation equation for ¢ (Eq. (2.54)), we obtain
D¢ o :
D) \a T =T(Vi)i < 2.58
(Dr ) (at v V¢>h (Vi)ss <O, (2.58)

for every vector V; showing that, following any trajectory from the local
maximum, the value of ¢ does not increase. Consequently, there is no way
in which ¢ can increase beyond the upper bound ¢, imposed by the initial
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and boundary conditions. Obviously, a similar argument applies to the lower
bound, ¢Pmin-

2.7 The vorticity equation

An essential feature of turbulent flows is that they are rotational: that is,
they have non-zero vorticity. The vorticity @(x,t) is the curl of the velocity

w=VxU, (2.59)

and it equals twice the rate of rotation of the fluid at (x, 1).
The equation for the evolution of the vorticity is obtained by taking the
curl of the Navier-Stokes equations Eq. (2.35):

%§=vV%H4wVU. (2.60)

The pressure term (—V x Vp/p) vanishes for constant-density flows.
The equation for the evolution of an infinitesimal line element of material
s(1) (see Eq. (2.16)) is "
ds

— =s5-VU 2.61
dr s ’ ( )

which, apart from the viscous term, is identical to the vorticity equation.
Hence, in inviscid flow, the vorticity vector behaves in the same way as
an infinitesimal material line element (Helmholtz theorem). If the strain
rate produced by the velocity gradients acts to stretch the material line
element aligned with @, then the magnitude of @ increases correspondingly.
This is the phenomenon of vortex stretching, which is an important pro-
cess in turbulent flows, and @ « VU is referred to as the vortex-stretching
term. '

For two-dimensional flows, the vortex-stretching term vanishes, and the
one non-zero component of vorticity evolves as a conserved scalar. Because of
the absence of vortex stretching, two-dimensional turbulence (which can oc-
cur in special circumstances) is qualitatively different than three-dimensional
turbulence.

EXERCISES
2.8 Use suffix notation to verify the relations:

Vo =0, (2.62)

V x V¢ =0, (2.63)
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Vx(VxU)=V(V-U)-VU, (2.64)
Uxo=iVU-U)—U-VU. (2.65)
Are the expressions in Eqs. (2.64) and (2.65) tensors?

2.9 Show that the Navier-Stokes equations (Eq. (2.35)) can be written
in the Stokes form

Yovxorv(w-vsl)owvu. e

Hence obtain Bernoulli’s theorem: for a steady, inviscid, constant-
density flow, the Bernoulli integral,

HE%U-U+§, (2.67)

is constant
(a) along streamlines,
(b) along vortex lines (i.e., lines parallel to @), and
(c) everywhere in irrotational flow (@ = 0).
2.10  Show that the vorticity squared — or enstrophy — w> = o * @ evolves
by
Dw?
Dt

oU; dw; Ow;
= v V20 4+ 20,0; — — 2V — —. 2.68
Y @+ ww} 6xj Y 6xj 8xj ( )

2.8 Rates of strain and rotation

The velocity gradients dU;/0x; are the components of a second-order tensor,
the general properties of which are described in Appendix B. The decom-
position of dU;/dx; into isotropic, symmetric-deviatoric, and antisymmetric
parts is

%% = 1A%, + S; +Qy, (2.69)

J

where the dilatation A = V- U is zero for constant-density flow, S;; is the
symmetric, deviatoric rate-of-strain tensor

170U, 0U;
I i '} 2.70
SU 2 ( 6xj T 8xl~ >, ( )
and €);; is the antisymmetric rate-of-rotation tensor
_1/0U; 0U;
Q= 5(6xj %, ) (2.71)
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It may be observed that the Newtonian stress law (Eq. (2.32)) can be
re-expressed as

1y = —P&; + 2uSy;, (2.72)

showing that the viscous stress depends linearly on the rate of strain, inde-

pendent of the rate of rotation.
The vorticity and the rate of rotation are related by

w; = =€, (2.73)

Q) = —3&rwi, (2.74)

where & is the alternating symbol. Thus Q; and ®; contain the same
information, but (as discussed in Appendix A) €); is a tensor whereas w, is
not.

EXERCISES
2.11  From Eq. (2.16), derive an equation for the evolution of the length of
an infinitesimal material line element. Show that the rate of growth
of the line depends linearly on the rate of strain, and is independent
of the rate of rotation.
2.12  Show that the vorticity equation (Eq. (2.60)) can alternatively be
written

Dw; 3wy,
! =V : S," e 27
Dr ~axox, U 273)

Re-express the source in the Poisson equation for pressure (Eq. (2.42))
in terms of §;; and Q;;.

2.13  In a simple shear flow, all the velocity gradients are zero except for
0U, /0x,. For this case write down the components of S;; and €;; (as
matrices) and of .

2.9 Transformation properties

By studying the behavior of the Navier—Stokes equations when they are
subjected to various transformations, we are able to-deduce important prop-
erties of the fluid flows that they describe. The most important of these
properties are Reynolds number similarity, invariance under fixed rotations
and reflections of the coordinate axes, Galilean invariance, and the lack of
invariance under frame rotations.
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Xy Xy
X2

(a) Reference (b) Change of scale ™" %i
X’ZA X X3
_ \u/x
Xy
X
e 7x| : . . VXI
(c) Shift in space (d) Change in orientation
Xy f’l 1 %
x" .;I l
X
(e) Reflection (f) Uniform motion X
iy R
x|
V) o
(g) Rectilinear acceleration X (h) Frame rotation u

Fig. 2.2. Sketches of experiments used to study the transformation properties of
the Navier-Stokes equations: (a) reference experiment (referred to the E coordinate
system); (b)—(h) other experiments (referred to the E coordinate system).

Consider a particular fluid-mechanics experiment performed in a labora-
tory, and consider a second experiment, that is similar to the first, but differs
in some respect. For example: the second experiment could be performed
at a different time; the apparatus could be placed in a different location; it
could be orientated differently; it could be placed on a moving platform;
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a different fluid could be used; or a second apparatus that is geometrically
similar to the first, but of a different scale, could be constructed. For each
of these differences we can ask whether the velocity fields in the two exper-
iments are similar. That is, are the velocity fields the same when they are
appropriately scaled and referred to appropriate coordinate systems? These
questions can be answered by studying the transformation properties (also
called invariance properties or symmetries) of the Navier—Stokes equations.

These are important considerations in the modelling of turbulent flows. A
model will be qualitatively incorrect unless its transformation properties are
consistent with those of the Navier—Stokes equations.

Figure 2.2(a) is a sketch of the apparatus considered in the first (reference)
experiment. The size of the apparatus is characterized by the length scale £,
and the initial and boundary conditions on the velocity are characterized by
the velocity scale ¢/. The coordinate system (denoted by E, with orthonormal
basis vectors ¢;) has its origin and axes fixed relative to the apparatus, which
is at rest in an inertial frame.

The length scale £ and the velocity scale I/ are used to define the non-
dimensional independent variables

Y=x/L, t=tU/L, (2.76)
ind dependent variables
U&= Ui, pE1 = px.0)/(pl). (2.77)

Jn applying these simple scaling transformations to the continuity equation
:q. (2.19), the Navier-Stokes equations Eq. (2.35), and the Poisson equation
Eq. 2.42), we obtain

oU;

% 0, (2.78)

o0, . oU, 1 U, o

~ U,' / = . & .
G TV %R TReomon ok 2.79)
0% oU; U,
0%,0% 0% 0% (2.80)
‘here the Reynolds number is

Re=UL/v. (2.81)

vidently, the Reynolds number is the only parameter appearing in these
juations.
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Reynolds-number similarity

The experiment shown in Fig. 2.2(b) has a different length scale Ly, velocity
scale Uy, and fluid properties, v, and py,. If the scaled variables are defined in
an analogous way (X = x/L,, U= U /U, etc.) then the boundary conditions
(expressed in terms of U(ic,?)) in two experiments are the same, and the
transformed Navier—Stokes equations are the same as Eqgs. (2.78)—(2.80),
except that Re is replaced by

Reb = Z/{b [:b/"b- (282)

Thus, if the Reynolds numbers are the same (Re = Rey), then the scaled
velocity fields U/(&,7) are also the same, because they are governed by
identical equations with identical initial and boundary conditions. This is the
property of Reynolds-number similarity.

The scaled Euler equations are the same as Eq. (2.79), but with the
omission of the term in Re. The scaled velocity fields U(%,7) given by the
Euler equations are therefore the same, irrespective of Ly, Uy, and py: they
exhibit scale similarity and the Euler equations are said to be invariant with
respect to scale transformations.

Time and space invariance

The simplest invariance properties of the Navier—Stokes equations are their
invariances with respect to shifts in time and space. As depicted in Fig. 2.2(c)
we consider the second experiment performed a time T later than the
reference experiment, with the apparatus translated by an amount X. The
velocity field in the second experiment is referred to the E coordinate system
shown in the Fig. 2.2(c), which has orthonormal basis vectors &. With the
scaled independent variables defined by

i=%/L=(x—X)/L, (2.83)

t=@t—-T)U/L, (2.84)

it is trivial to show that the transformed Navier-Stokes equations are iden-
tical to Eqgs. (2.78)—(2.80).

Rotational and reflectional invariance

Figure 2.2(d) shows the apparatus with a different orientation than that in
the reference experiment; the appropriate E coordinate system is obtained
by a rotation of the reference (E) coordinate axes. Figure 2.2(e) shows a
different apparatus, constructed to be the mirror image of the reference
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apparatus. In this case, the appropriate E coordinate system is obtained by
a reflection of a coordinate axis.

These coordinate transformations — rotations and reflections of the axes —
are precisely those considered in Cartesian tensors (see Appendix A). With
a;; = e;* €, being the direction cosines, the scaled variables are

.§C,~ = )_C,/[: = a,~,~x,~/£, (285)
U, =a;U, (2.86)

It follows immediately from the fact that the Navier-Stokes equations can
be written in Cartesian tensor notation that the transformed equations
are identical to those in the reference system (Eqgs. (2.78)—(2.80)). Thus
the Navier—Stokes equations are invariant with respect to rotations and
reflections of the coordinate axes.

In these considerations it is important to distinguish between two kinds of
‘rotations.” Here we are considering the E coordinate system obtained by a
fixed rotation of the E coordinate axes. By ‘fixed’ we mean that the direction
cosines a; do not depend on time. In contrast, we consider below rotating
frames, so that the direction cosines are time dependent.

The invariance with respect to reflections has a physical significance and
a mathematical consequence which are discussed at greater length in Ap-
pendix A. The physical significance is that the Navier-Stokes equations
contain no bias toward right-handed or left-handed motions. Of course such
bias can occur in a flow — most dramatically in a tornado — but it arises
from the initial or boundary conditions, or from frame rotation, not from
the equations of motion (expressed in an inertial frame).

Any equation written in Cartesian tensor notation ensures invariance
under rotations and reflections of coordinate axes. In contrast, an equation
written in vector notation and involving pseudovectors (e.g., vorticity), or
written in suffix notation using the alternating symbol ¢4, does not ensure
these invariance properties.

Time reversal

Analogous to the reflection of a coordinate axis (e.g, X = —x3), we can
sonsider the reversal of time by defining

t=—tU/L, _ (2.87)

U&,1) = —Ux, 1) /U (2.88)

t is readily shown that the corresponding transformed Navier-Stokes equa-
lons are the same as Egs. (2.78)~(2.80), except that the sign of the viscous
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term (proportional to Re™') is altered. Thus, the Navier-Stokes equations
are not invariant under a time reversal; but the Euler equations are.

Galilean invariance

The remaining topics in this section are concerned with moving frames. We
consider first, as depicted in Fig. 2.2(f), the apparatus moving at a fixed
velocity ¥, so that both coordinate systems (E and E) are in inertial frames.
The transformations between the coordinate systems are

x=x—Vi r=t, (2.89)
Ux,1) = U(x,1)— V. (2.90)

A quantity that is the same in different inertial frames is said to be Galilean
invariant. From Eqgs. (2.89) and (2.90) we obtain

o, au;
=& 29

eu;,  au; ou;

S =Y 2.92

& TR (292)
DU, oU; . éU;, DU,
— = - 293
Dt & U ox; Dt’ (293)

showing that the velocity gradients and the fluid acceleration are Galilean
invariant, whereas the velocity and its partial time derivative are not. Other
quantities that are Galilean invariant include scalars such as ¢(x,t) and
pressure p(x,t), and quantities related to velocity gradients, e.g., S;, Q;;, and
the vorticity .

It is simply shown that the transformed Navier-Stokes equations (written
for U = U/U in terms of & = %/L, etc.) are identical to Egs. (2.78)—(2.80),
and hence are Galilean invariant. Just like all phenomena described by
classical mechanics, the behavior of fluid flows is the same in all inertial
frames.

EXERCISE
2.14  Which of the following are Galilean invariant:

(a) a streamline (which by definition is a curve that is everywhere
parallel to the velocity vector),

(b) a vortex line (which by definition is a curve that is everywhere
parallel to the vorticity vector),
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(c) the helicity, which is defined as U - @

(d) the enstrophy, which is defined as @ - @

(e) material lines, surfaces, and volumes and,

(f) for a scalar field; 0¢/0t, 0¢/0x;, and D¢p/Dr?

Extended Galilean invariance

A peculiar property of the Navier—Stokes equations is that they are invariant
under rectilinear accelerations of the frame. We consider, as depicted in
Fig. 2.2(g), the second experiment being performed on a platform moving
at a variable velocity V(t), but with no rotation of the frame, so that the
coordinate directions (e.g., e; and &;) remain parallel. With the transformed
variables %, 7, and U defined by Egs. (2.89) and (2.90), the transformed
Navier—Stokes equations are

oU, . 80, &80T, 1 ép
Sl _ Py, 294
o VR TV amox pax, A (294)

where the additional term on the right-hand side is the acceleration of the
frame, A = dV /dt. The last two terms can be written

1 0p
P ax,

0
a—_—(P + pXx;A;), (2.95)
Xj

showing that the frame acceleration can be absorbed in a modified pressure.
Consequently the Navier—Stokes equations for the transformed variables

U=U/U, p=(p+px-A)/(pld), (2.96)

are identical to Egs. (2.76)—(2.80). Thus the scaled velocity I/ and modified
pressure p fields in the experiment in the frame with arbitrary rectilinear
acceleration are identical to those in the inertial flame. This is extended
Galilean invariance (which applies only to constant-density flows).

Frame rotation

Finally, we consider the second experiment being performed in a non-inertial
rotating frame, Fig. 2.2(h). In the E coordinate system, the time-dependent
basis vectors () evolve by

d X
d—te, = Q,»jej, (297)
where Q,»j(t) = —Q;(t) is the rate of rotation of the frame. Note that, in this
case, the direction cosines a;;(r) = e; - &,() are time-dependent.

The Navier-Stokes equations transformed to the non-inertial frame are
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the same as Eq. (2.94), but with the frame acceleration —A; replaced by the
fictitious force

Fy = %@, — 200, — 5, 52
(see Exercise 2.15). The three contributions to F represent the centrifugal
force, the Coriolis force, and the angular acceleration force. The centrifugal
force can be absorbed into a modified pressure, but the remaining two forces
cannot. As is well known in meteorology and turbomachinery, Coriolis forces
can have significant effects on flows in rotating frames.

A quantity that is the same in rotating and non-rotating frames is said to
possess material-frame indifference. Evidently, the Navier-Stokes equations
do not have this property.

The effect of frame rotation is also evident in the vorticity equation. In
the non-inertial E coordinate system, the equation for the evolution of the
vorticity

(2.98)

oUy
D = e — 2.99
w’ ka ax] ( )
obtained from the Navier-Stokes equations (ie., Eq. (2.94) with F; in place
of —4;), is

0@ - OO o, oU, oU, ~ dQ,
0,2 oy CO L, T 26, T By — e L (2100
5 TUias, T Vo, T, gy, e g (2100)

Evidently, because of the last two terms — which correspond to Coriolis and
angular acceleration forces — the vorticity equation in a rotating frame is
different than that in an inertial frame (Eq. (2.60)).

EXERCISE

2.15  Let X(r) be the position of a moving point relative to the origin of
the E coordinate system in an inertial frame. Let Y (r) = &;(t)Y;(t) be
the position of the same point relative to the non-inertial frame E.
The origin of the E frame moves with velocity ¥(t), and its basis
vectors e; evolve according to Eq. (2.97). If the origins are coincident
at time t = 0, then

X=Y@®)+ /Ot V() dr. (2.101)

Show that the velocity and acceleration (relative to the inertial
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frames) are
X =V +e(Y;+YQy), (2.102)

X =V eV + Yy, + 270, + Y4y, (2.103)

where an overdot indicates differentiation with respect to time.

Two-dimensional flows

Another peculiar property of the Navier-Stokes equations is that, for two-
dimensional flow (in the x,—x; plane, say), they are invariant with respect to
steady rotations of the frame in the plane of the flow (ie., rotations about
the x, axis), see Speziale (1981). For two-dimensional flows, it is sometimes
useful to re-express the Navier-Stokes equations in terms of streamfunction
and vorticity. The streamfunction y(x,, x3,1) is such that the velocities are
given by

oy oy
= — U,=——, 2.104
Ul 8x2 ’ axl ( )
and the only non-zero component of the vorticity is
oU, 0dU,
=_-—— . 2.105
@s axl 8x2 ( )

For steady rotations of the frame, the final term in Eq. (2.100) is zero,
and, for the two-dimensional flows considered, explicit evaluation of the
penultimate term reveals that it too is zero (see Exercise 2.17). Thus, for
this special case, the vorticity is unaffected by frame rotation, and it follows
that the Navier—Stokes equations exhibit material-frame indifference (in this
restricted sense).

EXERCISES

216  For two-dimensional flow, with U; = 0 and U, and U, given by
Egs. (2.104), show that the divergence of velocity is zero for all
streamfunctions. Show that the streamfunction and vorticity are re-
lated by the Poisson equation

0’ 0?
(.Eﬁ + 5x—§> )y = —3. (2.106)
2.17  With reference to the penultimate term in Eq. (2.100), consider the
quantity
oU,
= e = Qu, (2.107)

0%,
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for a two-dimensional flow (in the x;—x, plane), and for frame rota-
tions in the same plane. Which components of 0U,/0%; and Q, are
zero? Show that Q] and € are zero. Obtain the result
. =~ [oU;, oU
Q) = le(—l‘ + —2>,

o (2.108)

and hence argue that Q’ is zero for the class of flows considered.
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The statistical description of turbulent
flows

3.1 The random nature of turbulence

In a turbulent flow, the velocity field U(x,t) is random. What does this
statement mean? Why is it so?

As a first step we need to understand the word ‘random.” Consider a
fluid-flow experiment that can be repeated many times under a specified set
of conditions, C, and consider an event A4, such as 4 = {U < 10 m s,
where U is a specified component of velocity at a specified position and time
(measured from the initiation of the experiment). If the event 4 inevitably
occurs, then A is certain or sure. If the event A cannot occur, then it is
impossible. The third possibility is that A may occur or it may but need not
occur. In this case the event 4 is random. Then, in the example A = {U < 10
m s~'}, U is a random variable.

A mistake that is sometimes made is to attribute incorrectly additional
significance to the designation ‘random, and then to dispute the fact that
turbulence is a random phenomenon. That the event A is random means
only that it is neither certain nor impossible. That U is a random variable
means only that it does not have a unique value — the same every time
the experiment is repeated under the same set of conditions, C. Figure 3.1
illustrates the values U™(n = 1, 2,...,40) taken by the random variable U
on 40 repetitions of the experiment.

The next issue to resolve is the consistency between the random nature of
turbulent flows, and the deterministic nature of classical mechanics embodied
in the Navier-Stokes equations. If the equations of motion are deterministic,
why are the solutions random? The answer lies in the combination of two
observations.

(i) In any turbulent flow there are, unavoidably, perturbations in initial
conditions, boundary conditions, and material properties.

34
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Fig. 3.1. A sketch of the value U™ of the random velocity variable U on the nth
repetition of a turbulent-flow experiment.

(ii) Turbulent flow fields display an acute sensitivity to such perturbations.

At the outset of our discussion on randomness, we considered ‘a fluid-
flow experiment that can be repeated many times under a specified set of
conditions C.” An example is the flow of pure water at 20°C through a smooth
straight pipe. It should be appreciated that the conditions, C, thus defined
are incomplete: in practice there are, inevitably, perturbations from these
nominal conditions. There can be perturbations in boundary conditions, for
example, through vibration of the apparatus, or from the detailed finish of
nominally smooth surfaces. There can be perturbations in fluid properties
caused by small inhomogeneities in temperature or by the presence of
impurities, and there can be perturbations in the initial state of the flow.
With care and effort these perturbations can be reduced, but they cannot
be eliminated. Consequently, the nominal conditions C are incomplete, and
hence do not uniquely determine the evolution of the turbulent flow.

The presence of perturbations does not by itself explain the random
nature of turbulent flows — for, indeed, such perturbations are also present
in laminar flows. However, at the high Reynolds numbers of turbulent
flows, the evolution of the flow field is extremely sensitive to small changes
in initial conditions, boundary conditions, and material properties. This
sensitivity is well understood in the study of dynamical systems, and has
been popularized in books on chaos (e.g., Gleick (1988) and Moon (1992)).
It is now demonstrated using the Lorenz equations.

Lorenz (1963) studied a time-dependent system, characterized by three
state variables, x(t), y(t), and z(t). These variables evolve according to the
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Fig 3.2. Time histories from the Lorenz equations (Egs. (3.1)): (a) x(t) from the initial
condition Eq. (3.2); (b) X(r) from the slightly different initial condition Eq. (3.3): and
(c) the difference X(r) — x(z).

ordinary differential equations

x=o0(y—x),
y=px—y—xz
Z=—Bz + xy, (3.1)
where the coefficients are ¢ = 10, § = £, and p = 28. For the initial condition
[x(0), ¥(0),2(0)] = [0.1,0.1,0.1], (3.2)

Fig. 3.2(a) shows the time history x(t) obtained from the numerical integra-
tion of Egs. (3.1). The result obtained - denoted by X(t) — with the slightly
different initial condition

[x(0), y(0),z(0)] = [0.100001,0.1,0.1], (3.3)

is shown in Fig. 3.2(b). It may be observed that (as expected) x(t) and
X(¢) are initially indistinguishable, but by t = 35 they are quite different.
This observation is made clearer in Fig. 3.2(c), which shows the difference
X(t) — x(t).
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A consequence of this extreme sensitivity to initial conditions is that —
beyond some point — the state of the system cannot be predicted. In this
example, if the initial state is known only to within 107°, then Fig. 3.2 clearly
shows that no useful prediction can be made beyond t = 35.

This example serves to demonstrate that a simple set of deterministic
equations — much simpler than the Navier-Stokes equations - can exhibit
acute sensitivity to initial conditions, and hence unpredictability.

The qualitative behavior of the Lorenz system depends on the coefficients.
In particular, for the fixed values ¢ = 10 and f = %, the behavior depends
on p. If p is less than a critical value p* =~ 24.74, then the system goes to a
stable fixed point, ie., the state variables [x(), y(t),z(t)] tend asymptotically
to fixed values. However, for p > p° (e.g, p = 28 as in Fig. 3.2) chaotic
behavior ensues. Again, there is a similarity to the Navier-Stokes equations,
which (with steady boundary conditions) have steady solutions at sufficiently
low Reynolds number, but chaotic, turbulent solutions at high Re. Further
discussions of the Lorenz equations, dynamical systems and equations, dy-
namical systems, and chaos are contained in the books of Guckenheimer
and Holmes (1983), Moon (1992), and Gleick (1988).

3.2 Characterization of random variables

For a laminar flow, we can use theory (i.e., the Navier-Stokes equations) to
calculate U (a particular component of the velocity at a specified position
and time), and we can perform an experiment to measure U. From a century
of experience, we have a high degree of confidence that the calculated and
measured values of U will agree (to within small numerical and experimental
errors).

The Navier-Stokes equations apply equally to turbulent flows, but here
the aim of theory must be different. Since U is a random variable, its value
is inherently unpredictable: a theory that predicts a particular value for U is
almost certain to be wrong. A theory can, however, aim at determining the
probability of events such as 4= {U < 10 m s™'}.

In this section we develop the concepts and tools used to characterize
a random variable such as U. In particular U is completely characterized
by its probability density function (PDF). The random velocity field U(x,?)
in a turbulent flow is a much more complicated mathematical object than
the single random variable U. In subsequent sections we introduce some
quantities used to characterize sets of random variables (e.g, U, U,, and
Us), random functions of time (e.g., U(t)), and random functions of position

(e.g., U(x)).
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Fig. 3.3. Sketches of the sample space of U showing the regions corresponding to the
events (a) B={U < Wy}, and (b) C = {V, < U < W, }.

Sample space

In order to be able to discuss more general events than 4 = {U < 10 m s™'},
we introduce an independent velocity variable V, which is referred to as the
sample-space variable corresponding to U. As illustrated in Fig. 3.3, different
events such as

B={U <V}, (34)
C={Vu,<U<VWV}, for V,<V, (3.5)
correspond to different regions of the sample space.
Probability
The probability of the event B, for example, is written
p=P(B)=P{U < V}. (3.6)

For the moment, the reader’s intuitive understanding of probability is suf-
ficient: p is a real number (0 < p < 1) signifying the likelihood of the
occurrence of the event. For an impossible event p is zero; for a sure event
p is unity. (Probability is discussed further in Section 3.8))

The cumulative distribution function

The probability of any event can be determined from the cumulative distri-
bution function (CDF), which is defined by

F(V)= P{U<V). (3.7)
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For example, we have

P(B) = P{U < V,} = F(Vb), (3.8)

P(C)=P{V,<U <V} =P{U<Vo} —P{U<V,}
= F(Vy) — F(V2). (39)

The three basic properties of the CDF are

F(—o0) =0, (3.10)

since {U < —oo} is impossible;
F(o0) =1, (3.11)

since {U < oo} is certain; and,
F(Vy) > F(V.), for Vi > Vi, (3.12)

since the probability of every event is non-negative, i.e.
F(W)—F(V))=P{V.<U <V} 20 (3.13)

The third property (Eq. (3.12)) expresses the fact that the CDF is a non-
decreasing function.

The probability density function
The probability density function (PDF) is defined to be the derivative of the
CDF:
dF (V)
dv -
It follows simply from the properties of the CDF that the PDF is non-
negative

f(v)= (3.14)

f(vy=0, (3.15)
it satisfies the normalization condition
/ FVYdV =1, (3.16)

and f(—o0) = f(o0) = 0. Further, from Eq. (3.13) it follows that the probabil-
ity of the random variable being in a particular interval equals the integral



40 3 The statistlcal descriptlon of turbulent flows

(a) F(V)

P(C) = F(Vy,) - F(V,)

(b)

Fig. 3.4. Sketches of (a) the CDF of the random variable U showing the probability
of the event € = {V, < U < V}}, and (b) the corresponding PDF. The shaded area in
(b) is the probability of C.

of the PDF over that interval:

P{V, < U< Vo} = F(Vy) — F(V,)
Vb
=/ f(vydv. (3.17)
Va

Figure 3.4 provides a graphical interpretation of this equation.
For an infinitesimal interval, Eq. (3.17) becomes

P{V<U<V+dV}=F(V +dV)— F(V)
= f(V)dV. (3.18)

Thus the PDF f(V) is the probability per unit distance in the sample space
— hence the term ‘probability density function.” The PDF f(V) has the
dimensions of the inverse of U, whereas the CDF and the product f(V)dV
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are non-dimensional. Under a change of variables, the transformation rule for
densities (such as PDF’s) is different than that for functions: see Exercise 3.9
on page 49.

It is emphasized that the PDF f(V) (or equally the CDF) fully character-
izes the random variable U. Two or more random variables that have the
same PDF are said to be identically distributed, or equivalently statistically
identical.

Means and moments
The mean (or expectation) of the random variable U is defined by
(U) = / Vi(V)dV. (3.19)

It is the probability-weighted average of all possible values of U. More
generally, if Q(U) is a function of U, the mean of Q(U) is

((U)) = / “omswav. (3.20)

Even when the condition is not stated explicitly, it should be understood
(here and below) that the mean (Q(U)) exists only if the integral in Eq. (3.20)
converges absolutely.

The rules for taking means are quite simple. If Q(U) and R(U) are functions
of U, and if a and b are constants, then

([a@(U) + bR(U)]) = a{Q(V)) + b(R(U)), (3.21)

as may readily be verified from Eq. (3.20). Thus the angled brackets ( )
behave as a linear operator. While U, Q(U), and R(U) are all random
variables, (U), (Q(U)), and (R(U)) are not. Hence the mean of the mean is
the mean: ((U)) = (U).

The fluctuation in U is defined by

u=U—(U), (3.22)
and the variance is defined to be the mean-square fluctuation:
var(U) = (u?) =/V(V— (U (V)dV. (3.23)

The square-root of the variance is the standard deviation

sdev(U) = /var (U) = (1?2, (3.24)

and is also denoted by u’ and o,, and is also referred to as the r.m.s. (root
mean square) of U.
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The nth central moment is defined to be
=)= [ V= Orimay. (3.25)

Evidently we have uo = 1, gy = 0, and y, = 0.
(In contrast, the nth moment about the origin — or the nth raw moment —
is defined to be (U").)

EXERCISES
31 With O and R being random variables, and a and b being constants,
use Eq. (3.20) to verify the relations

(@) =a, (aQ)=a(Q), (3.26)
(Q+Ry=(0)+(R), ((@))=1(0) (3.27)
(@) (R)) = (Q)(R), ((Q)R) = (Q)(R), (3.28)
(@) =0, (g(R)) =0, (3.29)
where ¢ = Q — (Q).
3.2 Let Q be defined by
Q=a+bU, (3.30)

where U is a random variable, and a and b are constants. Show that

(Q) = a+b(U), (3.31)
var(Q) = b? var(U), (3.32)
‘sdev(Q) = b sdev(U). (3.33)
Show also that
var(U) = (U?) — (U)~ (3.34)
Standardization

It is often convenient to work in terms of standardized random variables,
which, by definition, have zero mean and unit variance. The standardized
random variable U corresponding to U is

U= (- (U)o (3.35)
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and its PDF — the standardized PDF of U - is

FV)y=0,f((U) +0,V). (3.36)
The moments of U — the standardized moments of U — are
o W) /“° PSRN
= === Vri(vydv.
= == f(v)d (3.37)

Evidently we have jio = 1, jt; = 0 and fi; = 1. The third standardized moment
fi3 is called the skewness, and the fourth [ is the flatness or kurtosis.

EXERCISE
3.3 Show that the standardized moments of U and Q (defined by
Eq. (3.30)) are identical.

The characteristic function

The characteristic function of the random variable U is defined by

Y(s) = (') = / ) f(V)e'sdv. (3.38)

It may be recognized that the integral in Eq. (3.38) is an inverse Fourier
transform: W(s) and f(V) form a Fourier-transform pair, and consequently
they contain the same information.

The characteristic function is a mathematical device that facilitates some
derivations and proofs. Its properties are described in Appendix I. Char-
acteristic functions are used extensively in Chapter 12, but not before.
Consequently a study of Appendix I can be deferred.

3.3 Examples of probability distributions
To consolidate the notions developed, and to illustrate some qualitatively

different behaviors, we now give some specific examples of probability dis-
tributions. These distributions are encountered in later chapters.

The uniform distribution

If U is uniformly distributed in the interval a < V < b, then the PDF of U

1s
1

fVy=9 b—-d’
0, for V<aand V >b.

This PDF and the corresponding CDF are shown in Fig. 3.5.

for a<V <b, (3.39)
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Fig. 3.5. The CDF (a) and the PDF (b) of a uniform random variable (Eq. (3.39)).

EXERCISE
34 For the uniform distribution Eq. (3.39) show that

(a) (U) = {(a+b),

(b) var(U) = 5(b—a),
(c) 13 =0, and

(d) s =2

The exponential distribution

If U is exponentially distributed with parameter J, then its PDF (see Fig. 3.6)
is

1 )
V) = { 3 exp(—=V/A), for V =0, (3.40)

0, for V < 0.
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Fig. 3.6. The CDF (a) and PDF (b) of an exponentially distributed random variable
(Eq. (3.40)).

EXERCISE
3.5 For the exponential distribution Eq. (3.40) show that

(a) the normalization condition is satisfied,

(b) (U) =4

(c) (U"Y = nA(U™Y) =nti", forn> 1,

(d) F(V)=1—exp(—V/4), for V >0,
=0, for V <0, and

(e) Prob{U > ai} = ¢, for a > 0.

The normal distribution
Of fundamental importance in probability theory is the normal or Gaussian
distribution. If U is normally distributed with mean u and standard deviation
o, then the PDF of U is

fV)=N(V:pco exp[—3(V — u)*/a?]. (3.41)

a\/'
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Here N(V;u, 6?) — or sometimes A(u, 62) — denotes the normal distribution
with mean p and variance o2. We can also write

U 2 Ny o?), (3.42)

to indicate that U is equal in distribution to a normal random variable, i.e.,

the PDF of U is given by Eq. (3.41).
If U is normally distributed according to Eq. (3.41) then

U=(U-p/o (3.43)
is a standardized Gaussian random variable with PDF
u 1 R
VY=N(V;0,1) = —e V72, 3.44
fv) ( ) N (3.44)
This PDF and the corresponding CDF
Vv
ﬁ(V):/ 7;: e dx = %[1+ erf(V/\/E)J (3.45)
-0 /4

are shown in Fig. 3.7.

EXERCISE ___
3.6 By considering the quantity

® d I/’l ——V2/2
— [ — | 4 346
/—ao dV (\/27Ie > d ’ ( )

obtain a recurrence relation for the standardized moments i, of the
Gaussian distribution. Show that the odd moments (i3, fis, ...) are
zero, that the kurtosis is

fy =3, (3.47)
and that the superskewﬁess 1s

fls = 15. (3.48)

The log-normal distribution

We again take U to be normally distributed with mean p and variance o2.
Then the positive random variable

Y = (3.49)

is, by definition, log-normally distributed.
The CDF Fy(y) and PDF fy(y) of Y can be deduced from those of U,
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Fig. 3.7. The CDF (a) and PDF (b) of a standardized Gaussian random variable.

namely F(V') and f(V) given by Eq. (3.41). Since Y is positive, the sample
space can be taken to be the positive real line, ie., y > 0. Starting from the
definition of the CDF, we obtain

Fy(y)=P{Y <y} =P{eY <y} =P{U <Iny}
= F(Iny). (3.50)

The PDF is then obtained by differentiating with respect to y:
d 1
fr(y)=-Fr(y) = f(Iny)
y y

(3.51)

_ 1 _ 1 _ 2 2
= o o[y — /e,

Figure 3.8 shows the PDF fy(y) and the CDF Fy(y) for (Y) =1 and
various values of the variance. It may be seen that different values of ¢?
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Fig. 3.8. The CDF (a) and PDF (b) of the log-normal random variable Y with
(Y)=1and var(Y)= £, 1, and 5.

20°
produce different shapes of PDF. In particular, a large value of ¢ leads to a
PDF with a long tail, which is most clearly seen in the CDF’s slow approach
to unity. As shown in Exercise 3.7, the normalized variance var(Y /(Y))
increases as e”. '

Equations (3.50) and (3.51) illustrate the transformation rules for PDFs
and CDFs. These are further developed in Exercise 3.9.

EXERCISES
3.7 Show that the raw moments of Y (defined by Eq. (3.49)) are

X

(Y") = exp(np + in’c?). (3.52)
(Hint: evaluate [

T e f(V)dv)
Show that the specification

p=—1ig? (3.53)
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3.8

39

results in (Y) being unity, and that the variance of Y is

var(Y) = (Y y(e” —1). (3.54)
The random variable Z is defined by ~
Z=aY" (3.55)

where Y is a log-normal random variable, and a and b are positive
constants. Show that Z is also log-normal with

var(ln Z) = b*var(ln Y )N\ (3.56)

The random variable U has the CDF F(V) and PDF f(V). The
random variable Y is defined by

Y =Q(U), (3.57)

where Q(V') is a monotonically increasing function. Following the
steps in Eqgs. (3.50) and (3.51), show that the CDF Fy(v) and PDF
fr(v) for Y are given by

Fr() =F(V), . (3.58)
—_— T (V) .
fy())—f(V)/ ) (3.59)
where
y=0(). (3.60)

Show that the corresponding results for Q(V') being a monotonically
decreasing function are

Fy(y)=1—F(V), (3.61)

dg(V)

fy(\)——f(V)/ (3.62)

Show that Egs. (3.59) and (3.62) can be written in the common form

fr(y)dy = f(V)dV, (3.63)
where dV and
_|de0)]
dy = ‘ qv (3.64)

are corresponding infinitesimal intervals.
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Fig. 3.9. The CDF (a) and PDF (b) for the gamma distribution with mean g = 1 and
variance ¢ = &, 1, and 5.

The gamma distribution

The positive random variable U, with mean y and variance ¢?, has a gamma
distribution if its PDF is

1 (o aV
=5 () vee(=5). (3.65)

where « is defined by
o« = (E)z, (3.66)
and I'(«) is the gamma function
MNa) = /OOO x* e dx. (3.67)

For o = 1, this becomes the exponential distribution and the value of the
PDF at the origin is f(0) = 1/u. For larger values of « (smaller normalized
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variance) the PDF is zero at the origin, whereas for small values of « it is
infinite — as is evident in Fig. 3.9.

EXERCISE
3.10  Use the substitution x = aV/u to show that the normalized raw
moments of the gamma distribution are

* K " _ 1 * _nta—1 —x _
/ (u) ﬂV)dV‘anF(a)/of ¢

_Tn+ta) (n+a—1)!
T owT(e)  at(a—1)!

Verify the consistency of this result for n =0, 1, and 2.

(3.68)

Delta-function distributions

Suppose that U is a random variable that takes the value a with probability
p, and the value b (b > a) with probablllty 1 — p. It is straightforward to
deduce the CDF of U:

0, for V<a,
FV)=P{U<V}={ p fora<V<b, (3.69)
' 1, for V >b,

see Fig. 3.10. This can be written in terms of Heaviside functions as
F(Vy=pH(V —a)+ (1 —p)H(V —b). (3.70)

The corresponding PDF (obtained by differentiating Eq. (3.70)) is
fVy=pé(V —a)+ (1 —p)o(V —b), (3.71)

see Fig. 3.10. (The properties of Dirac delta functions and Heaviside functions
are reviewed in Appendix C.)

A random variable that can take only a finite number of values is a discrete
random variable (as opposed to a continuous random variable). Although the
tools presented in this section are aimed at describing continuous random
variables, evidently (with the aid of Heaviside and Dirac delta functions)
discrete random variables can also be treated. Furthermore, if U is a sure
variable, with probability one of having the value q, its CDF and PDF are
consistently given by

F(V)=H(V —a), (3.72)

f(V)y=35(V —a). (3.73)
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Fig. 3.10. The CDF (a) and the PDF (b} of the discrete random variable U, Eq. (3.69).

EXERCISES
3.11  Let U be the outcome of the toss of a fair die, ie, U =1, 2, 3, 4, 5,
or 6 with equal probability. Show that the CDF and PDF of U are

1 6

F(V)= c ; H(V —n), (3.74)
1 6

f(v)y= < g S(V = n). (3.75)

Sketch these distributions.

312 Let f4(p) be the PDF of a scalar ¢ that satisfies the boundedness
condition Pmin < ¢ < Pmax. For a given value of the mean (¢), the
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maximum possible value of the variance (¢*) occurs when f,(y)
adopts the double-delta-function distribution

Fs(p) = pd(Pmax — v) + (1 — p)o(Pmin — ¥). (3.76)
For this distribution show that
<¢> — d’min
=, 3.
P ¢max - (,bmin ( 77)
<¢/2> = (Pmax — <¢>)(<¢> — @umin)- (3.78)
Note: for ¢min = 0, Pmax = 1, these results are p = (¢) and (¢?) =

() (1 — ().

The Cauchy distribution

The mean, variance, and other moments are defined as integrals of the PDF
(Eg. (3.20)). We have implicitly assumed that all such integrals converge; and,
indeed, with few exceptions, this is true for PDFs encountered in turbulence
research. It is useful to have a simple counter-example: this is provided by
the Cauchy distribution.

The PDF of the Cauchy distribution centered at ¢ and with half-width w
is

w/m

For large V, f varies as V2, and hence the integral of V (V) diverges as
In V. Hence, although the distribution is symmetric about its center V = c,
nevertheless the mean (defined by Eq. (3.19)) does not exist. The variance is
infinite,

Figure 3.11 shows the Cauchy density (Eq. (3.79)) and the corresponding
CDF

fv)y= (3.79)

11 v —
F(V) =3+~ arctan( - C), (3.80)

forc=0, w=1.

EXERCISE

3.13  The PDF sketched in Fig. 3.12 has mean zero and unit variance (i.e.,
it is standardized). Show that the variables defined in the sketch are
given by

1

. (3.81
a+ib )

a=5&(1+23), b=3a, h=
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Fig. 3.11. The CDF (a) and PDF (b) for the Cauchy distribution (Egs. (3.79) and
(3.80)) withc =0, w = 1.

3.4 Joint random variables

In this section the results obtained for the single random variable U are
extended to two or more random variables, We take as an example the
components of velocity (U,, U,, U;) at a particular position and time in a
turbulent flow.

The sample-space variables corresponding to the random variables U =
{U,U,, U} are denoted by ¥V = {V1, V2, V3}. For the two components U,
and U,, Fig. 3.13 shows a scatter plot consisting in the N = 100 points
(Vi,V2) = (UM, U),n = 1,2,...,N, where (U™, U{") are the values of
(U1, Uy) on the nth repetition of the experiment. The CDF of the joint
random variables (U, U,) is defined by

Fu(V,Va) = P{U, < V,,U, < W1} (3.82)
It is the probability of the sample point (V;, V) = (U,, U,) lying within the



3.4 Joint random variables S5

fv)
h

-a 0 b
Fig. 3.12. A sketch of the standardized PDF in Exercise 3.13.

Vs

4 .

22|

Fig. 3.13. A scatter plot in the V;—V, sample space of 100 samples of the joint random
variables (U;, Uz). (In this example U; and U, are jointly normal with (U;) = 2,

(U2) =1, (u) =1, () = %, and pro = 1//5))
shaded area of Fig. 3.14. Clearly, F|(V,,V,) is a non-decreasing function of
each of its arguments:
Fiy(Vi+0V,, Va+0V2) > Fip(Vy, V,), forall 8V, >0 and 8V, > 0. (3.83)
Other properties of the CDF are
Fiy(—0,V;) = P{U, < —c0, U, < V3} =0, (3.84)
since {U; < —oo} is impossible; and

Flz((X), Vz) = P{Ul < 00, U2 < Vz}
= P{Uz < Vz} = Fz(Vz), (385)

since {U; < oo} is certain. The CDF Fy(V3) of the single random variable
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Fig. 3.14. The V,~V, sample space showing the region corresponding to the event
{U] <V,U;< Vz}.

U, (defined in Eq. (3.85)) is called the marginal CDF. Similarly, the marginal
CDF of U, is F\(V;) = Fpa(V}, ).

The joint PDF (JPDF) of U, and U, is defined by

82
oV, 0V,
Its fundamental property, illustrated in Fig. 3.15, is

f12(Vla Vz) = F12(Vl, V2) (386)

Vie V2
P{Vla <U <V, Vou <U, < Vzb} :/ / flz(Vl, Vz)de dv,. (3.87)
Via V2a

Other properties, that can readily be deduced, are

f(Vi,V2) =0, (3.88)
/_ fe(Vi, V2)dV = fao(Vs), (3.89)
/_ /_ fe(Vi,V)dvidv, =1, (3.90)

where f5(V) is the marginal PDF of U,
If Q(U,, U>) is a function of the random variables, its mean is defined by

QU Uy)) E[ /_O0 OV, Va)fua(Vy, V2) dVy dVa. (391)

The means (U, ) and (U,), and the variances (1?) and (u2), can be determined
from this equation, or equally, from the marginal PDFs f,(V}) and f,(V>)
(see Exercise 3.15). Here u; and u, are the fluctuations, eg, u =U — (U).
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v,

Va

Fig. 3.15. The V|-V, sample space showing the region corresponding to the event
{Via < Uy < Vi, Vaoa < Uy < Vi), see Eq. (3.87).

The covariance of U, and U, is the mixed second moment

cov(ULUs) = ) = [ [ (0= (W) = Ui, Vayavi av,
R (3.92)
and the correlation coefficient is

P2 = (uluz)/[<uf)<u§)]l/2. (3.93)

As illustrated by the scatter plot in Fig. 3.13, a positive correlation coefficient
arises when positive excursions from the mean for one random variable (e.g.,
u; > 0) are preferentially associated with positive excursions for the other
(ie, u, > 0). Conversely, if positive excursions for u, are preferentially
associated with negative excursions of u,, as in Fig. 3.16, then the correlation
coefficient is negative. In general, we have the Cauchy—Schwartz inequality

—1<pp<1, (3.94)

see Exercise 3.16.

If the correlation coefficient p,, is zero (which implies that the covariance
(uju,) is zero) then the random variables U, and U, are uncorrelated. In
contrast, if p,» is unity, U, and U, are perfectly correlated; and, if p;» equals
—1, they are perfectly negatively correlated. Examples of these correlations
are given in Exercise 3.17.

For the scatter plot shown in Fig. 3.16, it is clear that the samples with
U, = V), and those with U, ~ V), are likely to have significantly different
values of U,. This is confirmed in Fig. 3.17, which shows f,(V,V,) for
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Fig. 3.16. A scatter plot of negatively correlated random variables ((U;) = 1, (U,) =
-1’ (u%> = 29 (u%> = 129 and P12 = —/ 2/3)'

L

15 -10 5 0 5V,
Fig. 3.17. The joint PDF of the distribution shown in Fig. 3.16, plotted against V, for
V1=V1a=1and V1=V1b=5.

Vi = Vi, and V, = V). For fixed Vy,, fi2(Via, V) indicates how U, is
distributed for samples (U, U,) with U, = V,,. These ideas are made precise
by defining conditional PDFs: the PDF of U, conditional on U=V is

fan(alVy) = fr2(Vi, Va)/ f1(Vy). (3.95)
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This is simply the joint PDF f),, scaled so that it satisfies the normalization
condition

/w fa(V2V1)dVs = L. (3.96)

For given Vi, if f1(V)) is zero, then fy,(V>|V)) is undefined. Otherwise it is
readily verified that f5,(V,|V;) satisfies all the conditions of a PDF (i, it is
non-negative, and satisfies the normalization condition, Eq. (3.96)). (A word
on notation: ‘|V,’ is an abbreviation for |U; = V;,” and is read ‘conditional
on U, =V}, or ‘given U, = V', or ‘given V,.)

For a function Q(U,, U,), the conditional mean (conditional on V}) (Q|V,)
is defined by

QUL U, = 1) = / OV VeV dVe,  (3.97)

The concept of independence is of paramount importance. If U, and U,
are independent, then knowledge of the value of either one of them provides
no information about the other. Consequently, ‘conditioning’ has no effect,
and the conditional and marginal PDFs are the same:

fai(ValVy) = fa(V2), for Uy and U, independent. (3.98)
Hence (from Eq. (3.95)) the joint PDF is the product of the marginals:
Vi, Va) = f1(V))f2(V2), for U, and U, independent. (3.99)

Independent random variables are uncorrelated; but, in general, the converse
is not true.

EXERCISES

3.14  Show that the properties of the joint PDF Egs. (3.87)—(3.90) fol-
low from the definitions of the CDF (Eq. (3.82)) and joint PDF
(Eq. (3.86)).

3.15 Show that, for a function R(U,) of U, alone, the definition of the
mean (R(Uy)) in terms of the joint PDF f, (Eq. (3.91)) is consistent
with its definition in terms of the marginal PDF f,; (Eq. (3.20)).

3.16 By considering the quantity (u,/u| + u/u)?, establish the Cauchy-
Schwartz inequality

—l<pn=1, (3.100)

where u| and u, are the standard deviations of U, and U,, and p,, is
the correlation coefficient.
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3.17

3.18

3.19

3.20

3.21

Let U; and U; be uncorrelated random variables, and let U, be
defined by

U, =a+bU, + cUs, (3.101)

where a, b, and ¢ are constants. Show that the correlation coefficient
pi2 is
b

PR B () ) (3102

Hence show that U; and U, are

(a) uncorrelated (p;» = 0) if b is zero and c is non-zero,

(b) perfectly correlated (p;, = 1) if ¢ is zero and b is positive, and

(c) perfectly negatively correlated (p, = —1) if ¢ is zero and b is
negative.

For the sum of two random variables, obtain the result
var(U, + U,) = var(U,) 4+ var(U,) + 2cov(U,, Uz). = (3.103)

For the sum of N independent random variables obtain the result

N N
var(Z U,~> = var(U)). (3.104)
i=1 i=1

Let U, be a standardized Gaussian random variable, and let U, be
defined by U, = |U,|. Sketch the possible values of (U, U,) in the
V|-V, sample space. Show that U, and U, are uncorrelated. Argue
that the conditional PDF of U, is

fa(Va|Vy) = 8(Va — V1)), (3.105)

and hence that U, and U, are not independent.
For any function R(U,), starting from Eq. (3.97), verify the result

(R(UIV1) = R(V)). (3.106)
Show that the unconditional mean can be obtained from the condi-

tional mean by

oC

(Q(U, Uy)) = / ©IV) (V) dVL. (3.107)

—%0
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3.5 Normal and joint-normal distributions

In this section we introduce the central-limit theorem which (among other
things) shows that the normal or Gaussian distribution (Eq. (3.41)) plays a
central role in probability theory. Then the joint-normal distribution and its
special properties are described. Many of the results given are most easily
obtained via characteristic functions (Appendix I).

We begin by examining ensemble averages. Let U denote a component
of velocity at a particular position and time in a repeatable turbulent-flow
experiment, and let U™ denote U on the nth repetition. Each repetition is
performed under the same nominal conditions, and there is no dependence
between different repetitions. Hence, the random variables {U", U®, U®, .}
are independent and have the same distribution (ie., that of U): they are
said to be independent and identically distributed (ii.d.).

The ensemble average (over N repetitions) is defined by

N
1
Uy =+ >, (3.108)
n=1

The ensemble average is itself a random variable, and it is simple to show
that its mean and variance are

{(U)w) = (U), (3.109)
var((U)y) = L var(U) = 0—5. (3.110)
N N
Consequently (see Exercise 3.22) U defined by
U = [(U)y — (U)IN"/a, (3.111)

is a standardized random variable (i.e, (U) =0, (0?) = 1).
The central-limit theorem states that, as N tends to infinity, the PDF of
U, f(V), tends to the standardized normal distribution

Fv) = \/% exp(—1V?) (3.112)

(see Fig. 3.7 on page 47 and Exercise 1.3 on page 709). This result depends
on {UL,UP, ..., UM} being iid. but the only restriction it places on the
underlying random variable, U, is that it have finite variance.

We turn now to the joint-normal distribution, which is important both in
probability theory and in turbulent flows. For example, in experiments on
homogeneous turbulence the velocity components and a conserved passive
scalar {U,, U,, Us, ¢} are found to be joint-normally distributed (see Fig. 5.46
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on page 175). The definition and properties of the joint-normal distribution
are now given for a general set of D random variables U = {U}, Uy,..., Up}.
For D = 2 or 3, U can be thought of as components of velocity in a turbulent

flow.
It is convenient to use matrix notation. The mean and fluctuation of the

random vector U are denoted by

p=(U), (3.113)

u=U—(U). (3.114)
The (symmetric D x D) covariance matrix is then
C = (uu"), (3.115)

If U= {U,,U,, Us} is the velocity, then the covariance matrix is a second-
order tensor with components C;; = (uu;).

If U= {U,U,,...,Up} is joint-normally distributed, then (by definition)
its joint PDF is

(V)= [(2n)° det(C)] " exp[—3(V — u) ' CT'(V — p)] . (3.116)

Note that the ¥-dependence of the joint PDF is contained in the quadratic
form

gV)=(V —w'C'(V —p). (3.117)

For D = 2, a constant value of g — corresponding to a constant probability
density — is an ellipse in the V|-V, plane. For D = 3, a constant-probability-
surface is an ellipsoid in V-space.

We now examine the pair {U,, U,} of joint-normal random variables (i.e.,
D = 2) in more detail. Figure 3.18 shows a scatter plot and constant-
probability-density lines for a particular choice of g and C.

In terms of the variances (uf) and (u3), and the correlation coefficient p,
the joint normal PDF (Eq. (3.116)) is

V1o Va) = (42 )1 — ph)) ™ exp | =

y ((V1 — WU 20V — (Un)(V2— (U2) N <U2>)2)]
(ut) ((uf)(u3))"/? (u3) '

(3.118)

From this equation, the following properties can be deduced.
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F e
!

Fig. 3.18. A scatter plot and constant-probability density lines in the V;-V, plane for
joint-normal random variables (U;, U,) with (Uy) =2, (Uz) =1, (ud) =1, (i3) = 2

16
and pp = 1/\/5.

(i) The marginal PDFs of U, and U, (f|(V)) and f,(V;)) are Gaussian.
(ii) If U, and U, are uncorrelated (ie., p;» = 0), then they are also in-
dependent (since then f»(Vy,V2) = f1(Vi)f2(V>)). This is a special
property of the joint-normal distribution: in general, lack of correla-
tion does not imply independence.
(i) The conditional mean of U, is

(Ui|Uy = Vo) = (Uy) + <LZ;’;‘§>(V2 —(U,)). (3.119)

(iv) The conditional variance of U, is
(U = (UiP2)IV2) = (u7)(1 — pt). (3.120)
(v) The conditional PDF f,(V1|V>) is Gaussian.

Returning to the general case of U = {U}, U,, ..., Up} being joint normal,
additional insight is gained by considering linear transformations of U. An
essential result (see Appendix I) is that, if U is joint normal, then a random
vector U formed by a general linear transformation of U is also joint normal.

Because the covariance matrix C is symmetric, it can be diagonalized by
a unitary transformation, defined by a unitary matrix A. (The properties of
a unitary matrix are

ATA=AAT =], (3.121)

where I is the D x D identity matrix.) That is, there is a unitary matrix A
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such that
ATCA = A, (3.122)

where A is the diagonal matrix containing the eigenvalues of C

0 - 0
0 4 -+ 0

A= L . (3.123)
0 0 - Jp

Consequently the transformed random vector

i=A"u (3.124)
has a diagonal covariance matrix A:
C= (") = (A"uu"A) = ATCA = A. (3.125)

There are several observations to be made and results to be deduced from
this transformation.

(i) If U is the velocity vector, then & is the fluctuating velocity in a
particular coordinate system — namely the principal axes of (u;u;).
(ii) The eigenvalues of C, 4, are

A = (fiply) = 0, (3.126)

(where bracketed suffixes are excluded from the summation conven-
tion). Thus, since each eigenvalue is non-negative, C is symmetric
positive semi-definite.

(iii) That the covariance matrix Cis diagonal indicates that the trans-
formed random variables {#,,,,...,{i;} are uncorrelated.

These three observations apply irrespective of whether U is joint normal. In
addition we have the following

(iv) If U is joint normal, then {fi,#,...,ip} are independent Gaussian
random variables.

EXERCISES
3.22  From the definition of the ensemble average (Eq. (3.108)) show that

(U} = (V) + 5 var(U), (3.127)
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3.23

3.24

3.25

3.26

and hence verify Eq. (3.110). Hint:
1 N N
2 n m
Uy =7 SN utut, (3.128)
n=1 m=1
Obtain an explicit expression for the kurtosis of (U)y in terms of
N and the kurtosis of U. Comment on the result in light of the
central-limit theorem.
Show that, for large N, the ensemble mean (Eq. (3.108)) can be
written

(U)y = (U) + N"VHE,

where ' = sdev(U) and ¢ is a standardized Gaussian random vari-
able.

Let U be a joint-normal random vector with mean x and positive-
definite covariance matrix C = AAAT, where A is unitary and A is
diagonal. Show that the random variable

= C"(U —p)

is a standardized joint normal, i.e., it has mean zero, identity covari-
ance, and joint PDF

A 1 D2 AT
f(p) = (Z) exp (—% 4 V). (3.129)

A Gaussian random-number generator produces a sequence of in-
dependent standardized Gaussian random numbers: &V, g2 3
How can these be used to generate a joint-normal random vector U
with specified mean u and covariance matrix C?

(Hint: this can be achieved in a number of ways, the best of which
involves' the Cholesky decomposition, i.e., a symmetric semi-definite
matrix can be decomposed as C = LL", where L is lower triangular.)

3.6 Random processes

As an example of a random variable, we considered (in Section 3.2) a
component of velocity U in a repeatable turbulent-flow experiment, at a
particular location and time (relative to the initiation of the experiment). The
random variable U is completely characterized by its PDF, f(V). Consider
now the same velocity, but as a function of time, i.e., U(t). Such a time-
dependent random variable is called a random process. Figure 3.19 illustrates
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Uy

Fig. 3.19. Sample paths of U(t) from three repetitions of a turbulent-flow experiment.

sample paths (ie., values of U(t)) obtained in different repetitions of the
experiment.

How can a random process be characterized? At each point in time, the
random variable U(t) is characterized by its one-time CDF

F(V,ty=P{U@t) < V), (3.130)
or, equivalently, by the one-time PDF
OF(V,1)
) = ———. 13
fv;e) Y% (3.131)

However, these quantities contain no joint information about U(t) at two
or more times. To illustrate this limitation, Fig. 3.20 shows sample paths of
five different random processes, each with the same one-time PDF. Clearly,
radically different behavior (qualitatively and quantitatively) is possible, but
is not represented by the one-time PDF. The N-time joint CDF of the
process U(t) is defined by

Fy(Vi,tis Vo, tas. s Vi ty) = P{U(1) < VL, U() < V..., Ulty) < Vi,
(3.132)

where {t,,t,,...,ty} are specified time points, and fy(Vy,t1; Va,t2; ... Vi, ty)
is the corresponding N-time joint PDF. To completely characterize the
random process, it is necessary to know this joint PDF for all instants of
time, which is, in general, an impossible task.

Considerable simplification occurs if the process is statistically stationary,
as are many (but certainly not all) turbulent flows. A process is statistically
stationary if all multi-time statistics are invariant under a shift in time, i.e.,
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Fig. 3.20. Sample paths of five statistically stationary random processes. The one-time
PDF of each is a standardized Gaussian. (a) A measured turbulent velocity. (b) A
measured turbulent velocity of a higher frequency than that of (a). (¢) A Gaussian
process with the same spectrum as that of (a). (d) An Ornstein—Uhlenbeck process
(see Chapter 12) with the same integral timescale as that of (a). (¢) A jump process
with the same spectrum as that of (d).

for all positive time intervals T, and all choices of {t,,1,...,ty}, we have

fVutt+ T Vo, t,+T;..;Vaytn+ T) = f(Vi, 115 Va, oy .., Vs EN).
(3.133)

After a laminar flow has been initiated, it can pass through an initial
transient period and then reach a steady state, in which the flow variables
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Fig. 3.21. The mean {(U(t)} (solid line) and variance {u(f)?) of the process shown in
Fig. 3.19.

are independent of time. A turbulent flow, after an initial transient period,
can reach a statistically stationary state in which, even though the flow
variables (e.g, U(r)) vary with time, the statistics are independent of time.
This is the case for the process shown in Fig. 3.19. The mean (U(r)) and
variance (u(t)*) of this process are shown in Fig. 3.21. Evidently, after t ~ 5,
the statistics become independent of time, even though the process itself U(t)
continues to vary significantly.

For a statistically stationary process, the simplest multi-time statistic that
can be considered is the autocovariance

R(s) = (u(t)u(t + s)), (3.134)
or, in normalized form, the autocorrelation function
p(s) = (w(tyu(t + 5))/(u(r)?), (3.135)

where u(t) = U(t)—(U) is the fluctuation. (Note that, in view of the assumed
statistical stationarity, the mean (U), the variance (u?), R(s), and p(s) do not
depend upon t.) The autocorrelation function is the correlation coefficient
between the process at times ¢ and ¢ + s. Consequently it has the properties

p(0) =1, (3.136)
lp(s)] < 1. (3.137)
Further, putting ¢ = r + 5, we obtain
p(s) = (u(t' —syu(r')) /(u’)
= p(—s), (3.138)

i.e., p(s) is an even function.
If U(r) is periodic with period T (ie., U(t + T) = U(r)), then so also is
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p(s) (ie., p(s + T) = p(s)). However, for processes arising in turbulent flows,
we expect the correlation to diminish as the lag time s increases. Usually p(s)
decreases sufficiently rapidly that the integral

T = /0OO p(s)ds~ (3.139)

converges: then 7 is the integral timescale of the process.

Figure 3.22 shows the autocorrelation functions for the five processes
given in Fig. 3.20. Notice in particular that the high-frequency process
(b) has a narrower autocorrelation function (and hence a smaller 7) than
does the low-frequency process (a). By construction, process (c) has the
same autocorrelation as that of (a). Processes (d) and (e) both have the
autocorrelation function p(s) = exp(—|s|/7), with the same integral timescale
as that of process (a). Hence, apart from (b), all the processes have the same
integral timescale.

The autocovariance R(s) = (u(t)u(t + s)) = (u(t)*)p(s) and (twice) the
frequency spectrum E(w) form a Fourier-transform pair:

il

E(w) ! /OO R(s)e ™ ds

n 0

2 o0
= —/ R(s) cos(ws) ds, (3.140)
T Jo
and

R(s) = %/w E(w)e dw

o0

= /OO E(w)cos(ws) dw. (3.141)
0

(The definitions and properties of Fourier transforms are given in Appendix
D.) Clearly R(s) and E(w) contain the same information, just in different
forms. Because R(s) is real and even, so also is E(w).

As discussed more fully in Appendix E, the velocity fluctuation u(r) has
a spectral representation as the weighted sum of Fourier modes of different
frequencies w, ie., €' = cos(wt) + isin(wt). The fundamental property of
the frequency spectrum is that (for w, < w,) the integral

/wb E(w)dw (3.142)

is the contribution to the variance (u(z)?) of all modes in the frequency range
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Fig. 3.22. Autocorrelation functions of the processes shown in Fig. 3.20. As the inset
shows, for processes (a) and (c) the autocorrelation function is smooth at the origin.
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Fig. 3.23. Spectra of processes shown in Fig. 3.20.

W, < w < wyp. In particular the variance is

R(0) = (u(t)?) = /O ) E(0)do, (3.143)

as is evident from Eq. (3.141) with s = 0.

A further simple connection between the spectrum and the autocorrelation
is that the integral timescale is given by
nE(0)
2{u?)’
as is readily verified by setting @ = 0 in Eq. (3.140). A more complete
explanation of the spectral representation and interpretation of the frequency
spectrum is given in Appendix E.

Figure 3.23 shows the spectra of the stationary random processes given in
Fig. 3.20. The high-frequency process (b), having a smaller integral timescale
than that of process (a), has a correspondingly smaller value of the spectrum
at the origin (Eq. 3.144) — but its spectrum extends to higher frequencies.

In practice, the autocorrelation function or the spectrum is usually the
only quantity used to characterize the multi-time properties of a random
process. However, it should be appreciated that the one-time PDF and
the autocorrelation function provide only a partial characterization of the
process. This point is amply demonstrated by processes (d) and (e) in
Fig. 3.20. The two processes are qualitatively quite different and yet they
have the same one-time PDF (Gaussian) and the same autocorrelation

T =

(3.144)
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function (p(s) = e ¥/%). To repeat, in general, the one-time PDF and the
autocorrelation function do not completely characterize a random process.

A Gaussian process is an important but very special case. If a process is
Gaussian then, by definition, the general N-time PDF (Eq. (3.133)) is joint
normal. Now the joint-normal distribution is fully characterized by its means
(U(t,)), and its covariances (u(t,)u(t,)). For a statistically stationary process,
we have

(u(t,)u(t,)) = R(t, — t,,) = (u()?) p(ty — tu). (3.145)

Hence a statistically stationary Gaussian process is completely characterized
by its mean (U(t)), its variance (u(r)*), and the autocorrelation function p(s)
(or equivalently the spectrum E(w)).

In Fig. 3.20, process (c) is defined to be the Gaussian process with the
same spectrum as that of the turbulent velocity, process (a). Some differences
between processes (a) and (c) may be discernible; and these differences
can be clearly revealed by, for example, examining the sample paths of
U(t) = d°U(r)/d¢%, see Fig. 3.24. For the Gaussian process (c) it follows that
U(r) is also Gaussian and so the kurtosis of U(r) is 3. However, for the
turbulent velocity, process (a), U(t) is far from Gaussian, and has a kurtosis
of 11.

Random processes arising from turbulence (e.g., process (a)) are differen-
tiable, ie., for each sample path the following limit exists:

v _ . ( U(t + At) — U(f))_ (3.146)

dt Atl0 At

In this case, taking the mean and taking the limit commute, so that

<dU(t)> '= <lim( Ut + Ar) — U(t)) >
dt Atl0 At

_ lim(<U(t + A — <U(r>>>

Al0 At

d(U (1))
== (3.147)
Synthetic processes (such as processes (d) and (e)) need not be differentiable
(ie., the limit Eq. (3.146) does not exist). It may be observed that the
spectra of these processes decay as E(w) ~ w2 at high frequencies, and
that (correspondingly) their autocorrelation function p(s) = e/ is not
differentiable at the origin.
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Fig. 3.24. Sample paths of U(f) for processes (a) and (c) shown in Fig. 3.20.

Process (d) is an Ornstein—-Uhlenbeck process, which is the canonical exam-
ple of a diffusion process. Such processes are used in PDF methods and are
described in Chapter 12 and Appendix J.

EXERCISES
In the following exercises, u(t) is a zero-mean, statistically stationary, differ-
entiable random process with autocovariance R(s), autocorrelation function
p(s), and spectrum E(w).

3.27 Show that.u(t) and a(t) are uncorrelated, and that u(z) and i(t) are
negatively correlated.

3.28 Show that
<“ i_;>‘ —2(uiit) = 2(()*) + 2uiit) = ((@)*).  (3.148)

3.29  Show that at the origin (s = 0) dR(s)/ds is zero, and d’R(s)/ ds* is
negative.
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3.30  Show that the autocovariance B(s) of the process i(r) is

d?R(s)
B(s) = — i (3.149)
3.31  Show that the integral timescale of #(z) is zero.
3.32  Show that the spectrum of u(t) is w?*E(w).
3.33  If u(r) is a Gaussian process, show that
(u(®)|u(r) = v) =0, (3.150)
(i(0)|u(r) = v) = —v(a(t)’)/ (W), (3.151)

3.7 Random fields

In a turbulent flow, the velocity U(x,t) is a time-dependent random vector
field. It can be described — i.e., partially characterized — by extensions of the
tools presented in the previous sections.

One-point statistics

The one-point, one-time joint CDF of velocity is

F(V,x,1) = P{U(x,t) < V;, i = 1,2,3), (3.152)
and then the joint PDF is
BF(V,x,1)
Vi) = 00 3.
U Y A T2 (3.153)

At each point and time this PDF fully characterizes the random velocity
vector, but it contains no joint information at two or more times or positions.
In terms of this PDF, the mean velocity field is

(U(x,1) /// VI(V;x,1)dv, dv,dv, (3.154)

=/Vf(V;x,t)dV. (3.155)

The second line of this equation introduces an abbreviated notation: JO)ydv

is written for
// ()dv,dV,dvs.
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The fluctuating velocity field is defined by
u(x,t) = U(x,t) — (U(x,1)). (3.156)

The (one-point, one-time) covariance of the velocity is (u;(x, t)u;(x,t)). For
reasons given in the next chapter, these covariances are called Reynolds
stresses, and are written (wu;), with the dependences on x and ¢ being
understood.

A word on notation: the semi-colon in f(V;x,t) indicates that f is a
density with respect to the sample-space variables that appear to the left
of the semi-colon (ie., V|, V>, and V3), whereas f is a function with respect
to the remaining variables (ie., x;, x2, x3, and t). This distinction is useful
because densities and functions have different transformation properties (see
Exercise 3.9 on page 49).

Turbulent velocity fields are differentiable, and (as discussed in Section 3.6)
differentiation and taking the mean commute:

oU,\ _ Uy
<—a?>— T (3.157)
dUN (U
<ax;>_ S (3.158)

N-point statistics

The N-point, N-time joint PDF can be defined as a simple extension of
Eq. (3.132). Let {(x™,t"™),n = 1,2,..., N} be a specified set of positions and
times. Then we define

Fu(PO xD (D @ () 2 ) ) ) (3.159)

to be the joint PDF of U(x,r) at these N space-time points. To determine
this N-point PDF for all space-time points is obviously impossible, and
hence in practice a random velocity field cannot be fully characterized.

Turbulent velocity fields are found nor to be Gaussian: a Gaussian
field is fully characterized by the mean (U(x,r)) and the autocovariance
(ui(xD, 1Dy (x2), 1)),

Statistical stationarity and homogeneity

The random field U(x,t) is statistically stationary if all statistics are invariant
under a shift in time. In terms of the N-point PDF, this means that fy is
unchanged if (x™, ¢™) is replaced by (x, ™ 4+ T) for all N points, where T
is the time shift.

Similarly, the field is statistically homogeneous if all statistics are invariants
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Fig. 3.25. A sketch of a turbulent-channel-flow apparatus.

under a shift in position. Then fy is unchanged if (x",¢") is replaced by
(x™ + X,t™), for all N points, where X is the shift in position. If the
velocity field U(x,t) is statistically homogeneous, it follows that the mean
velocity (U) is uniform; and, with an appropriate choice of frame, (U)
can be taken to be zero. The definition of homogeneous turbulence is less
restrictive: specifically, in homogeneous turbulence the fluctuating velocity
field u(x,t) is statistically homogeneous. It is consistent with this definition
for the mean velocity gradients 6(U;)/0x; to be non-zero, but uniform (see
Section 5.4.5). A good approximation to homogeneous turbulence can be
achieved in wind-tunnel experiments; and homogeneous turbulence is the
simplest class of flows to study using direct numerical simulation.

In a similar way, turbulent flows can be statistically two-dimensional
or one-dimensional. For example, Fig. 3.25 is a sketch of a channel flow
apparatus. For a large aspect ratio (b/h > 1), and remote from the end walls
(Ix3]/b < 1), the statistics of the flow vary little in the spanwise (x;) direction.
To within an approximation, then, the velocity field U(x,t) is statistically
two-dimensional — statistics being independent of x;. Sufficiently far down
the channel (x;/h > 1) the flow becomes (statistically) fully developed.
Then the velocity field is statistically one-dimensional, with statistics being
independent both of x, and of x;. Similarly, the turbulent flow in a pipe is
statistically axisymmetric in that (in polar-cylindrical coordinates) all statistics
are independent for the circumferential coordinate.

It should be emphasized that, even if a flow is statistically homogeneous
or one-dimensional, nevertheless all three components of U(x,t) vary in
all three coordinate directions and time. It is only the statistics that are
independent of some coordinate directions.

Isotropic turbulence

A statistically homogeneous field U(x,t) is, by definition, statistically invari-
ant under translations (i.e., shifts in the origin of the coordinate system). If
the field is also statistically invariant under rotations and reflections of the
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coordinate system, then it is (statistically) isotropic. The concept of isotropy
is extremely important in turbulence: hundreds of wind-tunnel experiments
have been performed on (approximately) isotropic turbulence, and much of
turbulence theory centers on it. In terms of the N-point PDF (Eq. (3.159)), in
isotropic turbulence fy is unchanged if U(x™, ") is replaced by U(x'", 1),
where ¥ and U denote the position and velocity in any coordinate system
obtained by rotation and reflections of the coordinate axes.

Two-point correlation

The simplest statistic containing some information on the spatial structure
of the random field is the two-point, one-time autocovariance

Ryj(r, x,t) = (ui(x, hu;(x +r,1)), (3.160)

which is often referred to as the two-point correlation. From this it is possible
to define various integral lengthscales, for example

1 ©
L = ——— R t .
ll(x’ ) R“(O’x’t)k/()' ll(elr’x’ )dr, (3 161)

where e, 1s the unit vector in the x,-coordinate direction.

Wavenumber spectra

For homogeneous turbulence the two-point correlation R;(r,t) is indepen-
dent of x, and the information it contains can be re-expressed in terms of
the wavenumber spectrum. The spatial Fourier mode

™™ = cos(x * x) + isin(k - x), (3.162)

is a function that varies sinusoidally (with wavelength ¢ = 2r/|x|) in the
direction of the wavenumber vector «, and that is constant in planes normal
to k. The velocity spectrum tensor ®;i(x,t) is the Fourier transform of the
two-point correlation

Dij(x, 1) = (2;)3 / / / e ™™ R, (r,t)dr, (3.163)

and the inverse transform is

Rij(r,t) = //OO/ ™" ®;(x, 1) dx, (3.164)
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where dr and dk are written for dr,dr,dr; and dxk, dx; dxs, respectively.
Setting r = 0 in this equation yields

Ry;(0,1) = (uu;) = / 7 / ®,(x, 1) d. (3.165)

and so ®(x, 1) represents the contribution to the covariance (u;u;) of velocity
modes with wavenumber «.

The two-point correlation and the spectrum contain two different kinds of
directional information. The dependences of Ri(r,t) on r, and of ®;;(x,t) on
x, give information about the directional dependence of correlation; while
the components of R;; and ®; give information about the directions of the
velocities.

A useful quantity, especially for qualitative discussions, is the energy spec-
trum function:

E(K,I)E///%(I),»,»(x,t)é(|x|—rc) dx, (3.166)

which may be viewed as ®;(x,t) stripped of all directional information.
Integration of Eq. (3.166) over all scalar wavenumbers, k, yields

/go E(K, t) dix = %R,-,-(O, t) = %(u,u,). (3167)
0

Thus, E(k,t)dk represents the contribution to the turbulent kinetic energy
L(uu;) from all modes with || in the range x < |k| < k + dx. Velocity

spectra in turbulence are examined in some detail in Section 6.5.

EXERCISES
3.34  From the substitution x’ = x + r and the definition of the two-point
correlation (Eq. (3.160)), show that

Ryj(r, x,t) = Ry(—r, %, 1), (3.168)
and hence, for a statistically homogeneous field,
Rij(r,t) = Ry(—r,1). (3.169)

335  If w(x,t) is divergence-free (ie., V- # = 0), show that the two-point
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correlation (Eq. (3.160)) satisfies

0
'aTjRij(x, r,t) =0. (3.170)
Show that, if, in addition, #(x, t) is statistically homogeneous, then
0 0
—R.Ar.-t) = —R.(r.t) = 0.
arjR,J(»,t) ariR’f(r’ )=0 (3.171)

3.8 Probability and averaging

Having developed the tools to describe random variables, random processes,
and random fields, we now return to the starting point in order to clarify
the notion of probability, on which everything has been built. Physical
quantities such as density and velocity are defined operationally (e.g., in
Section 2.1), so that (at least in principle) their values can be determined by
measurement. Operational definitions of probability — for example, in terms
of time averages or ensemble averages — although they are often used, are
unsatisfactory. Instead, in modern treatments, probability theory is axiomatic.
The purpose of this section is to describe this axiomatic approach, and to
explain the connection to measurable quantities (such as time averages). For
the sake of simplicity, we start the discussion in the context of a coin-tossing
experiment.

Consider a coin that can be tossed any number of times, with the two
possible outcomes ‘heads’ and ‘tails” We define the variable p to be the
probability of ‘heads.’ (It is assumed that each toss is statistically independent
and indistinguishable from every other toss.)

Suppose that an experiment in which the coin is tossed N = 1,000,000
times is patiently performed. The fraction of tosses resulting in heads is a
random variable denoted by py. In this particular experiment, suppose that
the measured value of py is 0.5024.

The coin-tossing experiment is an example of Bernoulli trials, for which
there is a complete theory. For example, suppose that we hypothesize that

1

the coin is ‘fair, ie., p = 5. Then a simple statistical calculation shows that

(for N = 1,000,000) with 99% probability py lies in the range
0.4987 < py < 0.5013.

Since the measured value py = 0.5024 lies outside this range, we can have
high confidence that the hypothesis p = § is false. Instead, a further statistical
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calculation, based on the observed value of py, shows that, with 99%
confidence, p lies in the range

0.5011 < p < 0.5037.

To summarize:

(i) p is defined to be the probability of ‘heads,’

(ii) py is the measured frequency of ‘heads,

(iii) given a hypothesis about p, a range for py can be predicted, and

(iv) given the measured value of py, a confidence interval for p can be
determined.

The two most important points to appreciate are that p cannot be measured
— it can only be estimated with some confidence level; and that, although py
tends to p as N tends to infinity, this is not taken as the definition of p.

In considering the velocity U(t) as a turbulent flow, we define f(V; t) to
be its PDF, and then define the mean by

(U(t))z/_oo V(i) dv. 317

-
In turbulent-flow experiments and simulations, several kinds of averaging
are used to define other means that can be related to (U(t)). For statistically
stationary flows the time average (over a time interval T) is defined by

+T
(U@t))r = % / U(f)dr. (3.173)

For flows that can be repeated or replicated N times, the ensemble average
is defined by

N
1
(U(t))y = Z U™(), (3.174)
n=|
where U")(t) is the measurement on the nth realization. In simulations of

homogeneous turbulence in a cubic domain of side £, the spatial average of
U(x,t) is defined by

1 L pL pL
<U(I)>LEEAAA U(x,t)dxldxzdx3. (3175)

Similar spatial averages can be defined for statistically one- and two-
dimensional flows.

These averages (U)r, (U)y, and (U) are (like py) random variables. They
can be used to estimate (U), but not to measure it with certainty. Most im-
portantly, (U) is well defined for all flows, even those that are not stationary
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Fig. 3.26. Velocity profiles measured by Durst ef al. (1974) in the steady laminar
flow downstream of a symmetric expansion in a rectangular duct. The geometry and
boundary conditions are symmetric about the plane y = 0. Symbols: O, stable state

1; A, stable state 2; o, reflection of profile | about the y axis.

or homogeneous, or that cannot be repeated or replicated. For statistically
stationary flows (barring exceptional circumstances) (U)r tends to (U) as T
tends to infinity, but this is not taken as the definition of the mean.

EXERCISES
3.36 In a turbulent-flow experiment the ensemble mean (U)y obtained
from N = 1,000 measurements is 11.24 m s~!, and the standard
deviation of U is estimated to be 2.5 m s~ !. Determine the 95%
confidence interval for (U).
3.37  For a statistically stationary flow show that
U T pT
var({U(t)) 1) var( / / p(t — s)dsdr,
where p(s) is the autocorrelation function of U(t). Assuming that the
integral timescale 7 exists and is positive (Eq. (3.139)), obtain the
long-time result
=
var((U(1)) 1) ~ % var(U). (3.176)
3.38  Figure 3.26 shows velocity profiles measured in the steady laminar
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flow downstream of a symmetric expansion in a rectangular duct. Al-
though the geometry and boundary conditions are symmetric about
the plane y = 0, the flow is not symmetric. Each time the flow is
started from rest, after an initial transient, the flow reaches one of two
stable steady states. For this flow, discuss the relationship among the
expectation (U), the time average (U)r, and the ensemble average

(U)n.




4
Mean-flow equations

4.1 Reynolds equations

In the previous chapter, various statistical quantities were introduced to
describe turbulent velocity fields — means, PDFs, two-point correlations, etc.
It is possible to derive equations for the evolution of all of these quantities,
starting from the Navier-Stokes equations that govern the underlying tur-
bulent velocity field U(x,t). The most basic of these equations (first derived
by Reynolds (1894)) are those that govern the mean velocity field (U(x, t)).

The decomposition of the velocity U(x,t) into its mean (U(x,t)) and the
fluctuation

u(x,t)y = U(x,t) — (U(x,1)) (4.1)
is referred to as the Reynolds decomposition, ie.,

U(x,t) = (U(x,1)) + u(x, ). (4.2)
It follows from the continuity equation (Eq. (2.19))

V-U=V-((U)+u)=0 (4.3)

that both (U(x,t)) and u(x,t) are solenoidal. For the mean of this equation
is simply

V- (U)=0, (44)
and then by subtraction we obtain
Veu=0. (4.5)

(Note that taking the mean and differentiation commute so that (V- U) =
V-(U) and also (V-u) =V - (u) =0.)
Taking the mean of the momentum equation (Eq. (2.35)) is less simple

83
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because of the nonlinear convective term. The first step is to write the
substantial derivative in conservative form,

DU, oU; @
— = —(UU)), 46
Dt ot + ax,( ) (4.6)
so that the mean is
DU,\ &(U) ¢
= —{(UU,), 4.7
< 1D); > a T 6x,< 2 (@7)

Then, substituting the Reynolds decomposition for U; and U;, the nonlinear
term becomes

(UiU;) = (((U) + u)((Uj) + uy))
(UNU;) + udU;) + up(Us) + ujuy)

(UNU;) + (uiw). (4.8)

For reasons soon to be given, the velocity covariances (u;u;) are called
Reynolds stresses. Thus, from the previous two equations, we obtain

<DUJ»> _ A A ((UMU,) + ()

D¢ ct 0X;
Uy o AU | G
== + (U;) o, + a—)q(uiuj), (4.9)

the second step following from 6(U;)/éx; = 0 (Eq. (4.4)).
The final result can be usefully re-expressed by defining the mean substan-
tial derivative

D_¢ +(U)-V 4.10
BTV (419
For any property Q(x,t), DQ/Dt represents its rate of change following

a point moving with the local mean velocity (U(x.t)). In terms of this
derivative, Eq. (4.9) is

1

DU,\ D e
< Dr > = [_)—t<Uj> + 6—(14,141). (4.11)
Evidently the mean of the substantial derivative (DU,/Dt) does not equal
the mean substantial derivative of the mean D(U,)/Dr.

It is now a simple matter to take the mean of the momentum equation
(Eq. (2.35)) since the other terms are linear in U and p. The result is the
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A

Fig. 4.1. A sketch of a control volume V, with bounding control surface A, showing
the outward pointing unit normal a.

mean-momentum or Reynolds equations
D(U;)
Dt
In appearance, the Reynolds equations (Eq. (4.12)) and the Navier-Stokes
equations (Eq. (2.35)) are the same, except for the term in the Reynolds
stresses — a crucial difference.
Like p(x,t), the mean pressure field (p(x,t)) satisfies a Poisson equation.

This may be obtained either by taking the mean of V?p (Eq. (2.42)), or by
taking the divergence of the Reynolds equations:

v = (250

Oluu;)y 1
= VU — 8x~J Cpax,
i Xj

(4.12)

o 0x; 0x;
A . . "2 . -
— OSU'> a<l]1> + Y <u:ll1>‘ (413)
ox;  Cx; 0x; 0x;

EXERCISES
41 Obtain from the Reynolds equations (Eq. (4.12)) an equation for the
rate of change of mean momentum in a fixed control volume V (see
Fig. 4.1). Where possible express terms as integrals over the bounding
control surface A.
4.2 For a random field ¢(x,t), obtain the results

L= 4V -(ug), (4.14)

<—>:_——+V-<uq’)). (4.15)
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43 The mean rate of strain S; ; and mean rate of rotation Q;; are defined
by
s _ 1oy  oUy)
i= = — |, 4.16
Sy 2( ox, T o (4.16)
~ _ 1Ly oUy
== — ; 4.17
=3 ( o, o (4.17)
Obtain the results
Sy =(Su) Qy=1(Q), (4.18)
o) AUj)) _s3 _ 6.8
= 8;8; — Qi 4.19
axj axl 7 ind?] jR ey ( )

;‘f=— (420

4.2 Reynolds stresses

Evidently the Reynolds stresses (u;u;) play a crucial role in the equations for
the mean velocity field (U). If (u;u;) were zero, then the equations for U(x,t)
and (U(x,t)) would be identical. The very different behavior of U(x,t) and
(U(x,1)) (see, e.g., Fig. 1.4 on page 6) are therefore attributable to the effect
of the Reynolds stresses. Some of their properties are now described.

Interpretation as stresses

The Reynolds equations can be rewritten

p DLDIP = 5%[ (a{;g;) + g{%?) — (PYoy — p<uiuf>]- (4.21)

This is the general form of a momentum conservation equation (cf. Eq. (2.31)),
with the term in square brackets representing the sum of three stresses: the
viscous stress, the isotropic stress —(p)d;; from the mean pressure field, and
the apparent stress arising from the fluctuating velocity field, —p(u;u;). Even
though this apparent stress is —p(uu;), it is convenient and conventional to
refer to (u;u;) as the Reynolds stress.

The viscous stress (i.e., force per unit area) ultimately stems from momen-
tum transfer at the molecular level. So also the Reynolds stress stems from
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momentum transfer by the fluctuating velocity field. Referring to Fig. 4.1,
the rate of gain of momentum within a fixed control volume V due to flow
through the bounding surface A is

M= / /A pU(=U - n)dA. (4.22)

(The momentum per unit volume is pU, and the volume flow rate per unit
area into V through A is —U - n.) The mean of the j component of this
equation is

1) = [ =ptw) + ) s
-/ —p (U + () 4, (4.23)

the last step following from the divergence theorem. Thus, for the control
volume V, the Reynolds stress as it appears in the Reynolds equations (i.e.,
—p 0(u;u;)/0x;) arises from the mean momentum flux due to the fluctuating
velocity on the boundary A, —p(u;u;)n;.

The closure problem

For a general statistically three-dimensional flow, there are four independent
equations governing the mean velocity field; namely three components of
the Reynolds equations (Eq. (4.12)) together with either the mean continuity
equation (Eq. (4.4)) or the Poisson equation for (p) (Eq. (4.13)). However,
these four equations contain more than four unknowns. In addition to (U)
and (p) (four quantities), there are also the Reynolds stresses.

This is a manifestation of the closure problem. In general, the evolution
equations (obtained from the Navier—Stokes equations) for a set of statistics
contain additional statistics to those in the set considered. Consequently, in
the absence of separate information to determine the additional statistics, the
set of equations cannot be solved. Such a set of equations — with more un-
knowns than equations — is said to be unclosed. The Reynolds equations are
unclosed: they cannot be solved unless the Reynolds stresses are somehow
determined.

Tensor properties

The Reynolds stresses are the components of a second-order tensor,! which
is obviously symmetric, ie., (wu;) = (u;u;). The diagonal components ((u]) =
(uyuy), (u3), and (u?)) are normal stresses, while the off-diagonal components
(e.g., (uup)) are shear stresses.

I The properties of second-order tensors are reviewed in Appendix B.
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The turbulent kinetic energy k(x,t) is defined to be half the trace of the
Reynolds stress tensor:

k=1(u-uy=1uu). (4.24)

It is the mean kinetic energy per unit mass in the fluctuating velocity field.
In the principal axes of the Reynolds stress tensor, the shear stresses are
zero, and the normal stresses are the eigenvalues, which are non-negative
(ie., (u3) = 0). Thus the Reynolds stress tensor is symmetric positive semi-
definite. In general, all eigenvalues are strictly positive; but, in special or
extreme circumstances, one or more of the eigenvalues can be zero.

Anisotropy

The distinction between shear stresses and normal stresses is dependent
on the choice of coordinate system. An intrinsic distinction can be made
between isotropic and anisotropic stresses. The isotropic stress is %k&,»j, and
then the deviatoric anisotropic part is

a; = <uiuj> — %k(s,_, : (425)
The normalized anisotropy tensor — used extensively below — is defined by
a;  (uu;)
by = =L = L1, .
/ 2k <ugug> 35 J (4 26)

In terms of these anisotropy tensors, the Reynolds stress tensor is

(uitj) = 3kdy + ay;
= 2k(18; + byy). (4.27)

It is only the anisotropic component a;; that is effective in transporting
momentum. For we have

8<uiuj> 8<p> 8a,»j a 2
P~ T E iy ™ + 8—xj(<p> + 5pk), (4.28)

showing that the isotropic component ( %k) can be absorbed in a modified
mean pressure.

Irrotational motion

{Xn essential feature of turbulent flows is that they are rotational. Consider
Instead an irrotational random velocity field - such as (to within an approx-
Imation) the flow of water waves. The vorticity is zero, and so in turn the
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mean vorticity, the fluctuating vorticity, and du;/dx; — du;/0x; are also zero.
Hence we have

ow  Ou;\\ 0 0 _
<ui(0x1' B 8xi)> B 0xj(2<uiui>) 0x; () =0, (4.29)
from which follows the Corrsin—Kistler equation (Corrsin and Kistler 1954)
0 ok

a—xi<u,~uf> = (4.30)
for irrotational flow. In this case the Reynolds stress (u;u;) has the same effect
as the isotropic stress kd;;, which can be absorbed in a modified pressure. In
other words, the Reynolds stresses arising from an irrotational field u(x,t)
have absolutely no effect on the mean velocity field.

Symmetries

For some flows, symmetries in the flow geometry determine properties of the
Reynolds stresses.

Consider a statistically two-dimensional flow in which statistics are inde-
pendent of x3;, and which is statistically invariant under reflections of the
x3 coordinate axis. For the PDF of velocity f(V;x,t), these two conditions
imply that

of

7 =0 (4.31)

J(Vi, Vo, Vay xi, X2, X3, 1) = f(V1, Vo, = V35 X1, X2, — X3, 1). (4.32)

At x; = 0, this last equation yields (U;) = —(Us), ie., (U;) = 0; it similarly
yields (u,u3) = 0 and (u,u3) = 0. The first equation (Eq. (4.31)) indicates that
these relations hold for all x. Thus, for such a statistically two-dimensional
flow, (Us) is zero and the Reynolds-stress tensor is

(ur) (wmw) 0
(uuy)  (u3) 0 |. (4.33)
0 0 (ud)
In addition to being statistically two-dimensional, the turbulent channel

flow sketched in Fig. 3.25 on page 76 is statistically symmetric about the
plane x, = 0. This symmetry implies that

f(Vl’ V25 V3;xl’x2’ X3,t) = f(Vl’_V2’ V3;X1,-X2,X3, t)) (434)

from which it follows that (U,) and (u,u,) are odd functions of x,, whereas
(U,) and the normal stresses are even functions.
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EXERCISES
4.4 Each of the following equations is incorrect. Why?
0.5 0.1 0
(a) (wu;) =1 0.1 0.3 0.1
0 01 —041
021 —-0.05 0.01
(b) (wu;) = | —0.06 0.5 0
0.01 0 10
1 1.5 02
(c) (wuj) =115 1 0
02 0 1
1.8 0.2 0
(d) aj=102 —-16 0.1
0 01 —-03
—-04 0 0.1
(e) b;; = 0 02 0
01 0 02
45 In an experiment on homogeneous turbulent shear flow (in which

0(U,)/0x, is the only non-zero mean velocity gradient) the Reynolds
stresses (normalized by k) are measured to be

108 —032 0
=| —032 040 O |. (4.35)
0 0 052

(uiu;)
k

(2) Determine the corresponding anisotropy tensors a;; and by;.

(b) What is the correlation coefficient between u; and u,?

(¢) A matrix of the form of Eq. (4.35) can be transformed into
principal axes by a unitary matrix of the form

cosf sinf 0
A=] —sinf cosf 0 |.
0 0 1

That is, for particular values of the angle 0, A (ucu;)A;, is
diagonal. Determine the angle 6 = 0z (0 < 0z < 7/2) that
transforms (u;u;) to principal axes.
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(d) Determine the angle § = 05 (0 < 05 < n/2) that transforms
the mean rate of strain S;; to principal axes.
(e) Determine the eigenvalues of (u;u;).

4.3 The mean scalar equation

Just as the most basic description of the turbulent velocity field U(x,t) is
provided by the mean velocity (U(x,t)), so also the most basic description
of a conserved passive scalar field ¢(x,t) is provided by its mean (¢(x,1)).
The conservation equation for (¢(x, t)) is obtained by the same procedure as
that used to obtain the Reynolds equations.

The fluctuating scalar field is defined by

¢'(x,1) = p(x, 1) — (P(x, 1)), (4.36)
so that the Reynolds decomposition of the scalar field is
P(x, 1) = (p(x, 1)) + ¢'(x, 1). (4.37)

The conservation equation for ¢(x,t) (Eq. (2.54)) can be written

%if +V-(Up) =T V4. (4.38)

The only nonlinear term is that involving the convective flux U¢, the mean
of which is

(Ug) = ((U) + u)(($) + ¢))
= (U){¢) + (ug'). (4.39)

The velocity—scalar covariance (u¢’) is a vector, which is called the scalar
flux: it represents the flux (flow rate per unit area) of the scalar due to
the fluctuating velocity field (see Exercise 4.6). Thus, taking the mean of
Eq. (4.38), we obtain

0
D049 () g) + (wd) = T V(). (440
or, in terms of the mean substantial derivative (Eq. (4.10)),
D
PO _ v (0vig) — g (441)

Evidently, in this mean-scalar equation, the scalar fluxes play an analogous
role to that of the Reynolds stresses in the Reynolds equations. In particular
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they give rise to a closure problem: even if (U) is known, Eq. (4.41) cannot
be solved for (¢), without a prescription for (u¢’).

EXERCISES

4.6 Let d(t) be the integral of a conserved passive scalar field ¢(x,t)
over a fixed control volume V (see Fig. 4.1). Obtain an equation
for d(®(t))/dt. Where possible express each term as an integral over
the bounding control surface A, and describe the significance of the
term.

4.7 Consider a statistically two-dimensional flow in which the statistics of
the velocity and scalar fields are independent of x3 and are invariant
under a reflection of the x3 coordinate axis. Write down the symmetry
conditions satisfied by the one-point joint PDF of U(x,t) and ¢(x, ).
Show that d(¢)/0x; and (u3¢’) are zero. If, further, x, = 0 is a plane
of statistical symmetry, show that (¢) is an even function of x, and
that (u»¢’) is an odd function.

4.4 Gradient-diffusion and turbulent-viscosity hypotheses

In the historical development of a scientific field of inquiry, it is usual for
there to be a succession of models proposed to describe the phenomena
being studied. Often — such as in the study of turbulent flows — the early
models are simple, but are subsequently found to be lacking both in physical
content and in predictive accuracy. Later models may be superior in physical
content and predictive accuracy, but lack simplicity. In spite of their flaws, it
is valuable to have an appreciation for the early, simple models. One reason
is that the behavior implied by the models may be determined by simple
reasoning or simple analysis — as opposed to the numerical solutions usually
required for more complex models. Second, the simple models can provide
a reference against which the phenomena being studied — and also more
complex models — can be compared.

It is in this spirit that we introduce the gradient-diffusion hypothesis, the
turbulent-viscosity hypothesis, and related ideas. These are valuable concepts,
whose limitations should always be borne in mind.

The scalar flux (u¢) vector gives both the direction and the magnitude of
the turbulent transport of the conserved scalar ¢. According to the gradient-
diffusion hypothesis, this transport is down the mean scalar gradient — that
is, in the direction of —V(#). Thus, according to the hypothesis, there is a
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positive scalar I'r(x,t) — the turbulent diffusivity — such that
(u¢') = —I'tv{¢). (4.42)
With the effective diffusivity defined as the sum of the molecular and turbulent
diffusivities
reff(x’ t) = r + FT(xs t)’ (443)

the mean scalar conservation equation (Eq. (4.41)) incorporating the gradient-
diffusion hypothesis (Eq. (4.42)) is
D(¢)

D =V (Cer V(). (4.44)

It may be seen, then, that this equation is the same as the conservation
equation for ¢ (Eq. (2.54)) but with (U), (¢), and I'es in place of U, ¢, and
I.

Mathematically, the gradient-diffusion hypothesis (Eq. (4.42)) is analogous
to Fourier’s law of heat conduction and Fick’s law of molecular diffusion.
Similarly, the turbulent-viscosity hypothesis — introduced by Boussinesq in
1877 — is mathematically analogous to the stress-rate-of-strain relation for
a Newtonian fluid (Eq. (2.32)). According to the hypothesis, the deviatoric
Reynolds stress (—p(u;u;) + % pkd;;) 1s proportional to the mean rate of strain,

ou;) | oU;))
—p(u,-u,-) + %pk&u = pvr ( axj + ax: >

= 205, (4.45)

where the positive scalar coefficient vy is the turbulent viscosity (also called
the eddy viscosity).

The mean-momentum equation incorporating the turbulent-viscosity hy-
pothesis (i.e., Eq. (4.45) substituted into Eq. (4.12)) is

D d a(U) | aU,) 12 ,
B \Vil = 3¢ —— === 2 46
5 (Ui ox, [veﬁ( 2%, ok ) > %, (p) + 3pk), (4.46)
where
ver(x, 1) = v 4 vr(x, 1), (4.47)

is the effective viscosity. This is the same as the Navier-Stokes equations with
(U) and v.q in place of U and v, with (p) + 2pk the modified mean pressure.

The gradient-diffusion and turbulent-viscosity hypotheses have been in-
troduced without justification or criticism so far. A thorough appraisal of
the hypotheses is postponed to Chapter 10. At this stage, the following
observations suffice.
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(i)

(i)

(ii)

(iv)

The gradient-diffusion hypothesis implies that the scalar flux vector is
aligned with the mean scalar gradient vector. Even in simple turbulent
flows this is found not be the case. For example, in an experiment on
homogeneous turbulent shear flow (Tavoularis and Corrsin 1981) the
angle between V(¢) and —(u¢’) was measured to be 65°.

Similarly, the turbulent-viscosity hypothesis implies that the anisotropy
tensor g;; is aligned with the mean rate-of-strain tensor, i.e.,

a;; = (ul»uj> — %kélj
. o(Uy) | o(U;)
B _VT( 0x; + 0x;

= _2VTS’ij- (448)

Being symmetric and deviatoric, both a;; and the mean rate of
strain have five independent components. According to the turbulent-
viscosity hypothesis, these five components are related to each other
through the scalar coefficient vy. Again, even in simple shear flow, it
is found that this alignment does not occur (see Exercise 4.5).

An important class of flows consists of those that can be described
by the two-dimensional turbulent-boundary-layer equations (which
are presented in Chapter 5). In these flows, the mean velocity is
predominantly in the x;-coordinate direction, while variations in mean
quantities are predominantly in the x,-coordinate direction. Only one
component (u,¢’) of the scalar flux, and one Reynolds stress (uu,),
appear in the boundary-layer equations. Consequently, the gradient-
diffusion hypothesis reduces to

: o(¢)
=_T .
- (mg) =—Tr 50 (449)
and the turbulent-viscosity hypothesis to
_ . o{ty)
(Ujuy) = —vr o (4.50)

Both of these equations relate a single covariance to a single gradient.
Providing that the covariance and the gradient have opposite signs —
which is almost always the case — then, rather than being hypotheses
or assumptions, these equations can be taken as definitions of 't and
vT.

Specification of vy(x, t) and I'v(x, t) solves the closure problem. That is,
if vr and I't can somehow be specified, then the mean flow equations
for (U) (Eq. (4.46)) and for (¢) (Eq. (4.44)) can be solved.
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(v) At high Reynolds number, and remote from walls, vy and I't are

found to scale with the velocity scale &/ and the length scale £ of the
flow, independent from the molecular properties of the fluid v and I'.
Consequently, the ratios vr/v and I't/I" both increase linearly with
Reynolds number, and so (in the given circumstances) the molecular
transport is negligible.

(vi) The turbulent Prandtl number oy is defined by

4.8

4.9

oy =vr/I'r. (4.51)

In most simple turbulent flows ot is found to be of order unity.

EXERCISES
Show that, according to the gradient-diffusion hypothesis, in a sta-
tistically stationary flow the maximum and minimum values of (¢)
occur at the boundaries.

(Hint: modify the boundedness argument used in Section 2.6 to apply
it to Eq. (4.44).)

Show that, in order for the turbulent-viscosity hypothesis (Eq. (4.45))
to yield non-negative normal stresses, it is necessary and sufficient
for the turbulent viscosity to satisfy

< — 4.52
VT < 35;" ( )

where S; is the largest eigenvalue of the mean rate-of-strain tensor.




5
Free shear flows

The most commonly studied turbulent free shear flows are jets, wakes, and
mixing layers. As the name ‘free’ implies, these flows are remote from walls,
and the turbulent flow arises because of mean-velocity differences.

We begin by examining the round jet. By combining experimental obser-
vations (Section 5.1) with the Reynolds equations (Section 5.2), a good deal
can be learned, not only about the round jet, but also about the behavior
of turbulent flows in general. In Section 5.3, we study the turbulent kinetic
energy in the round jet, and the important processes of production and
dissipation of energy. Other self-similar free shear flows are briefly described
in Section 5.4; and further observations about the behavior of free shear
flows are made in Section 5.5.

5.1 The round jet: experimental observations
5.1.1 A description of the flow

We have already encountered the round jet in Chapter 1, for example,
Figs. 1.1-1.4. The ideal experimental configuration and the coordinate system
employed are shown in Fig. 5.1. A Newtonian fluid steadily flows through a
nozzle of diameter d, which produces (approximately) a flat-topped velocity
profile, with velocity U;. The jet from the nozzle flows into an ambient of the
same fluid, which is at rest at infinity. The flow is statistically stationary and
axisymmetric. Hence statistics depend on the axial and radial coordinates (x
and r), but are independent of time and of the circumferential coordinate, 6.
The velocity components in the x, r, and 6 coordinate directions are denoted
by U, V, and W.

In the ideal experiment, the flow is completely defined by Uj,d, and v. and
hence the only non-dimensional parameter is the Reynolds number, defined

0A
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Fig. 5.1. A sketch of a round-jet experiment. showing the polar-cylindrical coordinate
system employed.

by Re = U,d/v. (In practice, the details of the nozzle and the surroundings
have some effect, as discussed by Schneider (1985) and Hussein et al. (1994).)

5.1.2 The mean velocity field

As might be expected from the visual appearance of the flow (Figs. 1.1 and 1.2
on pages 4 and 5), the mean velocity is predominantly in the axial direction.
Measured radial profiles of the mean axial velocity are shown in Fig 5.2.
(Note that r = 0 is the axis, about which the profile of (U) is symmetric.)
Not shown in Fig. 5.2 is the initial development region (0 < x/d < 25,
say), in which the profile changes from being (approximately) square to the
rounded shape seen in Fig. 5.2. The mean circumferential velocity is zero
(Le, (W) =0), while — as shown in Exercise 5.5 — the mean radial velocity
(V) is smaller than (U) by an order of magnitude.

The axial velocity

In terms of the mean axial velocity field (U(x,r,0)) (which is independent
of 8), the centerline velocity is

Us(x) = (U(x,0,0)), (5.1)
and the jet’s half-width r|,5(x) is defined such that
<U(,\', rl/’Z(x)a 0)> = %UO(X)‘ (52)

Two clear observations from Fig. 5.2 are that, with increasing axial distance,
the jet decays (i.e.. Uy(x) decreases), and that it spreads (i.e., r,»(x) increases).
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Fig. 5.2. Radial profiles of mean axial velocity in a turbulent round jet, Re = 95,500.
The dashed lines indicate the half-width, r,»(x), of the profiles. (Adapted from the
data of Hussein et al. (1994).) i
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Fig. 5.3: Mean axial velocity against radial distance in a turbulent round jet, Re = 10°;
measurements of Wygnanski and Fiedler (1969). Symbols: o, x/d = 40; A, x/d = 50;
O, x/d=60; ©, x/d =75; e, x/d =975.

As the jet decays and spreads, the mean velocity profiles change, as shown
in Fig. 5.2, but the shape of the profiles does not change. Beyond the
developing region (x/d > 30, say), the profiles of (U)/Uy(x), plotted against
r/ri2(x) collapse onto a single curve. Figure 5.3 shows the experimental data
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of Wygnanski and Fiedler (1969) plotted this way for x/d between 40 and
100. The important conclusion is that the mean velocity profile becomes
self-similar.

Self-similarity
Self-similarity is an important concept that arises in several different contexts
in the study of turbulent flows. To explore the general ideas, consider a
quantity Q(x,y) that depends on two independent variables (ie., x and y).
As functions of x, characteristic scales Qy(x) and d(x) are defined for the
dependent variable 0 and the independent variable y, respectively. Then
scaled variables are defined by

t= g(yx—) (5.3)
~ _ 0O(x,y)
(&, x) = 0vx) (54)

If the scaled dependent variable is independent of x, i.e., there is a function
O(&) such that

O(&,x) = Q(%), (5.5)

then Q(x,y) is self-similar. In this case, Q(x,y) can be expressed in terms of
functions of single independent variables — Qq(x), 5(x), and Q(&).
Several comments and qualifications are in order:

(i) the scales Qy(x) and &(x) must be chosen appropriately — they usually
have power-law dependences on x;
(ii) in some circumstances, more general transformations are required,
e.g,
0(&, x) = [Q(x,y) — Qu(X)] /Qo(x);

(iii) self-similar behavior may be observed (to within a good approxima-
tion) over a range of x (but not for all x); and

(iv) if a self-similar quantity Q(x,y) is governed by a partial differen-
tial equation, then Qy(x),d(x), and Q(&) are governed by ordinary
differential equations.

Axial variation of scales

Returning to the round jet, to complete the picture we need to determine the
axial variation of Uy(x) and ry,»(x). Figure 54 shows the inverse of Uy(x),
specifically U;/Uy(x), plotted against x/d. Evidently, over the x/d range
considered, the experimental data lie on a straight line. The intercept of this
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Fig. 54. The variation with axial distance of the mean velocity along the centerline
in a turbulent round jet, Re = 95,500: symbols, experimental data of Hussein et al.
(1994); and line, Eq. (5.6) with x,/d =4 and B = 5.8.

line with the abscissa defines the virtual origin, denoted by x;; so that the
straight line in Fig. 5.4 corresponds to
U()(X) B

U, ~ G=xo)d (56)

where B is an empirical constdnt. (Obviously the straight-line behavior and
Eq. (5.6) do not hold in the developing region close to the nozzle.)
It is found that the jet spreads linearly: the spreading rate
— d"l/z(x)

S =—1 (5.7)

is a constant. Or, put another way, the empirical law for ripa(x) is

rija(x) = S(x — xo), (5.8)

for x in the self-similar region. We shall see in Section 5.2 that momentum
conservation implies that the product r,,,(x)Uy(x) is independent of x; and
so the variations ri;, ~ x and Uy ~ x~' go hand in hand. These variations
also show that the local Reynolds number, defined by

Reg(x) = ri/2(x)Uo(x) /v, (5.9)

is independent of x.
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Table 5.1. The spreading rate S (Eq. (5.7)) and velocity-decay constant
B (Eq. (5.6)) for turbulent round jets (from Panchapakesan and Lumley
(1993a))

Panchapakesan and Hussein et al. (1994), Hussein et al. (1994),

Lumley (1993a) hot-wire data laser-Doppler data
Re 11,000 95,500 95,500
S 0.096 0.102 0.094
B 6.06 5.9 5.8

Reynolds number

In the ideal round-jet experiment, the only non-dimensional parameter is the
jet’s Reynolds number, Re. We should ask, therefore; how the self-similar
profile shape, the velocity-decay constant B, and the spreading rate S vary
with Re. The answer is simple and profound: there is no dependence on Re.
Table 5.1 shows that, for jets with Re differing by a factor of almost ten, the
small differences in the measured values of B and S are within experimental
uncertainties. Also, from visual observations, the spreading rate for jets with
Re larger by a factor of a thousand is the same (see Fig. 1.1 on page 4 and
Mungal and Hollingsworth (1989)). It is evident from Fig. 1.2 on page 5
that the Reynolds number does affect the flow: the small-scale structures are
smaller at larger Reynolds number. However, to repeat, the mean velocity
profile and the spreading rate are independent of Re.

Summary

In the self-similar region (x/d > 30) of high-Reynolds-number turbulent
jets (Re > 10%), the centerline velocity Uy(x) and the half width r;/»(x) vary
according to Egs. (5.6) and (5.8). The empirical constants in these laws are
independent of Re: for definiteness we take their values to be B = 5.8 and
S = 0.094 (see Table 5.1). The cross-stream similarity variable can be taken
to be either
éEr/rl/z, (510)
or
n=r/(x—xp), (5.11)

the two being related by n = S&. The self-similar mean velocity profile is
defined by

fn) = (&) = (U(x,r,0))/ U(x), (5.12)

and is shown in Fig. 5.5.
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0.0 1.0 2.0
é = r/rl/z
L " — 1
0.0 0.1 0.2
n = rl(x-xg)

Fig. 5.5. The self-similar profile of the mean axial velocity in the self-similar round
jet: curve fit to the LDA data of Hussein er al. (1994).

0.02 [
VWU,

0.00 —L

Fig. 5.6. The mean lateral velocity in the self-similar round jet. From the LDA data
of Hussein et al. (1994).

The lateral velocity

In the self-similar region of the round jet, the mean lateral velocity (V) can
be determined from (U) via the continuity equation (see Exercises 5.4 and
5.5). Figure 5.6 shows the self-similar profile of (V)/U, obtained in this way.
It should be observed that (V) is very small — less than U, by a factor of
40. Notice also that (V) is negative at the edge of the jet, indicating that
ambient fluid is flowing into the jet and being entrained.
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5.1

5.2

5.3

54

EXERCISES
From the empirical laws for Uy(x) and r,,»(x) (taking xo = 0), show
that

v, U,
& x G139
and hence
r1/2 dU()//_ _
_Uo G (5.14)

From the self-similar velocity profile f(#) in the turbulent round jet
(Egs. (5.11) and (5.12)) show that

rijz 0(U) _ ’
rip 0U)
e Sf (5.16)

(where a prime denotes differentiation with respect to 7).
An approximation to the self-similar velocity profile is

fn) =1+ an* (5.17)

Show that (from the definition of r,/;) the constant a is given by

a=(2—1)/8*~47. (5.18)
Show that, according to this approximation,
. (u)y _ _ 2y3
U, or - danS /(1 + an”)’, (5.19)
and that
0
riz (04U) = 2+ 2 =~ —059. (5.20)
U() or r=ry
(Note that (6(U)/0r),=,, , is about six times (6(U)/x),-o at the same

axial location.)
For the turbulent round jet, in polar-cylindrical coordinates, the mean
continuity equation is

ou) 18
St oS =0. (5.21)

Show that, if (U) is self-similar with
(U)/Us = f(n), (5.22)
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5.6

then (V) is also self-similar with

(V)/Us = h(n), (5.23)
where f(n) and h(n) are related by
n(fn) = (hn)'". (5.24)

If the self-similar axial velocity profile f(n) is given by Eq. (5.17),
show from Eq. (5.24) that the lateral velocity profile A(n) is

h(n) = 3(n — an’)/(1 + an?)*. (5:25)

Show that, according to this equation, the lateral velocity at the
half-width is

(V),=,l/2 Uy h(S) = (- — 2/2)SU, = 0.014U,. (5.26)
Show that, for large r/r ., Eq. (5.25) implies that
UyS 1
V) ~—
v 22— 1)(r/rp)
=~ —O.IU()/(r/rl/z). (527)

Let f(0U,V, W ;x,r,0) denote the joint PDF of U, V, and W in the
turbulent round jet: U, ¥, and W are the sample-space variables.
The flow is statistically axisymmetric:
of
a0~
and it is invariant under a reflection of the circumferential coordinate
direction:

(5.28)

fOVW:x,r.0)=f(0,V,—W:x.r,—0). (5.29)

Show that, for 6 = 0, Eq (529) implies. that (W), (UW), and (VW)
are zero, and that (in view of Eq. (5.28)) these quantities are zero
everywhere.

Draw a sketch of the r-f plane and show that (for given x,
r, and 0) the directions corresponding to V(x,r,0), —V(x,r,0 + ),
Wi(x,r,0 —n/2), and —W(x,r,0 + n/2) are the same. Hence argue
that (for statistically axisymmetric flows)

UV, £W;x,0,0) = f(U, +W,+V;x,0,0). (5.30)

Show that on the axis (V?) and (W?) are equal, and that (V') and
(UV) are zero.
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5.1.3 Reynolds stresses
The fluctuating velocity components in the x, r, and 0 coordinate directions
are denoted by u, v, and w. In the turbulent round jet, the Reynolds-stress
tensor is

(u*) (uw) O
(w) ©* 0 |. (5.31)
0 0 (w?)

That is, because of the circumferential symmetry, (uw) and (vw) are zero (see
Exercise 5.6). The geometry of the flow also dictates that the normal stresses
are even functions of r, while the shear stress (uv) is an odd function. As the
axis r = 0 is approached, the radial ¥ and circumferential W components
of velocity become indistinguishable. Hence (v*) and (w?) are equal on the
axis.

Consider the r.m.s. axial velocity on the centerline
(%) = (), (5.32)

How does uy(x) vary with x? Or, in terms of non-dimensional quantities, how
does ug(x)/Up(x) vary with x/d and Re? Again the answer is simple, but very
revealing. After the development region, uy(x)/Uy(x) tends asymptotically to
a constant value of approximately 0.25 (see, e.g., Panchapakesan and Lumley
(1993a)). Thus, like Up(x),uy(x) decays as x~!. There is some variation in
uy /Uy from experiment to experiment, but no systematic dependence on Re
has been documented.

As might be expected from the above observations, it is found that the
Reynolds stresses become self-similar. That is, the profiles of (uu;)/Up(x)*
plotted against r/r;, or n = r/(x — xp) collapse for all x beyond the
development region. Figure 5.7 shows the self-similar profiles measured by
Hussein et al. (1994). Some important observations from these data are the
following.

(i) On the centerline, the r.m.s. velocity is about 25% of the mean.

(ii) Toward the edge of the jet, although the Reynolds stresses decay (with
increasing r/r|,»), the ratio of the r.ms. to the local mean increases
without bound (see Fig. 5.8).

(iii) The Reynolds stresses exhibit significant anisotropy, which is revealed
both by the shear stress and by the differences in the normal stresses.

(iv) The relative magnitude of the shear stress can be quantified by the
ratio (uv)/k, and by the u-v correlation coefficient, p,, (see Fig. 5.9).
The two curves have the same shape with a flat central portion, with
(uv) /k = 0.27 and p,, ~ 04.
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Fig. 5.7. Profiles of Reynolds stresses in the self-similar round jet: curve fit to the
LDA data of Hussein et al. (1994).
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Fig. 5.8. The profile of the local turbulence intensity - (u?)!2/(U) - in the self-similar
round jet. From the curve fit to the experimental data of Hussein et al. (1994).

(v) The shear stress is positive where 6(U)/dr is negative, and goes to
zero where 0(U)/or goes to zero. Hence, for this flow, there is a
positive turbulent viscosity vy such that

(uv) = —vy 65;:). (5.33)
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5.9. Profiles of (uv)/k and the u-v correlation coefficient p,, in the self-similar

round jet. From the curve fit to the experimental data of Hussein et al. (1994).

(vi)

(vii)

Since the profiles of (uv) and d(U)/0r are self-similar, evidently the
profile of turbulent viscosity defined by Eq. (5.33) is also self-similar.
Specifically

vr(x,r) = Uo(x) r12(x) ¥1(n), (5.34)

where ¥t is the normalized profile — which is shown in Fig. 5.10. It
may be observed that 91 is fairly uniform over the bulk of the jet —
within 15% of 0.028 for 0.1 < r/r;» < 1.5 — but that it decreases to
zero toward the edge.

The turbulent viscosity has dimensions of velocity times length. Con-
sequently a local lengthscale, I(x,r), can be defined by

vr = u'l, (5.35)

where u/(x,r) is the local r.m.s. axial velocity (u?)!/2. Clearly ! is self-
similar. The profile of /r,,, (Fig. 5.11) is quite flat, being within 15%
of the value 0.12 over most of the jet (0.1 < r/rip < 2.1).

The lengthscale, I, defined in Eq. (5.35) is a derived quantity, rather
than being directly measurable and having a clear physical significance.
On the other hand, the integral lengthscales (obtained from the two-point
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Fig. 5.10. The normalized turbulent diffusivity #+ (Eq. (5.34)) in the self-similar round
jet. From the curve fit to the experimental data of Hussein et al. (1994).
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Fig. 5.11. The profile of the lengthscale defined by Eq. (5.35) in the self-similar round
Jet. From the curve fit to the experimental data of Hussein et al. (1994).

velocity correlations) are measurable and characterize the distance over
which the fluctuating velocity field is correlated. Wygnanski and Fiedler
(1969) measured two-point correlations of the axial velocity, and found them
to be self-similar for x/d > 30. The longitudinal and lateral correlations are
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Fig. 5.12. Self-similar profiles of the integral lengthscales in the turbulent round jet.
From Wygnanski and Fiedler (1969).

defined by
(u(x + is,r,0)u(x — is,r,0)

R = 5.36
Rl(x,r,s) [<u(x+ %s,r,9)2><u(x— %s,r,9)2>]1/2’ ( )
- (u(x,r + %s, Oyu(x,r — %s, 0)
= 5.37
Rz(X,r,S) [(u(x,r+ %5,9)2)(u(x,r— %5,9)2>]1/2’ ( )
and then the corresponding integral lengthscales are

L“(x,r) = / R[(X,",S) dS, (538)

0
Ly(x,r) = / Ry(x,r,s)ds. (5.39)

0

Figure 5.12 shows the measured self-similar profiles of these integral length-
scales. It may be seen that L, and Ly are typically 0.7r;, and 0.3r,
respectively — considerably larger than | =~ 0.1r/,. It should also be appreci-
ated that there can be significant correlation for separation distances greater
than L,,, as Fig. 5.13 shows. Some further characteristics of the self-similar
round jet are described in Section 5.4.

EXERCISES
5.7 At r/ri» = 1, the principal axes of the mean rate-of-strain tensor are

at approximately 45° to the x axis. Show (from the measurements in
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Fig. 5.13. The longitudinal autocorrelation of the axial velocity in the self-similar
round jet. From Wygnanski and Fiedler (1969).

Fig. 5.7) that the principal axes of the Reynolds-stress tensor are at
an angle of less than 30° to the x axis.
5.8 Compare L;; with the visible widths of the jets in Figs. 1.1 and 1.2.

5.9 In polar-cylindrical coordinates (x,r, and ), the continuity equation
is
oU 10 1 oW
= T+ = =0, (5.40)

(where U,V, and W are the velocities in the three coordinate direc-
tions); and the Navier-Stokes equations are

U U _8U WoU  1ap

iU o 2
Rl Rl et et R A (5.41)
oV ov oV Wov W? 1 dp
AR § i T A A A Mt
T i P
Vo2 ow
2 —_— e — —
+v<VV S~ ) (5.42)
oW OW W W AW VW 1 dp
KAAGNIES § AN Z =%
o UVttt rp 30
2aV W
2 —_— —_—
+v<V W5 = r2> , (5.43)
where
2f of\ 1 &f
2
Vf—axﬁ‘a( ar)+ﬁ57ﬁ’ (544)

(see Batchelor (1967)). In non-swirling statistically axisymmetric flows,
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(W), (uw), and (vw) are zero. Show that the Reynolds equations for
such flows are:

Uy 14 B
S (V) =0, (5:45)
> 5 5 8
D _ ! W) 2y~ L2l v VAU, (546)
D) 18(p) @ 10 (w?)
B~ par a™ TrEteNT T
+v<V2(V) _ <_:’2_>> (5.47)
where
D o 5 5
2= U ) 5 (5.48)

5.2 The round jet: mean momentum
5.2.1 Boundary-layer equations

In the turbulent round jet, there is a dominant mean-flow direction (x), the
mean lateral velocity is relatively small (|(V)| =~ 0.03|(U)|), the flow spreads
gradually (dr,,/dx =~ 0.1), and so (for means) axial gradients are small
compared with lateral gradients. These features — which are shared by all
free shear flows — allow boundary-layer equations to be used in place of the
full Reynolds equations. Of course, the turbulent boundary-layer equations
also apply to turbulent boundary layers, and to some other wall-bounded
flows as well. These flows are discussed in Chapter 7.

We begin by considering statistically two-dimensional, stationary flows in
which x is the dominant direction of flow, gradients of means are predom-
inately in the y direction, and statistics do not vary in the z direction. The
velocity components are U,V, and W, with (W) zero. Examples of such
flows are sketched in Fig. 5.14. We consider cases — such as in Fig. 5.14
— in which the upper boundary (y — o0) is quiescent or a non-turbulent
free stream. For each flow, as functions of x we can define d(x) to be the
characteristic flow width, U,(x) to be the characteristic convective velocity,
and U,(x) to be the characteristic velocity difference.

For these flows, the mean continuity and momentum equations are

o), o)
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(@)

—”* Plane jet

(b) >

Plane mixing layer

S ;5 x
() . _ |

Plane wake

%

(d)

Boundary layer

Fig. 5.14. Sketches of plane two-dimensional shear flows showing the characteristic
flow width 6(x), the characteristic convective velocity Ue, and the characteristic velocity
difference U..
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8(U) a(Uy _ 19p) o*(U)
U T =75 +{v ox2 }
HU) o) O(uv)
+v 5y ox oy (5.50)
(o) B )
V) dw)  o(v?)
+{v 0y? }_ ox 3y

These equations also apply to laminar flow, in which case the Reynolds
stresses are zero. The terms in braces ({ }) are neglected in the boundary-
layer approximation.

The turbulent boundary-layer equations are obtained simply by neglecting
the terms in braces — for the same reasons that they are neglected in the
laminar case — and by neglecting the axial derivatives of the Reynolds stresses,
on the grounds that they are small compared with the lateral gradients. The
lateral momentum equation (Eq. (5.51)) then becomes

o), 0w
p 0y dy

In the free stream (y — o0) the pressure is denoted by py(x), and (v?) is
zero. Consequently the equation can be integrated to yield

(P)/p = po/p — (v*), (5.53)

and then the axial pressure gradient is

1) _ 1dp 00"
p 0x  p dx ox

=0. (5.52)

(5.54)

For flows with quiescent or uniform free streams, the pressure gradient
dpy/dx is zero. In general, dpy/dx is given in terms of the free-stream
velocity by Bernoulli’s equation.

In the axial-momentum equation, Eq. (5.50), neglecting the term in braces
and substituting Eq. (5.54), we obtain

o) (Y ou) ) oAUy 1dp, o) 0

= —— 2 L () — ?). (5.55

Ly ST oS T ) - ) (559)
The first and last terms on the right-hand side require further discussion.

In turbulent free shear flows, v 0*(U)/d8y* is of order vU,/é?% so that,

compared with the dominant terms in Eq. (5.55), it is of order Re™', and

hence is negligible. On the other hand, close to the wall in a turbulent

(U)
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boundary layer, the velocity derivatives are very large, and do not scale with
U, and 8. In this case the viscous term v 0*(U)/dy* is of leading order in
Eq. (5.55).

In the laminar boundary-layer equations, the axial diffusion term v 6*U /0 x>
is of relative order Re™', and therefore negligibly small. The comparable
axial-stress-gradient term in turbulent boundary-layer flows is the final term
in Eq. (5.55). It is consistent to neglect this term; but it should be appreciated
that this is not an insignificant approximation. As Exercise 5.11 illustrates,
in free shear flows the neglected term can be on the order of 10% of the
dominant terms in the equation.

In summary: for statistically two-dimensional, stationary flows that are
bounded by quiescent fluid or a uniform stream, the turbulent boundary-
layer equations consist of the continuity equation (Eq. (5.49)) and the axial
momentum equation

2
% + (V) aéﬁ? =v 66(;2]) — %(uv). | (5.56)
Except near walls, the viscous term is negligible. The mean pressure distri-
bution is given by Eq. (5.53).

For statistically axisymmetric, stationary non-swirling flows — such as
the round jet or the wake behind a sphere — the corresponding turbulent
boundary-layer equations are

ou) | 13w

(U)

o Ty 0 (5:57)
o(u) ou) v a [ oU) 190
AT = G () ey e
The mean pressure distribution is
00 [2\ 2
<p>/p=po/p~<vz>+/ Mdr’, (5.59)

and the axial-stress-gradient term, neglected on the right-hand side of

Eq. (5.58), is
_aix <<u2> _ <1)2> 1+ /OO M dr'). (5-60)

!
. r

EXERCISES

5.10  Starting from the Reynolds equations in polar-cylindrical coordinates
(Egs. (5.45)~(5.47)), verify that the corresponding boundary-layer
equations are Egs. (5.57)—(5.60)).
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5.11 For the centerline of the self-similar round jet, obtain the follow-
ing estimates for terms in — or omitted from — the boundary-layer
equations:

npe <<U> 0 <U>>r=0 — S~ —0094,

U? 0x

rpe 1 o(r(uv)) _np ) o{uv) ~ 01

Ui\r or J_, U} or )
ri (0w ()=
A2 f ZAT 7 — 28 ~ —0.014. .
U@( x )y Ui SR

5.2.2 Flow rates of mass, momentum, and energy

We return to the turbulent round jet to make some fundamental observations
that stem from conservation of momentum. Neglecting the viscous term and
multiplying by r, the momentum equation (Eq. (5.58)) becomes

0 0
a_x(r<U>2) + E(r(U)(V) + r{uv)) = 0. (5.62)

(The continuity equation Eq. (5.57) is used to write the convective term in
conservative form.) Integrating with respect to r we obtain

% /0OO r(U)2 dr = — [r(U)(V) + r(uv)]gO

=0, (5.63)

since, for large r,(UV) tends to zero more rapidly than does r~'. The
momentum flow rate of the mean flow is

M(x) = /0 ) 2nrp(U)? dr. (5.64)

We see then from Eq. (5.63) that the momentum flow rate is conserved : M(x)

is independent of x. The same conclusion holds for all jets (issuing into

quiescent surroundings or uniform streams) and wakes (in uniform streams).
The mean velocity profile in the self-similar round jet can be written

<U(X, r, 0)) = U()(X)i(é), (565)
where

E=r/rip(x), (5.66)
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and f(¢&) is the similarity profile (as a function of ¢ rather than #, Eq. (5.12)).
The momentum flow rate (Eq. (5.64)) can then be rewritten

M =2np (r1/2U0)2 /jo Ef(E)*déE. (5.67)
0

The integral is a non-dimensional constant, determined by the shape of the
profile, but independent of x. Since M is independent of x, the product
r172(x) Up(x) must therefore also be independent of x. Given the experimental
observation that the jet spreads linearly (dr;,»/dx = S = constant), it is
inevitable then that the mean velocity Uy(x) decays as x~".

For the self-similar round jet, the flow rates of mass ri1(x) and kinetic

energy E(x) associated with the mean velocity field are
m(x) = / 2nrp(U)dr
0

=2nprip (r1/2U0)/0 5]7(5)(15, (5.68)

E(x)s/m2nrp%<U)3dr
0
_ TP N BT
= (r1/2Uo) /0 ¢f(8) dé. (5.69)

Since the integrals of f and the product r, ,2Up are independent of x, it may
be seen that the mass flow rate is linearly proportional to r,; — and therefore
to x — and the energy flow rate is inversely proportional to r;/, (and x).

5.2.3 Self-similarity

For the turbulent round jet, an empirical observation is that the profiles of
(U)/Uo(x) and (uu;)/Up(x)* as functions & = r/ry/»(x) become self-similar
(i.e., independent of x). The self-similar profile of (U) is f(£), Eq. (5.65), and
we define that of (uv) to be

8(8) = (uv) ) Up(x)*. (5.70)

We now show, from the boundary-layer equations, that this self-similar
behavior implies that the jet spreads linearly (dri2/dx = § = constant), and
consequently that Uy(x) decays as x~! — as is of course observed.

Assuming the flow to be self-similar, and neglecting the viscous term, the
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boundary-layer momentum equation (Eq. (5.58)) can be written

) {72 07 [ era] {2 SR 22—~ e, 57

U() dx

where a prime denotes differentiation with respect to £. (The steps involved
in deriving this equation are given in Exercise 5.12.) The terms in square
brackets ([ ]) depend only on &, while those in braces ({ ) depend only on x.
Since the right-hand side depends only on £, there can be no x dependence
on the left-hand side. Hence the terms in braces are independent of x, ie.,

r1/2 dU()
e Y _ ¢
e =G (5.72)
dU, dr
D2 C20 4 o202 ¢y 08, (5.73)

U() dx dx

where C and S are constants. (This argument depends upon the fact that
the £-dependent terms are not identically zero.)
By eliminating C from the above two equations we obtain

dr1/2
dx

=S, (5.74)

showing that the linear spreading rate of the jet is an inevitable consequence
of self-similarity. Equation (5.72) implies that Uy(x) varies as a power of x,
but it does not identify the power. However, given that ry, varies linearly
with x, we have already observed that conservation of momentum requires
that Uy(x) vary as x~'. From this it follows that the constant C is

ne dlo

C= - =-
U() dx

(5.75)
EXERCISE

512  Starting from the equations (U) = Uy(x)f(¢) and & = r/ry;5(x), show
that the derivatives of (U) in a self-similar round jet are

ryip 6<U> 7 r1/2 dUO dr1/2

Uy 0x _f<U0 dx) éf( > (5:76)
riy OU) _ -
T o 1 (577

a prime denoting differentiation with respect to £. From the conti-
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nuity equation (Eq. (5.57)), show that the mean lateral velocity is
W __L [0
U() rU() 0 0x

1 éA— ri2 dU() £ dr1/2 A
-+ (g %) - (3) @

- dr1/2 r1/2 dU() dr1/2 l/éA— A
= - == +2 < dé, (5.78
éf(dx (UO dx+ dx /¢ Oéfé (5.78)
where 7 and ¢ are integration variables. By substituting these relations

into the boundary-layer momentum equation (Eq. (5.58), neglecting
the viscous term), verify Eq. (5.71).

5.2.4 Uniform turbulent viscosity

The turbulent boundary-layer equations exhibit the closure problem: there
are two equations (continuity and axial momentum), involving three de-
pendent variables (U),(V), and (uv). This closure problem is overcome if
the turbulent viscosity vr(x,r) can be specified, for then the shear stress is
determined by
o(U)
or
For the self-similar round jet we have observed, first, that v scales with
ri2 and Uy, ie,

(uv) = —vyy (5.79)

vr(x,r) = rl/z(x)Uo(x)f’T('l), (5.80)

and, second, that over the bulk of the jet 9#1(n) is within 15% of the value
0.028. It is reasonable, therefore, to investigate the solution to the boundary-
layer equations with 91(r) taken to be constant, independent of 5. In fact,
since the product ry,,(x)Up(x) is independent of x, this corresponds to taking
vr to be uniform — independent of both x and r — and so the boundary-layer
momentum equation becomes

I e T 1 (5.81)

(In view of the high Reynolds number assumed, the viscous term has been
neglected, although it can be retained simply by replacing vy by veg.) This is
precisely the laminar boundary-layer equation with (U), (V'), and vy in place
of U,V, and v.

The solution to Eq. (5.81) (together with the continuity equation Eq. (5.57))




5.2 The round jet: mean momentum 119

1.0

0.8
w |
Uo 0.6}

04

02}

0.0 1.0 2.0

0.0 0.1 0.2

Fig. 5.15. The mean velocity profile in the self-similar round jet: solid line, curve fit to
the experimental data of Hussein et al. (1994); dashed line, uniform turbulent viscosity
solution (Eq. 5.82).

was first obtained by Schlichting (1933). Here we give the solution, discuss
some of its consequences, and then give the derivation.

In terms of the similarity profile f(n) = (U)/U, with n = r/(x — X), the
solution is

1

fn) = Tran (5.82)

where the coefficient a is given in terms of the spreading rate S by

a= (ﬁ _ 1)/52, (5.83)

(see Exercise 5.3).

This profile (with S = 0.094) is compared with the measurements of
(U)/Uy in Fig. 5.15. There is good agreement between the profiles except
at the edge of the jet, where the empirically determined turbulent viscosity
¥1(n) decays to zero (see Fig. 5.10). The spreading rate is determined by the
specified normalized viscosity according to

S = 8(\/5 - 1)%. (5.84)

The spreading rate S = 0.094 is obtained with %+ ~ 0.028, which (not
surprisingly) is the average value obtained from the measurements (Fig. 5.10).
The value of ¥1 is sometimes expressed in terms of the rurbulent Reynolds



120 5 Free shear flows

number

= Uonpx) 1 as (5.85)

Ry ~
vt vt

Thus, in the uniform-turbulent-viscosity approximation, the mean velocity
field in the turbulent round jet is the same as the velocity field in a laminar
jet of Reynolds number 35.

The solution for uniform turbulent viscosity

The Stokes stream function y(x,r) is introduced with

10

() = =, (5.86)
10

(V) =— % (5.87)

so that the continuity equation (Eq. (5.57)) is automatically satisfied. With x
measured from the virtual origin (so that 1 =r/x), Eq. (5.86) leads to

Y =/0 r{U)dr
=f%m/nMMm (5.88)
4]

Since x2Uy(x) varies linearly with x, it is evident that there is a self-similar
scaled stream function F(n) such that

v = vrxF(n). (5.89)

(The constant vy is included so that F(y) is non-dimensional.)
From the above equations we obtain

' vt F
(U) = i~ ;, (5.90)
VT ; F
(V) = ;(F ~ ;>, (591)

where F' = dF /dn. To satisfy the condition that (V') is zero on the axis, F
must satisfy

F0)=F(0)=0. (5.92)

All the terms in the boundary-layer equation (Eq. (5.81)) can be expressed
in terms of F and its derivatives. After simplification the result is

FF/ 72 7" F/ !
F? FF =(F,,__>'

o n

(5.93)
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The left-hand side is (—FF’/n)’, so that the equation can be integrated to
yield
FF' =F —nF". (5.94)

In view of Eq. (5.92), the constant of integration is zero. The equation can
be rewritten

(3F% =2F —(nFY, (5.95)
and then integrated a second time, the constant of integration again being
Zero:

1F*=2F —nF, (5.96)
or
1 dr 1
(5.97)

F—1Fd

Integrating a third time, with a constant of integration ¢, we obtain

F
%ln<4_F> =Ilnn+ec (5.98)
Setting a = %, the solution is
4an®
F(n) = Trant (5.99)

By differentiating this solution, we find the mean velocity profile (Eq. (5.90))
to be
_ 8avr 1

- 5.100
() x (1+ an?)? ( )

Hence the centerline velocity is
Uy(x) = 8‘?”, (5.101)

and the self-similar profile is
1

= S 5.102
1) = Frary (5.102)

The constant a and the turbulent viscosity vy can be related to the
spreading rate S = r;;;/x. Noting that r = r|;, corresponds to n = S, from
the definition of r,,, we require f(S) = 1. This leads to

a= (ﬁ _ 1)/52. (5.103)
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Then, from Eq. (5.101), we obtain
S

Vr =

5.3 The round jet: kinetic energy
The decomposition of the kinetic energy

The kinetic energy of the fluid (per unit mass) is
E(x,t) = 1U(x,1) - U(x,1).
The mean of E can be decomposed into two parts:
(E(x,1)) = E(x,1) + k(x,1),
where E(x, ) is the kinetic energy of the mean flow
E=3(U)-(U),
and k(x, ) is the turbulent kinetic energy

= Lu-u) = L (uu;).

(5.104)

(5.105)

(5.106)

(5.107)

(5.108)

(This decomposition may be verified by substituting the Reynolds decompo-

sition U = (U) + u into Eq. (5.105) and taking the mean.)

The turbulent kinetic energy k determines the isotropic part of the
Reynolds stress tensor (ie., %k&,»j); but we also find that the anisotropic
part scales with k. For example, over much of the turbulent round jet we
observe (uv) ~ 0.27k (Fig. 5.9), and a mathematical bound on the shear
stress is |uv| < k (Exercise 5.13). Consequently k is a quantity of consider-
able importance. In this section we consider the processes in turbulent flows
that generate and dissipate turbulent kinetic energy. This leads also to a

consideration of E, (E), and E.

EXERCISES

5.13  From the Cauchy-Schwartz inequality and the definition of k, show

that
|(uv)| < k.

5.14  Show that (for incompressible flow)
DU DE _JE

— +V-(UE).

Dt Dt ot

(5.109)

(5.110)
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From the momentum equation
DU] _ 6rij

P Dr o, (5.111)
where 7;; is the stress tensor, show that
DE 0
P Dr E;(Ujrij) = —8i;Tij, (5.112)

where §;; = %(6U,»/6xj + 0U;/0x;) is the rate-of-strain tensor. For a
Newtonian fluid, t;; is given by

Ty = —pdi; + 2pvSy;. (5.113)
Show then that the kinetic-energy equation is
DE
E + V- T = —2VSU'S,']‘, (5114)
where
T,' = U,p/p —2v UjSij- (5115)

The instantaneous kinetic energy

The equation for the evolution of E, obtained from the Navier—-Stokes
equations, is
DE

E + A\ T = _2VSijSija (5116)

where §;; = %(6 U;/0x; + 0U;/0x;) is the rate-of-strain tensor, and
T,=Up/p—2vU;S;, (5.117)

is the flux of energy, see Exercise 5.14. The integral of the equation for E
over a fixed control volume is

%///VE(WJ“//A(UEJ“T)'”dA=—///V2vS,»,Si,dv. (5.118)

The surface integral accounts for inflow, outflow, and work done on the
control surface: it represents a transfer of E from one region to another. It
is important to observe that there is no ‘source’ of energy within the flow.
The quantity S;;S;; — being the sum of squares of components — is positive
(or zero if all components of S;; are zero). Consequently the right-hand side
is a ‘sink’ of energy: it represents viscous dissipation — the conversion of
mechanical energy into internal energy (heat).
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EXERCISES _
515 By expanding V3(3U,;U;), show that

oU; oU,
U-V2U=V2E——U—U. (5.119)
ax]' ax]‘
Using this result, obtain from the Navier-Stokes equation (Eq. (2.35))
an alternative form of the kinetic-energy equation:

DE = oU,; 0U;
- T =— — 5120
Dt VT ' dx; 0x;’ ( )
where ~
T =Up/p—vVE. (5.121)

516  With §;; being the rate-of-strain tensor and €; = —;(6U,~/6xj —
0U,;/0x;) being the rate-of-rotation tensor, show that
oU; % *U,U;

258y = 6_xj dx;  0x;0x;°

(5.122)

ou; oU;,  3*UU; '
Q= — , 5.123
228 ox; 0x;  0x;0%; ( )
5.17  Show that Eqs. (5.114) and (5.120) are identical.
5.18  Show that

DE\ _D(E) .
<E> =B v ) (5.124)
and hence (from Eq. (5.114)) show that
—Dg? + V- ((uE) +(T)) = -2 —¢, (5.125)

where  and ¢ are defined by Egs. (5.127) and (5.128).

The mean kinetic energy
The equation for the mean kinetic energy (E) is simply obtained by taking
the mean of Eq. (5.116):

P 4 v (k) 4+ (1) = =3 (5.126)

see Exercise 5.18. The two terms on the right-hand side are

2V§,’jsij, (5127)

g

E= 2V<S[jsij>, (5128)
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where Sij and s;; are the mean and fluctuating rates of strain:

_ 1/o(Uy) | 3(U))

5, = () = 5( ). (5.129)
1/0u; ou;

sij = Si— (Sy) = 5(@‘} + a_le> (5.130)

The first contribution, Z, is the dissipation due to the mean flow: in general
it is of order Re™' compared with the other terms, and therefore negligible.
As we shall see, the second contribution, &, is of central importance.

Mean-flow and turbulent kinetic energy

The equations for E = 1(U) - (U) and k = }(u - u) can be written

DE .

— +V-T=-P—5 5.131
5 ¢ (5.131)
Dk

—+V-T'=P—¢ 5.132
5 " & (5.132)

see Exercises 5.19 and 5.20 (where T and T' are defined by Eqgs. (5.136) and
5.140). The quantity
o(Us)

— 133
o (5.133)

P= —<uiuj>
is generally positive, and hence is a ‘source’ in the k equation: it is called the
production of turbulent kinetic energy — or simply production.

EXERCISES
5.19  Starting from the Reynolds equation (Eq. (4.12)) show that the mean-
kinetic-energy equation (for E = 3(U) - (U)) is

DE _
— +V-T=-P—5 5.134
B + g ( )
where
o(U,)
P = <uiu]> a—xj, (5135)

Ty = (U uw)) + (UND) /o — 2(US,. (5.136)
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520 By subtracting the Reynolds equations (Eq. (4.12)) from the Navier—
Stokes equation (Eq. (2.35)), show that the fluctuating velocity u(x, 1)

evolves by
auj a 2 1 ap,
Yy YU —UUN = P 137
6t + axi(UzU] <UIUj>) VV u] p axj (51 )
or
= —u, —{uu; P—— 5.138
Dt i 0x; + 0x; (uitj) +v Vo p 0x ( )

J
where p’ is the fluctuating pressure field (p’ = p — (p)). Hence show
that the turbulent kinetic energy evolves by

Dk
— 4+ V-T' =P —g¢ 5.139
= + & ( )
where
T = %(uiujuj) + (wip')/p — 2v(u;s;)). (5.140)
Production

The equations for E and k clearly show the important role played by
production. The action of the mean velocity gradients working against
the Reynolds stresses removes kinetic energy from the mean flow (—P in
Eq. (5.131) for E) and transfers it to the fluctuating velocity field (P in
Eq. (5.133) for k).

Some observations concerning production are the following.

(i) Only the symmetric part of the velocity-gradient tensor affects pro-
duction, ie.,

(i1) Only the anisotropic part of the Reynolds-stress tensor affects pro-
duction, i.e.,

P = —a;S;, (5.142)
where a,»j = (uiuj> — %kéll
(iii) According to the turbulent-viscosity hypothesis (i.e., a; = —2v1S
Eq. (4.48)) the production is

ifjs

P = 2\’]‘3,‘]3','] = 0. (5143)

It may be observed that this expression for P is the same as the
dissipation by the mean flow & (Eq. (5.127)), but with vy replacing v.
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(iv) In the boundary-layer approximation — in which all mean velocity gra-
dients are neglected except for d(U)/dy (or d(U)/dr) — the production

is
a(U)
oy ’

P = —(uv) (5.144)

(or P = —(uv) a(U)/or).
(v) According to the turbulent-viscosity hypothesis, in the boundary-layer
approximation the production is

a(UY\
’P=vT< < >> . (5.145)
ay
EXERCISE
521  Show that the production P is bounded by
|P| < 2kS,;,

where S; is the largest absolute value of the eigenvalues of the mean
rate-of-strain tensor.

Dissipation
In the k equation, the sink & is the dissipation of turbulent kinetic energy,
or simply dissipation. The fluctuating velocity gradients (du;/0x;) working
against the fluctuating deviatoric stresses (2vs;;) transform kinetic energy
into internal energy. (As illustrated in Exercise 5.22, the resulting rise in
temperature is almost always negligibly small) It may be seen from its
definition, ¢ = 2v(s;s;;), that dissipation is non-negative.

To understand the most important characteristic of ¢, we return to the self-
similar round jet. We have seen that the profiles of (U)/U, and (uu;)/Us
(as functions of ¢ = r/ry) are self-similar and independent of Re (for
sufficiently large x/d and Re). Consequently k/U? and

P=P/Uj/rp) = —%?%/—: %{:) (5.146)
are also self-similar and independent of Re. In the balance equation for k,
since both Dk/Dr and P scale as U] /ry, it is almost inevitable that ¢ has
the same scaling: that is

t=e/(U3/r1p) (5.147)

is self-similar, independent of Re. This is confirmed by measurements (e.g.,
Panchapakesan and Lumley (1993a) and Hussein et al. (1994)).
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At first sight, this behavior of ¢ presents a puzzle. Suppose that two high-
Reynolds-number round-jet experiments are performed — denoted by a and
b — with the same nozzle diameter d and jet velocity Uj, but with fluids of
different viscosities v, and v,. At a given x (in the self-similar region) the
velocities Uy(x) and half-widths ry/2(x) in the two experiments are the same.
Consequently, at given (x,r), the dissipation in the two experiments is also
the same, i.e.,

Us(x)
rija(x)

ga(x, 1) = &p(x, 1) = &(r/r12(x)) (5.148)
However, by its definition ¢ = 2v(s;;s;;), ¢ is directly proportional to v, which
is different in the two experiments! How then can ¢, and ¢, be equal? The
seed of the answer can be found in Fig. 1.2 on page 5. It may be seen
that the jet with the higher Reynolds number has a finer scale of small
structure, and, plausibly, therefore, steeper gradients and higher values of
sij = 2(0u;/0x; + ou;/0x;).

EXERCISE

5.22  Consider a self-similar round jet of an ideal gas. Because of dissipative
heating, the centerline temperature Ty(x) is very slightly higher than
the temperature of the ambient, T,. Use a simple energy balance to
obtain the rough estimate

To—T. Ul — U
T, ~  CT,

and hence obtain the estimate for the maximum temperature excess

TO,max - Too ~ Maz
T,  4@y—1)
where Ma is the Mach number based on Uj. (C, is the constant-
pressure specific heat, and y is the ratio of specific heats.)

Kolmogorov scales

In Chapter 6 we shall see that the characteristic scales of the smallest
turbulent motions are the Kolmogorov scales. These are the length (1), time
(,) and velocity (u,) scales formed from & and v:

nE(ﬁ)w, (5.149)

€
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T, = (-z—)m, (5.150)
u, = (ve)'/*. (5.151)

From these definitions and Eq. (5.147) it follows that, compared with the
mean-flow scales r,, and Uy, the Kolmogorov scales vary with the Reynolds
number Rey = Ugry,»/v according to

n/ris = Re, Va4 (5.152)
t,/(r12/Us) = Reg 287172, (5.153)
u,/Us = Reg " 84, (5.154)

(Recall that £ is non-dimensional and independent of the Reynolds number.)
Thus, consistent with visual observations, we see that (relative to the mean
flow scales) the smallest motions decrease in size and timescale as the
Reynolds number increases.

Two revealing identities stemming from the definitions of the Kolmogorov
scales are

Ty, (5.155)
v
u 2 v
v (—”) =5 =¢ (5.156)
n 72

The first shows that — however large Re, is — the Reynolds number based on
the Kolmogorov scales is unity, indicating that motions on these scales are
strongly affected by viscosity. The second shows that the velocity gradients
scale in such a way (as u,/n = 1/1,) that ¢ is independent of v.

The solution to the puzzle mentioned above is, therefore, that the mean-
square strain rate (s;s;;) scales as 7, 2 _ inversely proportional to v — so that
&2 = Va(Si;Sij)a and &, = vy (s;;5;)p are equal. The remaining question — why do
the small-scale turbulent motions scale this way? — is addressed in Chapter
6.

The budget of the turbulent kinetic energy

For the self-similar round jet, Fig. 5.16 shows the turbulent kinetic-energy
budget. The quantities plotted are the four terms in the k equation
(Eq. (5.132)) normalized by U;/ri,. The contributions are production, P;
dissipation, —e; mean-flow convection, —Dk/Dt, and turbulent transport,
—V - T'. (Production and mean-flow convection can be measured reliably,
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Fig. 5.16. The turbulent-kinetic-energy budget in the self-similar round jet. Quantities
are normalized by U, and ry ;. (From Panchapakesan and Lumley (1993a).)

and there is agreement (to within 20%, say) between different investiga-
tions. However, the other two terms are subject to considerable uncertainty,
with measurements in different experiments varying by a factor of two or
more.) Throughout the jet, dissipation is a dominant term. The production
peaks at r/ri; = 0.6, where the ratio P/e is about 0.8. On the centerline,
—(uv) 0(U) /0r is zero (and varies as r?), so that the production there is due
to the term —((u?) — (v?)) 0(U)/dx (which is neglected in the boundary-layer
approximation). At the edge of the jet P/ goes to zero, and it is the turbulent
transport that balances &.

Comparison of scales

It is informative to evaluate and compare different rates and timescales
associated with the mean flow and k. This is done in Table 5.2 and Fig. 5.17.
The timescales T and 15 provide measures of the lifetime of the turbulence in
the jet. It takes a time 7 to dissipate an amount of energy k at the constant
rate ¢; and similarly a time tp to produce k at the rate P. These timescales
are large and approximately equal: they are comparable to the flight time
from the virtual origin 7y of a particle moving on the centerline at speed
Uo(x); and they are about three times the timescale of the imposed shear
S, Turbulence is long-lived.

Figure 5.18 shows a comparison of lengthscales. While the integral scales
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Fig. 5.17. Timescales in the self-similar round jet in units of 7o. See Table 5.2 for
definitions.
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Fig. 5.18. Lengthscales in the self-similar round jet in units of ;. L1; and Ly, are the

longitudinal and lateral integral scales; L = k*2/e;1 = v1 /u’; evaluated at r/ry, ~ 0.7.
(Note the logarithmic scale.)

Table 5.2. Timescales, rates, and ratios in the self-similar round jet: the first
four entries are evaluated from Uy(x), ri,2(X) and the spreading rate S; the
remaining entries are estimated from experimental data at r/r\;, = 0.7, where

(uv) and |0(U)/0r| peak

Value in
self-similar round

jet, normalized

Definition Description Timescale by 1
9 =r1/2/Up Reference timescale T0 1
used for normalization
1 =1x/Up Mean flight time from Ty 5.3
virtual origin
Uy dn .
= 2 an Entrainment rate Tn=Q' 10.6
m dx
d
Qp = —d—ng Axial strain rate TA = Q;“ 10.6
S = (28;;8;)'/* Strain rate g =8" 1.7
|90
T or
w=c¢fk Turbulence decay rate t=w"' =k/e 4.5
Qp =P/k Turbulence-production rate  1p = Q3 5.7
Ple Ratio of production to 0.8
dissipation
S/w=S8k/e Ratio of strain rate to 2.6
=1/18 decay rate
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L,; and Ly, have a direct physical significance, | = vy/u’ and

L=k"?/e (5.157)

do not.

EXERCISES
5.23  Referring to Table 5.2, verify that

o = 1x/U,, (5.158)
‘L'()Qm = S,
‘L'()QA = S.

524  For the normalized velocity profile f(n) = 1/(14-an?)?, show that the
maximum of [6(U)/or| is

o(U)
or

ri2

Uo

_ %% (V50 -5) ~ 067,

max

and occurs at

r/r = (\/5(") - 5)_1/2 ~ 0.69.

Pseudo-dissipation

The pseudo-dissipation % is defined by

ou; oOu;
=y <L =2 5.159
¢ Y < 6x] 6xj >, ( )
and is related to the true dissipation ¢ by
0 (uu;)
F=g— ‘ 5.160
e=ETY 0x;0x;° ( )

(see Exercise 5.25). In virtually all circumstances, the final term in Eq. (5.160)
is small (at most a few percent of &) and consequently the distinction between
¢ and £ is seldom important. Indeed, many authors refer to  as ‘dissipation.’
As Exercise 5.27 illustrates, some equations have a simpler form when Z is
used in place of e.
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525

5.26

5.27

5.28

EXERCISES
Obtain the following relationship between the dissipation ¢ and the
pseudo-dissipation &:

e=2v <S,'jsij> = V<

v 62<uiuj>
0x; 0x;

Ou ow 0wy 0y
0x; 0x;  0x; 0x;

(5.161)

The dissipation and viscous-diffusion terms in the turbulent-kinetic-
energy equation arise from the expression v(u; V2u;). Show that this
can be re-expressed in the alternative forms

0 [ Ou;
V2 — R Bt
v{u; Vouy) v<u, 5%, <6xj>>

and
0 (0u;  Ouy
0
_ b;wisij) . (5.163)

J

Show that the turbulent-kinetic-energy equation (Eq. (5.139)) can
alternatively be written

Dk 0

—]_)Tt + é;l B <uiujuj> + (wp')/p] =V Vzk +P—E (5164)

In homogeneous isotropic turbulence, the fourth-order tensor

ou; Ouy
ax]‘ an
is isotropic, and hence can be written

ou; Ouy,
<5§ a;> = @0ij0¢ + foudje +70ied ks (5.165)

where o, f, and y are scalars. In view of the continuity equation
ou;/0x; = 0, show that a relation between the scalars is

30+ B +y=0. (5.166)
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By considering (0/dx;)(u; du;/0x,) (which is zero on account of ho-
mogeneity) show that
8u,~ 6u,-
(%)

is zero, and hence

a+p+3y=0. (5.167)
Show that Eq. (5.165) then becomes
0 i ou
<6—Z a—x’;> = B (540 — 18,000 — 1646 ). (5.168)
i
Show that
our \’ | 6u1 6u1
— =3 2 5.169
<<6x1> > h, < 6x2 > <<6x1 ( )
ouy Ouy ou, 6u2 ) 6u1
= 5 — 5 . 5.170
<6x1 6x2> <6x2 0x 2 xl ( )

8u,' (3u,' 15 6u1 2
- RN Byp — . 171
£ v<6xj 0x,~> >VvB 15v<<6x1> (5.171)

5.4 Other self-similar flows

We have looked in some detail at the mean velocity and Reynolds stresses
in the self-similar round jet. We now examine briefly the other classical free
shear flows — the plane jet, the mixing layer, the plane and axisymmetric
wakes — and also homogeneous shear flow (ie, homogeneous turbulence
subjected to a constant and uniform mean shear). Then, in Section 5.5, some
other features of these flows are described.

5.4.1 The plane jet

The ideal plane jet (which is sketched in Fig. 5.14 on page 112) is statistically
two-dimensional. The dominant direction of mean flow is x, the cross-stream
coordinate is y, and statistics are independent of the spanwise coordinate, z.
There is statistical symmetry about the plane y = 0. In laboratory experi-
ments, there is a rectangular nozzle with slot height d (in the y direction), and
width w (in the z direction). The aspect ratio w/d must be large (typically
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Fig. 5.19. The mean velocity profile in the self-similar plane jet. Symbols, experimental
data of Heskestad (1965); line, uniform turbulent-viscosity solution, Eq. (5.187) (with
permission of ASME).

50) so that, for z = 0 (to a good approximation), the flow is statistically
two-dimensional and free of end effects, at least for x/w not too large.

Just as in the round jet, the centerline velocity, Uy(x), and half-width,
y1,2(x), are defined by

U()(X) = <U(X, 0’ 0))9 (5172)

LUo(x) = (U(x, y1/a(x),0)). (5.173)

In experiments (e.g., Heskestad (1965), Bradbury (1965), and Gutmark and
Wygnanski (1976)) it is found that the mean-velocity and Reynolds-stress
profiles become self-similar (beyond about x/d = 40) when they are scaled
with Uy(x) and y,,(x). These profiles are shown in Figs. 5.19 and 5.20. It
may be seen that the profile shapes and the levels of the Reynolds stresses
are comparable to those observed in the round jet.

The variation of y,,(x) is found to be linear, ie.,

dy, /2
dx

where the rate of spreading S is a constant, S ~ 0.10. However, in contrast
to the round jet, it is found that Uy(x) varies as x~!/2. As is now shown, these
variations are consequences of self-similarity.

In conservative form, the boundary-layer equation (neglecting the viscous
term) is

=5, (5.174)

2, 0 0
-—w>+@www»=—$@w (5.175)
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Fig. 5.20. Reynolds-stress profiles in the self-similar plane jet. From the measurements
of Heskestad (1965) (with permission of ASME).

Integrating with respect to y, we obtain

d [,

- / (U dy =0, (5.176)
since (U) and (uv) are zero for y — +oo. Hence the momentum flow rate
(per unit span)

—

M= /_Oop<U)2 dy, (5.177)

is conserved (independent of x).
In the self-similar region, the mean axial-velocity profile is

(U) = Us(x)f (¢), (5.178)
where
¢ = y/yix), (5.179)
and so the momentum flow rate is -
M = pUxyiatx) [ 787t (5.180)

Evidently the product Uy(x)%y,,2(x) is independent of x — consistent with the
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observations — from which we deduce that

yip dUs _ ld)’l/2

Uy dx 2 dx (5.181)
On substituting the self-similar profiles for (U), Eq. (5.178), and (uv),
(uv) = Ugg(&), (5.182)
into the boundary-layer equation, we obtain

1 (jz +j'/ fd§> —z (5.183)
0

2

dy, /2
dx

(This involves the same manipulations as those for the round jet, see Exer-
cise 5.12.) In Eq. (5.183), since the right-hand side and the term in parentheses
are independent of x, it follows that dy,,,/dx must also be independent of
x. Thus, self-similarity requires that the rate of spreading S = dy,,,/dx be
constant; and then conservation of momentum requires that Uy vary as x~!/2
(Eq. (5.180)).

The self-similarity of (U) and (uv) imply the self-similarity of the turbulent
viscosity, i.e.,

vi(X, y) = Ug(X)y12(x)01(£). (5.184)

It may be seen that v for the self-similar plane jet increases as x'/2, as does
the local Reynolds number

Reo(x) = Up(X)y1/2(%) /. (5.185)

On the other hand, the turbulent Reynolds number

Ry = Us(X)y1 /2(x) /vr(X, y1,2)s (5.186)

is independent of x.

If the turbulent viscosity is taken to be uniform across the flow (ie.,
¥t = constant), then the self-similar form of the boundary-layer equation
(Eq. (5.183)) can be solved (see below) to yield

F(&) = sech’(x¢), (5.187)

where o = 11n(1 + /2)%. This result is compared with experimental data in
Fig. 5.19. Just like with the round jet, the agreement between the profiles is
excellent, except at the edge, where the diminishing turbulent viscosity causes
the experimental profiles to tend to zero more rapidly than Eq. (5.187). The
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scaled turbulent viscosity ¥ that yields the observed rate of spreading S ~ 0.1

corresponds to
1

Rr = — = 31,
vt

(see Eq. (5.200)). This can be compared with Ry ~ 35 for the round jet.

The solution for uniform turbulent viscosity

We now obtain the solution to the self-similar boundary-layer equation
(Eq. (5.183)), with the shear stress given by the turbulent-viscosity hypothesis
and with 9 taken to be uniform, i.e., independent of £. The equation is

—_— —_— é -_— —_—
IS (f2 +f [) fdé) = —rf". (5.188)
It is convenient to substitute

¢
F(&) = [) f(s)ds. (5.189)

Since f(¢) is an even function, F(¢) is odd. In particular F(0) = F"(0) = 0.
With this substitution we obtain
IS[(F')* + F'F] = —9:F". (5.190)
Noting that the term in square brackets is
(F' + F'F = (FF') = Y{(F?), (5.191)
we can integrate twice to obtain
ISF? = —%:F' +a+bé. (5.192)

Since F? and F' are even functions, the integration constant b is zero, while
the boundary condition F'(0) = 1 determines a = . Defining

S
=] 5.193
ENHY (3.193)

F'=1— («F), (5.194)

Eq. (5.192) then becomes

which can be integrated to yield

F = %tanh(aé), (5.195)

and hence

f = F' = sech’(«&). (5.196)
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From the definition of y,,, we have
f(1) =1 = sech’(a), (5.197)
from which we obtain
o= %ln(l + ﬁ)z ~ 0.88. (5.198)

This, together with Eq. (5.193), relates the spreading rate S to the scaled
turbulent viscosity ¥t by

S = [In(1 4+ \/2)*)*%r, (5.199)
or
L _In(+2°F o

R=—=
T GT S ’

taking the experimental value S =~ 0.1.

(5.200)

5.4.2 The plane mixing layer

As sketched in Fig. 5.14 on page 112, the mixing layer is the turbulent
flow that forms between two uniform, nearly parallel streams of different
velocities, U, and U, (U, > U, > 0). Such a mixing layer forms at the edge
(and in the initial region) of a plane jet (U, = Uy) flowing into quiescent
surroundings (U; = 0). Alternatively the flow can be created in a wind
tunnel, with a splitter plate separating the two streams for x < 0, and then
the mixing layer develops for x > 0.

Just as in the plane jet, the dominant direction of flow is x; the cross-stream
coordinate is y; and statistics are independent of the spanwise coordinate,
z. In contrast to the round and plane jets, for the mixing layer there are
two imposed velocities, U, and U,. Consequently the flow depends on the
non-dimensional parameter U,/U,, and two characteristic velocities can be
defined: the characteristic convection velocity

U, = 5(Up+ U, (5.201)
and the characteristic velocity difference
Us,=U,— Ul (5.202)

All the velocities mentioned (Uy, U, U, and Us) are constant — independent
of x.
The characteristic width of the flow d(x) can be defined in a number of
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Fig. 5.21. A sketch of the mean velocity (U) against y, and of the scaled mean velocity
profile f(&), showing the definitions of yo;, Yoo, and J.

ways based on the mean velocity profile (U(x, y,z)) — which is independent
of z. For 0 < « < 1 we define the cross-stream location y,(x) such that

(U(x, ya(x),0)) = Ui + a(Uy, — Un), (5.203)

and then take 6(x) to be

0(x) = yog(x) — yo(x), (5.204)
see Fig. 5.21. Ih addition, a reference lateral position y(x) is defined by!
¥(x) = Syoe(x) + you(x)]. (5.205)
The scaled cross-stream coordinate ¢ is then defined by
& = [y — 511 /3(0), (5.206)

and the scaled velocity by

1€y =(U) = U:)/U,. (5.207)

From these definitions we have f(+o0) = i%, and f(i%) = 404 - see
Fig. 5.21.

For the case U,/U, = 0, there are many experiments that confirm that
the mixing layer is self-similar (e.g., Wygnanski and Fiedler (1970) and
Champagne et al. (1976)). Figure 5.22 shows that the mean velocity profiles
measured at different axial locations collapse when they are scaled according

! Note that a different definition of y(x) is used in Exercises 5.29-5.32 where the equations governing
self-similar mixing layers are developed.
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Fig. 5.22. Scaled velocity profiles in a plane mixing layer. Symbols, experimental data
of Champagne et al. (1976) (¢,x = 39.5 cm; O,x = 49.5 cm; o,x = 59.5 cm); line,
error-function profile (Eq. (5.224)) shown for reference.
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Fig. 5.23. Axial variations of yq, yos, and ypos in the plane mixing layer, showing the
linear spreading, Experimental data of Champagne et al. (1976).

to Eq. (5.207); and Figure 5.23 clearly shows that the mixing layer spreads
linearly. The experiments also show that the Reynolds stresses are self-
similar, It should be noted that the flow is not symmetric about y = 0 — nor
even about ¢ = 0 — and it spreads preferentially into the low-speed stream.

Just as with the round and plane jets, the linear spreading of the mixing
layer is an inevitable consequence of self-similarity. As shown in Exercise 5.29,
with a different definition of y(x), and with g(&) = (uv)/U? being the scaled
shear stress, the boundary-layer equation for the self-similar mixing layer is

U, do Us [ 80 8\ w
(55) (o [ rdae)r=¢ (5.208)

Since nothing in this equation depends upon x except for J, the spreading
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rate do/dx and the parameter

U. dé

U, dx

must be constant — independent of x — as is observed.
To an observer travelling in the x direction at the speed U, the fractional

growth rate of the mixing layer is U.dInd/dx. If this rate is normalized by

the local timescale 6 /Us, the resulting non-dimensional parameter is

0 ~dlné U.do S

U, ¢ dx U dx
As may therefore be expected, it is found that S is approximately independent
of the velocity ratio, so that dé/dx varies (approximately) as U;/U.. There
is considerable variation in the measured value of S from one experiment
to another, which is attributable — at least in part — to the state of the flow
as it leaves the splitter plate (x = 0). The range of reported values is from
S ~ 0.06 to S = 0.11 (Dimotakis 1991). In the experiment of Champagne et
al. (1976), the value is S =~ 0.097.

An interesting limit to consider is U;/ U, — 0, corresponding to U, /Uy, — 1.
In this limit, the term in U,/U. in the boundary layer equation Eq. (5.208)
vanishes. The equation then corresponds to

o(U) o{uv)

U. T oy (5.211)
with the remaining convective terms, ((U) — U,) d(U)/dx and (V) o(U) /oy,
being negligible compared with U, 8(U)/0x. An observer travelling in the x
direction at speed U, sees the two streams (y — o0 and y — —o0) moving to
the right and left, with velocities 1U; and —1U;, respectively. Gradients of
means in the x direction are vanishingly small (of order U,/U.) compared
with gradients in the y direction. The thickness of the layer grows in time at
the rate SU,. Thus, in the moving frame, as U,/ U, tends to zero, the flow be-
comes statistically one-dimensional and time-dependent. It is called the tem-
poral mixing layer (as opposed to the spatial mixing layer in laboratory co-
ordinates). The temporal mixing layer is statistically symmetric about y = 0.

A direct’ numerical simulation (DNS) of the temporal mixing layer is
described by Rogers and Moser (1994). The Navier-Stokes equations are
solved by a spectral method with 512 x 210 x 192 modes (in the x,y,
and z directions). After an initial transient, the mixing layer becomes self-
similar, and the width & increases linearly with time. The observed spreading
parameter S = 0.062 is toward the low end of the experimentally observed
range (0.06-0.11). In experiments it is difficult to approach the limit U,/U,, —

S

Il

(5.209)

(5.210)
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Fig. 5.24. The scaled mean velocity profile in self-similar plane mixing layers. Symbols,
experiment of Bell and Mehta (1990) (U;/Uy = 0.6); solid line, DNS data for the
temporal mixing layer (Rogers and Moser 1994); dashed line, error-function profile
with width chosen to match data in the center of the layer.

1 corresponding to the temporal mixing layer. However, the experiment of
Bell and Mehta (1990) with U, /U, = 0.6 produces results similar to those for
the temporal mixing layer of Rogers and Moser (1994). In the experiment
the spreading parameter is S =~ 0.069.

Figure 5.24 shows that the scaled mean velocity profile for the temporal
mixing layer and that for the spatial mixing layer with U,/U, = 0.6 are
indistinguishable. Also shown in Fig. 5.24 is an error-function profile, which
is the constant-turbulent-viscosity solution for the temporal mixing layer
(see Exercise 5.33). Just as with jets, compared with the measurements,
the mean velocity profile given by the constant-turbulent-viscosity solution
tends more slowly to the free-stream velocity. Figure 5.25 shows the scaled
Reynolds-stress profiles, which are little different for the two mixing layers.

For mixing layers, since U is fixed and & varies linearly with x, the
Reynolds number Rey(x) = U,d/v and the turbulent viscosity also increase
linearly with x. The flow rate of turbulent kinetic energy K (x) = [~ (U)kdy
scales as U.UZ2d and hence also increases linearly with x. This is in contrast to
jets and wakes, in which K decreases with x. Because K increases with x in the
mixing layer, averaged across the flow, production P must exceed dissipation
¢. In the center of the layer Rogers and Moser (1994) observe P/e = 1.4.

In the following exercises, the similarity equations for spatial and temporal
mixing layers are developed. The temporal mixing layer is symmetric (i.e., ¥
is zero and f(&) is an odd function), and the free streams are parallel (ie.,
(V)y=so = (V),=_» = 0). The spatial mixing layer is not symmetric, it spreads
preferentially into the low-speed stream (dy/dx is negative), and it entrains
fluid (i.e., with (V),_, being zero, (V),__,, is positive). Consequently the two
free streams are not exactly parallel. (In experiments, the free streams can be
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Fig. 5.25. Scaled Reynolds-stress profiles in self-similar plane mixing layers. Symbols,
experiment of Bell and Mehta (1990) (U;/U, = 0.6); solid line, DNS data for the
temporal mixing layer (Rogers and Moser 1994).

maintained at approximately uniform velocities by adjusting the inclination
of the wind tunnel’s walls.)

EXERCISES

529 From the definition of & and the scaled velocity f(&) (Egs. (5.206)
and (5.207)) show that

o(U) g40 4y
A =——f( dx) (5.212)
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5.30

in a self-similar mixing layer, irrespective of the definition of y(x).
Hence, from the mean continuity equation, show that

(<V>\ x_< >y——oc /U

T (/(2+f)dé+/( f)dé>

dé y=0
=a{‘/_ (2+f)dé+/( f)dé>. (5.213)

Let the coordinate system be chosen so that the x axis is parallel to
the velocity in the high-speed free stream, and consequently (V),_.
is zero. Show then that the lateral mean velocity is

(V) do ” dy
G=Sl-ne [u-va)+Ta-n cue

Hence show that the boundary-layer equation can be written

Uc 1 dy dé e , ,
KU 2) (5_+dx>_a/é (f—%)dé}f =g, (5215

where
g(&) = (uv)/UL. (5.216)

The preceding results apply to any specification of y(x). We now
make the particular specification that y(x) is the location of the peak
shear stress |g|. By considering Eq. (5.215) at £ = 0, show that

dy _ dé [ U, 1
e ], e/ (g )

Usdé [~ ,
= i_ , 5.217
G [ G- (5217)
Show that, with this specification of y(x), the boundary-layer equation
becomes
ds (U, ¢
dx( é+/ fdé>f’:g’. (5.218)

Show that the entrainment velocity is

do [ [° u [*
(V>y=—x=Usa</_x(%+f)dé—a/0 (g—f)d§>. (5.219)

Discuss the sign of (V),__, for the temporal and spatial mixing
layers.
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531 By integrating Eq. (5.218) from ¢ = —o0 to ¢ = oo, obtain the relation
U 00 0 |
5;(/0 (%—f)df—lw (§+f)d'f)
0 0
+[sa=naes [ —r@rnde=o 52
0 —0
Hence show that the spatial mixing layer cannot be symmetric.
5.32  If f(&) is approximated by an error function, then
0 0
/ (4471)d¢ =/0 (3 —f)dé =1y~ 024 (5.221)
With this approximation, obtain the result
dy (V)= U, dd
7 = =——1. 5.222
dx U, U, dx ° (>:222)
For a mixing layer with U,/U, = 2, taking the spreading rate S to
be 0.09, evaluate the right-hand side of Eq. (5.222) and show that,
in the low-speed stream, the angle between the streamlines and the
x axis is about 1°,
5.33  With the turbulent-viscosity hypothesis, g = —¥%1f’, and assuming 9

to be uniform, show that the momentum equation (Eq. 5.208) for the
temporal mixing layer reduces to

SEf' =~ f". (5.223)

Show that the solution to this equation (satisfying the appropriate
boundary conditions) is

(&)

Il
S~
Q
'

o

»

=]
—~~
|
o=
s
N
~

)

N
S

[oN

sy

=1 erf<i>, (5.224)

where
o? = 91/8S, : (5.225)

and that the condition f (+1) = 40.4 is satisfied by

-1
= [2\/§erf4(§)] ~ 0.3902. (5.226)
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5.34  For the self-similar temporal mixing layer, starting from the momen-
tum equation (Eq. (5.218)), show that the normalized shear stress at
the center of the layer is given by

—g(0)=S/0 éf’dé=S/0 (3 —1)de (5.227)

If f(¢) is approximated by the error function profile (Eq. (5.224)),
show that

S
—g(0) = 22 ~0.1568. (5.228)

Nz

How well do the measured values of g(0) and S agree with this
relation?

5.4.3 The plane wake

As sketched in Fig. 5.14(c) (on page 112), a plane wake is formed when a
uniform stream (of velocity U, in the x direction) flows over a cylinder (that is
aligned with the z axis). The flow is statistically stationary, two-dimensional,
and symmetric about the plane y = 0.

The characteristic convective velocity is the free-stream velocity U,, while
the characteristic velocity difference is

Uy(x) = U, — (U(x,0,0)). (5.229)
The half-width, y;»(x), is defined such that
(U(x, 2y12,0)) = U — 5U(x). (5.230)

As expected, with increasing downstream distance, the wake spreads (y,2
increases) and decays (U,/ U, decreases toward zero).

Just as with the mixing layer, there are two different velocity scales, Us
and U.. In the mixing layer, these have a constant ratio, independent of x.
In the wake, the ratio evolves as U,/U, decays. Because of this, the flow
cannot be exactly self-similar; but it does become asymptotically self-similar
in the far wake as U,/ U, tends to zero. In experiments, self-similar behavior
is observed when this velocity ratio is less than about .

With & = y/y,,2(x) being the scaled cross-stream variable, the self-similar
velocity defect f(&) is defined by

f(é) = [Uc - <U(X, y, 0))]/(]5()(3), (5231)
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so that the mean velocity is
(U) = U, = U(x)f (&) (5.232)

From these definitions we have f(0) = 1 and f(+1) = 1.
The momentum-deficit flow rate (per unit span), M(x), is defined by

M) = / p(UNU. — (U)) dy, (5.233)

oC

and, in the self-similar region, this is

M) = pU.Uy(x)y (%) / | (1 - %f(é))f(é) dé. (5.234)

Application of the momentum theorem to the cylinder and wake (see Batch-
elor (1967)) shows that the momentum deficit flow rate M(x) is conserved
(independent of x) and equals the drag (per unit span) on the cylinder (see
also Exercise 5.35). Consequently, it is evident from Eq. (5.234) that, in the
far wake (U,/U. — 0), the product U,(x)y;,2(x) is independent of x.

In the far wake, the mean convection term D(U) /Dt reduces to U, 8(U)/0x
so the boundary-layer equation becomes
o(U)y  0(uw)

Ue ox Oy

(5.235)

In terms of the similarity variables f(¢) and g(¢) = (uv) /U2, this equation is

S(Ef) =—¢, (5.236)
where the spreading parameter is

dy )

dx ’
(see Exercise 5.36). Equation (5.236) shows that self-similarity dictates that
S be constant. This, together with the constancy of Us(x)y1,2(x), implies that
Us(x) and y, 5(x) vary as x7'/2 and x'/2, respectively. Note that Eq. (5.236)
can be integrated to yield a simple relationship among the shear stress, the
mean velocity, and the spreading rate:

S

il

U.
T (5.237)

g = —SEf. (5.238)

The turbulent viscosity vy scales with Uy(x)y; ,2(x), and is therefore inde-
pendent of x. With the assumption of a constant turbulent viscosity, i.e.,

vy = PrUs(x)y12(x), (5.239)
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Fig. 5.26. The normalized velocity defect profile in the self-similar plane wake. Solid
line, from experimental data of Wygnanski et al. (1986); dashed line, constant-
turbulent-viscosity solution, Eq. (5.240).

the solution to Eq. (5.238) is

f(&) = exp(—a&?), (5.240)

where « = In2 ~ 0.693 (see Exercise 5.37). The turbulent Reynolds number
is
_Ux)yiplx) 1 2In2

Ry = 22 1
vt vt S

: (5.241)

Revealing experiments were reported by Wygnanski, Champagne, and
Marasli (1986). In addition to a circular cylinder, these investigators also
used a symmetric airfoil and a thin rectangular plate to generate plane
wakes. In each case the flow is found (convincingly) to be self-similar, with
the mean velocity profile shown in Fig. 5.26. It may be seen that the constant-
turbulent-viscosity solution agrees well with the data, except at the edges —
as is the case with jets,

However, it appears that the wakes from the different generators do not
tend to precisely the same self-similar state. The spreading-rate parameters
are Spae = 0.073, Siylinder = 0.083, and S,y = 0.103. Consistent with
Eq. (5.238), the shear-stress profiles exhibit the same level of difference. For
the plate the peak axial r.ms. velocity is (uz),ln/fx /U, = 0.32, whereas for the
airfoil it is 0.41. As discussed by George (1989), the different states observed
are completely consistent with self-similarity. However, they indicate that,
as the turbulent fluid 1s convected downstream, it retains information about
how the wake was generated, rather than tending to a universal state.
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5.35

5.36

5.37

EXERCISES
Starting from the boundary-layer equations, show that
0 0 0
EKU)(UC — (UM + @[(VNUC —(U = 5<uv> (5.242)

for the plane wake; and hence show that the momentum deficit flow
rate is conserved (Eq. (5.233)).

For the self-similar plane wake, since y,,(x)Us(x) is independent of
x, show that

U. dU,
y ‘52 — =5, (5.243)

where the spreading parameter S is defined by Eq. (5.237). From
Eq. (5.232) show that

ouy  dU, | U dyys
ox dx + yip dx ¢ (5.244)
and hence
Uch/z 6<U> _ ’
Uz ox S(f). (5.245)
With the scaled shear stress being
g(&) = (uv) /U3, (5.246)
show that the (approximate) boundary-layer equation
o(U) 0 {uv)
U. =— .
o o (5.247)
can be written
SEf) =—g. (5.248)

Show that the turbulent viscosity hypothesis (with uniform vy)
amounts to

g = rf’ (5.249)
Substituting Eq. (5.249) into Eq. (5.248), obtain the solution
f(&) = exp(—a&?), (5.250)

where

9%}

(5.251)

N
<>
—
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Show that o = 1n 2, and hence that
1 2In2

Vr S

(5.252)

5.4.4 The axisymmetric wake

The analysis of the axisymmetric wake parallels closely that of the plane
wake. However, the experimental data reveal striking differences.

An axisymmetric wake forms behind a round object — a sphere, spheroid,
or disk, for example — held in a uniform stream, flowing with velocity
U. in the x direction. The flow is statistically axisymmetric, with statistics
depending on x and r, but being independent of . The centerline velocity
deficit Uy(x) and flow half-width r, ,(x) are defined in the obvious manner.

Just as with the plane wake, self-similarity is possible only as U,/ U, tends
to zero, and then the spreading parameter S = (U./U;)dr,,,/dx is constant.
For this flow, however, the momentum deficit flow rate — which equals the
drag on the body — is proportional to pUCUsrf/z. As a consequence U
varies as x%/* and ry;; as x!/, so that the Reynolds number decreases as
x~173, The assumption that the turbulent viscosity is uniform across the flow
leads to the same mean velocity-deficit profile as that for the plane wake
(Egs. (5.239)-(5.241)).

Uberoi and Freymuth (1970) reported measurements made in the wake
of a sphere (of diameter d), with Reynolds number Re, = U.d/v = §, 600.
After a development distance (x/d < 50), self-similarity in the mean velocity
and Reynolds stresses is observed over the range of x/d examined (50 <
x/d < 150). The measured mean velocity-deficit profile is compared with the
constant-turbulent-viscosity solution in Fig. 527, and the profiles of r.m.s.
velocities are shown in Fig. 5.28. It should be observed that the peak value
of (u?)!/2/Uj is about 0.9, much higher than those in the other flows we have
examined. Correspondingly, the spreading parameter is S ~ 0.51 — at least
five times larger than that observed in plane wakes.

The balance of the turbulent kinetic energy (Fig. 5.29) is also substantially
different than those of other flows. The dominant term is convection from
upstream (i.e.,, —(U) 0k /0x), with dissipation ¢ and lateral transport each
being about half as large. In contrast, at its peak, the production P is just
20% of & and 15% of convection. The dominance of convection, and the
relatively small amount of production, suggest that the turbulence is strongly
influenced by conditions upstream.

This hypothesis is strengthened by the observation that the measured
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D)

Fig. 5.27. Mean velocity-deficit profiles in a self-similar axisymmetric wake. Symbols,
experimental data of Uberoi and Freymuth (1970); line, constant-turbulent- v1scosnty
solution f(¢) = exp(—¢21n 2).
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Fig. 528. R.m.s. velocity profiles in a self-similar axnsymmetrlc wake. Experimental
data of Uberoi and Freymuth (1970): x, (u2)"/2/U,; e, (1?)1/2 /U0, (w12 /U,

spreading parameter and turbulence level depend very significantly on the
geometry of the body that generates the wake (see Table 5.3). On going
from streamlined bodies to bluff bodies, S increases by a factor of ten, and
the relative turbulence intensity by a factor of three. These observations are
discussed further in Section 5.5.4.

Of the free shear flows examined in this chapter, only in the axisymmetric
wake does the Reynolds number decrease with x (as x'/3). Consequently,
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Fig. 5.29. The turbulent kinetic energy budget in a self-similar axisymmetric wake.
Experimental data of Uberoi and Freymuth (1970).

Table 5.3. The spreading parameter and turbulence intensity for axisymmetric
wakes behind various bodies

Turbulence
intensity
Spreading on centerline
Body parameter S (uz)é/z/Us Investigation
49% blockage-screen 0.064 0.3 Cannon and Champagne (1991)
6:1 spheroid 0.11 0.3 Chevray (1968)
84% Dblockage-screen 0.34 0.75 Cannon and Champagne (1991)
Sphere 0.51 0.84 Uberoi and Freymuth (1970)
Disk 0.71 1.1 Cannon and Champagne (1991)
Disk 0.8 0.94 Carmody (1964)

only over a limited range of x can self-similarity (independent of Re) be
expected; for, at sufficiently large x, the flow can be assumed to relaminarizes.
The laminar wake admits the same self-similar velocity profile, but with U;
and ry, varying as x~! and x!/?, respectively. Some experimental data (e.g.,
Cannon and Champagne (1991)) suggest that modest departures from self-
similarity (based on high-Reynolds-number scaling) occur.
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EXERCISES
538  Starting from the approximate boundary-layer equation for the far
axisymmetric wake

o(U 10
U. % = — = (r(w)), (5.253)

show that the momentum-deficit flow rate
M= / 2nrpU(U. — (U))dr (5.254)
0

is conserved.
For the self-similar wake, re-express M in terms of U, and f(&) =
(U. — (U))/U,, where & = r/ry,. Hence show that

ri,2 U. dU; _
0T dx 28, (5.255)
where the spreading parameter is
UC dr1/2
S=-— . .
U, dx . (5.256)
5.39  Starting from Eq. (5.253), show that
—S(Ef + &) = (&g) (5.257)
for the self-similar axisymmetric wake, where g(¢) = (uv)/UZ. Hence
show that
g =—Sf¢ (5.258)

Show that, if the uniform-turbulent-viscosity hypothesis is invoked
(i.e., g = vrf"), the solution to Eq. (5.258) is

1(&) = exp(—&*In2), (5.259)
and that
S=2In2 V. (5.260)

5.4.5 Homogeneous shear flow

As visual observation suggests, the free shear flows we have examined
are inherently statistically inhomogeneous. In the center of the temporal
mixing layer the mean shear rate é(U)/dy appears to be fairly uniform, but
the Reynolds stresses exhibit appreciable spatial variation. The turbulent
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Fig. 5.30. A sketch of the mean velocity profile in homogeneous shear flow.

kinetic energy does not change with time, yet production exceeds dissipation
by 40%. This excess of energy produced is transported outward, and the
transport processes involved depend essentially on statistical inhomogeneity.
In contrast to these flows, it is informative to study homogeneous turbulence,
from which this type of transport process is absent. By the definition of
homogeneous turbulence, the fluctuating components of velocity u(x,t) and
pressure p'(x,t) are statistically homogeneous. It follows that imposed mean
velocity gradients d(U;)/0x; must be uniform, although they can vary with
time (see Exercises 5.40 and 5.41). Here we examine homogeneous shear flow
in which the single imposed mean velocity gradient S = ¢(U) /0y is constant.

Homogeneous shear flow can be reasonably well approximated in wind-
tunnel experiments. By controlling the flow resistance upstream, a turbulent
flow with the mean velocity profile sketched in Fig. 530 can be produced.
(The mean flow is entirely in the x direction, ie., (V) = (W) = 0, and
(U) varies only in the y direction.) At the beginning of the flow (x/h = 0),
the Reynolds stresses are uniform normal to the direction of flow, and this
uniformity persists downstream. Figure 5.31 shows the axial variation of
the Reynolds stresses measured by Tavoularis and Corrsin (1981). In spite
of this axial variation, in a frame moving with the mean velocity U,, the
turbulence is approximately homogeneous. Direct numerical simulations of
homogeneous shear flow have also been performed (e.g., Rogallo (1981)
and Rogers and Moin (1987)), with results in broad agreement with the
experiments.
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Fig. 5.31. Reynolds stresses against axial distance in the homogeneous-shear-flow
experiment of Tavoularis and Corrsin (1981): O, u?); O, (02); A, (w?).

The important conclusion from these studies is that, after a development
time, homogeneous turbulent shear flow becomes self-similar. That is, when
statistics are normalized by the imposed shear rate S and the kinetic energy
k(t), they become independent of time. Table 5.4 compares some of these
statistics at two locations in the experiments of Tavoularis and Corrsin (1981)
and from the DNS study of Rogers and Moin (1987). Between x/h = 7.5
and x/h = 11.0, the kinetic energy increases by 65%, yet the normalized
Reynolds stresses barely change at all. The turbulence timescale t = k /¢ does
not change appreciably, but is in a fixed proportion to the imposed mean-
flow timescale S~'. Between the two measurement locations the longitudinal
integral lengthscale L;; increases by 30%, but remains constant when scaled
by & and k. : ,

The equation for the evolution of the turbulent kinetic energy is, simply,

= P e, (5.261)
see Exercise 5.40. This can be rewritten
‘ tdk P
rd 1, (5.262)

which - since © and P /e are constant — has the solution

k(1) = k(0) expE (g — 1)] . (5.263)

Thus, since P/¢ ~ 1.7 is greater than unity, the kinetic energy grows expo-
nentially in time. Consequently, both ¢ and L = k¥?/e = k'/?/1 also grow
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Table 5.4. Statistics in homogeneous turbulent shear flow from the experiments
of Tavoularis and Corrsin (1981) and the DNS of Rogers and Moin (1987 )

Tavoularis and Corrsin  Rogers and Moin

x/h=15 x/h=110 St =80
(u) /k 1.04 1.07 1.06
(W) /k 0.37 0.37 0.32
(w2 /k 0.58 0.56 0.62
—(uv) /k 0.28 0.28 0.33
—Pur 0.45 0.45 0.57
Sk/e 6.5 6.1 4.3
Ple 1.8 1.7 1.4
Ly S/kV/? 4.0 4.0 3.7
Lii/(k¥%/¢) 0.62 0.66 0.86

exponentially. Additional experiments and DNS on homogeneous shear flow
have been performed by Tavoularis and Karnik (1989), de Souza et al. (1995),
and Lee et al. (1990).

5.40

EXERCISES
By subtracting the Reynolds equations (Eq. (4.12)) from the Navier-
Stokes equations (Eq. (2.35)), show that the fluctuating velocity u(x, ?)
evolves by

Du; o(U;) 0 5 1 op
= —uy —(uu; P—— = 26
Dt "o, +6x,~<uu’>+vvu’ p 0x; (5.264)
Show that, for homogeneous turbulence,
i )= — 265
<u’ D¢ > de’ (5.265)
op
i— =0 5.266
<u1 6x,~> ’ (5260)
v{u; Viu;) = —e, (5.267)
and hence that the kinetic energy evolves by
dk
— =P — 5.268
where
U.
P = —(uu;) gx,» (5.269)
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(Note that this implies that a necessary condition for homogeneous
turbulence is that the mean velocity gradients be uniform.)

541 Bydifferentiating with respect to x; the Reynolds equations (Eq. (4.12)
written for (U;), show that, in homogeneous turbulence, the velocity
gradients evolve by

dau;) | o) o(U;) 1 3*p)

=—— . 5270
dt Ox; ox;,  0X; p OX;0x ( )
Hence show that the mean rate of strain
o _ 1oy | oU)
Sjk :§< é’xk + an
and rotation
5. _ 1(3U) oy
AT 0x;
evolve by
dSk L c 5 1 6.6 1 0%p)
L 48,8+ Q0= —— , 5271
dr owdnF S p 0x;0x; ( )
dQ, - - -
dt”‘ + 5,0 + 0S5 = 0. (5.272)

(Note that the mean pressure field is of the form (p(x,t)) = A(t) +
Bi(t)x; + Ci(t)x;x;, and that C;;(t) can be chosen to produce any
desired evolution dS; /dt. On the other hand, the evolution of the
mean rotation rate is entirely determined by §;; and Q;;.)

5.4.6 Grid turbulence

In the absence of mean velocity gradients, homogeneous turbulence decays
because there is no production (P = 0). A good approximation to decaying
homogeneous turbulence can be achieved in wind-tunnel experiments by
passing a uniform stream (of velocity U, in the x direction) through a grid
similar to that shown in Fig. 5.32 (which is characterized by the mesh spacing
M). In the laboratory frame, the flow is statistically stationary and (in the
center of the flow) statistics vary only in the x direction. In the frame moving
with the mean velocity U, the turbulence is (to an adequate approximation)
homogeneous, and it evolves with time (t = x/Up).

Figure 5.33 shows measurements of (#?) and (v?) from the grid-turbulence
experiments of Comte-Bellot and Corrsin (1966). The symmetries in the
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Fig. 5.32. A sketch of a turbulence-generating grid composed of bars of diameter d,
with mesh spacing M.
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Fig. 5.33. The decay of Reynolds stresses in grid turbulence: squares, {(u?)/U?; circles
(v*)/UZ; triangles k/U2; lines, proportional to (x/M)~'*. (From Comte-Bellot and
Corrsin (1966).)

(ideal) experiment dictate that (v?) and (w?) are equal, and that all of the
shear stresses are zero. It may be seen that the r.m.s. axial velocity (u?)!/? is
10% greater than the lateral r.m.s. (v?)'/2. (Comte-Bellot and Corrsin (1966)
demonstrated a modification to the experiment that yields equal normal
stresses, thus providing a better approximation to the ideal of homogeneous
isotropic turbulence.)

It is evident from Fig. 5.33 that the normal stresses and k decay as power
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laws, which, in the laboratory frame, can be written

k X — X\ "

i A( = ) , (5273)
where x, is the virtual origin. Values of the decay exponent n between 1.15
and 1.45 are reported in the literature; but Mohamed and LaRue (1990)
suggest that nearly all of the data are consistent with n = 1.3 (and x, = 0).
(The value of A varies widely depending on the geometry of the grid and

the Reynolds number.)
In the moving frame, the power law (Eq. (5.273)) can be written

k(1) = ko ( i)i (5.274)

fo

where t; is an arbitrary reference time, and ky is the value of k at that time.
On differentiating we obtain

dk nk ¢\
=)&) (279

Now, for decaying homogeneous turbulence, the exact equation for the
evolution of k (Eq. (5.261)) reduces to

dk
dt —
Hence, a comparison of the last two equations shows that ¢ also decays as

a power law:
t —(r+1)
s(t)=80(—> , (5.277)
to

with & = nko/t,. The decay exponents for other quantities are given in
Exercise 5.42.

As the turbulence decays, the Reynolds number decreases so that even-
tually effects of viscosity dominate. This leads to the final period of decay,
discussed in Section 6.3, in which the decay exponent is n = g (see Exer-
cise 6.10 on page 205).

In a sense, grid turbulence (as an approximation to homogeneous isotropic
turbulence) is the most fundamental turbulent flow, and consequently it has
been studied extensively both experimentally and theoretically. However, in
another sense it is pathological: in contrast to turbulent shear flows, there is
no turbulence-production mechanism (downstream of the grid).

‘Active’ grids, consisting of an array of moving flaps, that produce sig-
nificantly higher turbulence levels, and thus higher Reynolds numbers, have
been developed (e.g, Makita (1991), and Mydlarski and Warhaft (1996)).

—e. (5.276)
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EXERCISE
5.42  For grid turbulence, given the decay laws for k and ¢ (Egs. (5.274)
and (5.277), and taking n = 1.3), verify the following behaviors:

]

~t,
. &/2 N <£>(1—n/2): <£>0.35
e ty to ’
k2L, ¢\ t\7%
~~() -G)

(Note that the Reynolds number k'/2L/v decreases. The increase of
L and 1 should not be misunderstood. It is not that the turbulent
motions become larger and slower. Rather, the smaller, faster motions
decay more rapidly, leaving behind the larger, slower motions.)

™|

i

5.5 Further observations

Our examination of free shear flows has focused mainly on the mean ve-
locity field and the Reynolds stresses. In this section we first extend these
considerations to a conserved passive scalar ¢, by considering its mean (@),
its variance (¢"), and the scalar flux (u¢’). Then we examine quantities and
phenomena that are not described by first and second moments.

5.5.1 A conserved scalar

The behavior of a conserved passive scalar ¢(x,t) has been studied exper-
imentally in all of the free shear flows discussed in this chapter. In jets,
the jet fluid can have a small temperature excess, or a slightly different
chemical composition than the ambient. It is convenient to normalize the
resulting scalar field so that ¢ is unity in the jet and zero in the ambient.
Such a normalized scalar is sometimes referred to (especially in the combus-
tion literature) as the mixture fraction. Similarly, in mixing layers, ¢ can be
normalized to be zero and one in the two streams.
For plane flows, the boundary-layer equation for the mean (¢) is

(¢) o) _ 0%g) (g
RO e e e (5278)

This equation is very similar to that for the axial velocity (U) (Eq. (5.56)),
and similar conserved quantities arise from it. Taking the plane jet as

(U)
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Fig. 5.34. The normalized mean velocity deficit f(¢) and scalar, @(&) = (¢)/(¢),=o In
the self-similar plane wake. Symbols (solid f, open ¢) experimental data of Fabris
(1979); solid line, f(¢) = exp(—¢%1In2); dashed line, @(¢) = exp(—¢&2oy ln2) with
o = 0.7.

an example, we have seen that the momentum flow rate [~ p(U)*dy is
conserved, from which we deduced that (U) scales as x~'/2. Similarly, it
follows from Eq. (5278) that the scalar flow rate [~ p(U)(¢)dy is also
conserved, and hence (¢) must scale in the same way as (U), i.e., as x7 /%,
The same conclusion applies to all the self-similar free shear ﬁows (qS) scales
with x in the same way as (U) does.

The lateral profiles of (¢) are again similar to those of (U), but in all
cases they are found to be somewhat wider. For example, Fig. 5.34 shows
the profiles of (U) and (¢) measured by Fabris (1979) in the self-similar
plane wake. The assumption of a constant turbulent viscosity vy leads to
the normalized velocity profile f(¢) = exp(—&%1n2) shown in Fig. 5.34 (see
Eq. (5.240)). Similarly, the assumption of a constant turbulent diffusivity

FT = VT/O'T, (5279)
leads to the normalized scalar profile

(#)/(¢)y=0 = exp(—&lo71n2) (5.280)

(see Exercise 5.43). This profile, with the turbulent Prandtl number set to
or = 0.7, agrees quite well with the data. (As shown in Exercise 5.43, the
ratio of the widths of the scalar and velocity profiles is proportional to aTl/ 2).

It should be appreciated that, in self-similar free shear flows, the gradient-
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Fig. 5.35. Normalized r.m.s. scalar fluctuations in a round jet. From the experimental
data of Panchapakesan and Lumley (1993b).

diffusion and turbulent-viscosity hypotheses are successful only in a limited
sense — namely in approximating the lateral fluxes (v¢’) and (uv). In the
plane wake, |0(¢)/0x| is vanishingly small compared with |3(¢)/0y| as
U,/ U, tends to zero. Yet the experimental data (e.g., Fabris (1979)) show
|(ug’)| to be comparable to |{(v¢’)|. The lack of alignment between V(¢) and
—(u¢') is also clearly demonstrated in homogeneous shear flow. Tavoularis
and Corrsin (1981) imposed a mean scalar gradient in the y direction, and
yet found |(u¢’)| to be more than twice |(v¢’)|: the angle between V(¢) and

—(ug’) is 65°.

As the turbulent kinetic energy k = 1(u - u) characterizes the energy in
the fluctuating velocity field, the scalar variance (¢?) — or the r.m.s (¢?)!/?
— characterizes the level of scalar fluctuations. Figure 5.35 shows the r.m.s.
measured by Panchapakesan and Lumley (1993b) in a helium jet in air.?
The shape of the profile and the level of the fluctuations (up to 25%) are
comparable to those of the r.m.s axial velocity (u*)!/? (see Fig. 5.7).

The equation for the evolution of the scalar variance can be written

<¢’2)

+V-Ty =Py —¢y (5.281)
(see Exercise 5.44), where the scalar-variance production is

Py = —2(ud’) - V(), (5.282)

2 Over the range of the measurements x/d = 50-120, the mean density varies by as much as 15%,
which has some effect on the flow; i, ¢ is not entirely passive.
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Fig. 5.36. The scalar-variance budget in a round jet: terms in Eq. (5.281) normalized
by (¢)y=0,Us and ry 2. (From the experimental data of Panchapakesan and Lumley
(1993b).)
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Fig. 5.37. The scalar-to-velocity timescale ratio for a round jet. (From the experimental
data of Panchapakesan and Lumley (1993b).)

the scalar dissipation is

gy = 2T (Ve - V), (5.283)
and the flux is ‘ :
T, = (ug™) — TV(¢?). (5.284)

(Sometimes the equation is written for 1 (¢/*), and the factors of 2 are omitted
from the definitions of P, and &;.)
For the round jet, the terms in Eq. (5.281) are shown in Fig. 5.36. A
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Fig. 5.38. The normalized scalar variances on the axes of self-similar round jets at
various Reynolds numbers. Triangles, air jets (experiments of Dowling and Dimotakis
(1990)); circles, water jets (experiments of Miller (1991)). (From Miller (1991).)

comparison with Fig. 5.16 shows that the balance of the terms is very similar
to the kinetic-energy balance. Where P, peaks, the ratio P, /¢, is 0.85.

The quantity t = k/e defines a characteristic timescale of the velocity fluc-
tuations, and similarly 1, = (¢"?)/e, defines the analogous scalar timescale.
The profile of the timescale ratio t/t, in the round jet is shown in Fig. 5.37.
Over most of the profile t/7, is within 15% of 1.5. In many other shear
flows this timescale ratio is found to be in the range 1.5-2.5 (Béguier et al.
1978).

What is the influence of the molecular diffusivity I'? This question can
be rephrased in terms of the Reynolds number U/ £/v, and the Prandtl or
Schmidt number ¢ = v/T". Values of ¢ from 0.3 (for helium in air) to 1,500
(for dyes in water) are encountered in experiments. Figure 5.38 provides
valuable information to address the question. It shows the scalar variance
normalized by the mean scalar on the centerline of self-similar round jets at
various Reynolds numbers. For the air jet (¢ ~ 1), there is no influence of
Re over the decade studied. For the water jet (¢ ~ 10%), the scalar variance
decreases with increasing Re, and appears to tend asymptotically to the same
value as that in the air jet. These data are therefore consistent with the view
that, at sufficiently high Reynolds number (here Re > 30,000), the means
and variances of the velocities and scalar are unaffected by Re and o.

As is evident from its definition (Eq. (5.283)), scalar dissipation is inherently
a molecular process. However, as Fig. 1.2 on page 5 illustrates, in a given
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flow (characterized by U, L,v, and o), as the Reynolds number increases,
so also do the normalized scalar gradients £V¢. As a consequence, instead
of scaling with I'/£? as is vaguely suggested by its definition, ¢, scales as
U /L, independent of I" (at sufficiently high Reynolds number). The processes
causing this behavior are described in the next chapter.

With ¢ being a specified value of the scalar, the points x satisfying the
equation

d(x,t) =y, (5.285)

define an isoscalar surface. At high Reynolds numbers, such surfaces exhibit a
fractal nature over an intermediate range of scales, with a fractal dimension
of about 2.36 (see, e.g, Sreenivasan (1991)). Careful examination reveals,
however, that the surface geometry departs significantly from a perfect
fractal (Frederiksen et al. 1997).

EXERCISES
5.43  For the self-similar plane wake, neglecting the molecular diffusivity
I', the mean scalar equation (Eq. (5.278)) is

o) _ 0, 4
=5 (09 (5.286)

Let ¢p(x) denote the value of (¢) on the plane of symmetry; and,
with £ = y/y), let the self-similar scalar profile be

@(&) = (¢)/ po. (5.287)

By integrating Eq. (5.286) over all y, show that U.@(x)y, (%) is
conserved, and hence that

Ucy1/2 %_

U.

—, Uido dx =S= —s e (5.288)
Show that
UC Y12 <¢> o ’
Ude ox =S(¢o). (5.289)

The constant-turbulent-diffusivity hypothesis can be written

, 0 0 0 0
—(v¢’) =T¢ éj}» _ :-_i éf) _ :-_iUs(x)yl/z(x) —g%), (5.290)

where or is the turbulent Prandtl number. Show that, with this
assumption, the scalar equation (Eq. (5.286)) becomes

A

—S(p) = ;—ico”- (5.291)



5.5 Further observations 167

Show that the solution to this equation is

(&) = exp(—B&?), (5.292)

where
p=271 5293
= 2 (5.293)

Use the results of Exercise 5.36 to show that this can be rewritten

o(§) = exp(—&’orIn2)
=1 (£ Jor). (5.294)

Let &, be the half-width of the normalized scalar profile (ie.,
@(&1/2) = 1). Show that &), and oy are related by

or =1/ (5.295)

5.44  From the Reynolds decompositions U = (U) + u and ¢ = (¢) + ¢/,
show that

Up—(U¢) = U +u(p) — (ud)). (5.296)

Hence, from the conservation equation for ¢(x,t) (Eq. (4.38)), show
that the scalar fluctuation evolves by

DY V() V- () + TV (5:297)

Show that
2¢' Vi = V(') —2V¢' - V. (5.298)

By multiplying Eq. (5.297) by 2¢’ and taking the mean, show that
the scalar variance evolves according to Eq. (5.281).

5.5.2 Intermittency

Visual observations of free shear flows at an instant of time (e.g., Figs. 1.1 and
1.2 on pages 4 and 5) suggest that there is a sharp (but highly irregular) in-
terface between the turbulent flow and the ambient fluid. Many experiments,
starting with those of Corrsin (1943), have confirmed this picture: there
is a highly contorted moving surface — called the viscous superlayer — that
separates regions of turbulent and non-turbulent flow. Regions of turbulent
flow are characterized by large vorticity: the r.m.s. vorticity «’, like the strain
rate, scales with the Kolmogorov scales, ie., @' ~ 1/1, ~ (Us/8)Re"? In
contrast, the non-turbulent flow is essentially irrotational. At a fixed location
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Fig. 5.39. A sketch of the intermittency function versus time in a free shear flow (a) in
the irrotational non-turbulent surroundings, (b) in the outer part of the intermittent
region, (c) in the inner part of the intermittent region, and (d) close to the center of
the flow.

toward the edge of a free shear flow, the motion is sometimes turbulent and
sometimes non-turbulent — the flow there is intermittent.

To avoid misconceptions, it is emphasized that there are no discontinuities
across the viscous superlayer. In the mathematical sense, the vorticity and
all other fields vary smoothly across the layer: but the layer is very thin
compared with the flow width §.

The starting point for the quantitative description of intermittency is the
indicator function — or intermittency function — I(x,t). This is defined to be
I =1 in turbulent flow, and I = 0 in non-turbulent flow. Operationally it
can be obtained in terms of the Heaviside function as

I(x,1) = H(Jo(x, )] — Ouresh), (5.299)

where s is @ small positive threshold. Figure 5.39 shows a sketch of time
series of I(¢) at various locations in a free shear flow.

The intermittency factor y(x,t) is the probability that the flow at (x,?) is
turbulent:

7(x,t) = (I(x,1)) = Prob{|m(x, )| > Onresh - (5.300)

For all the free shear flows, experiments show that the profiles of y become
self-similar. As an example, Fig. 5.40 shows the profile of y measured in the
plane wake. In other flows, the profiles are similar in shape, but in jets and
mixing layers the intermittent region (0.1 <y < 0.9, say) occupies a smaller
fraction of the flow’s width.

The intermittency function can be used to obtain conditional statistics. We
take the scalar ¢(x,t) as an example. With y being the sample-space variable,
the PDF of ¢(x,1) is denoted by f,(i;x,t). This can be decomposed into a
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Fig. 5.40. The profile of the intermittency factor in the self-similar plane wake. The
mean scalar profile is shown for comparison: y, is the half-width. (From the experi-
mental data of LaRue and Libby (1974, 1976).)

contribution from turbulent flow, y(x,)fr(y;x,1), and a contribution from
non-turbulent flow;

fo=7fr+(1—7)f~ (3.301)

Thus fr and fy are the PDFs of ¢ conditional upon turbulent flow (I = 1),
and upon non-turbulent flow (I = 0), respectively.

In the non-turbulent region, just as the vorticity is essentially zero, so
also the scalar is essentially equal to the free-stream value, ¢,. In fact,
the condition |¢ — P,| > Pmresh is Often used as an alternative indicator of
turbulent flow. Thus, to within an approximation, the non-turbulent PDF is

(3 x,t) = 8(p — duo). (5.302)

The turbulent mean and variance of ¢ are defined by

0

($(x, 1)y = / wfr(pix 1) dy, (5.303)

—a0

() = / (p— ($)1)fr dy. (5.304)

The non-turbulent moments (¢)n and (¢y)* are defined similarly, and if fy
is given by Eq. (5.302) they are (¢)n = ¢, and ¢y = 0. It follows from
Eq. (5.301) that the unconditional mean and variance are given in terms of
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Fig. 5.41. A comparison of normalized unconditional and turbulent mean (a) and
r.m.s. (b) scalar profiles in the self-similar plane wake. From the experimental data of
LaRue and Libby (1974).

the conditional moments by

(@) = y(d)r + (1 =) {P)n, (5.305)
(@) = p(Pr) + (1 = )P\ +2(1 —9)((D)r — (d)n)* (5.306)

Notice that the unconditional variance contains a contribution from the
difference between the conditional means.

For the turbulent wake, ¢, (¢)n and ¢y are all zero. The turbulent mean
(¢)r and r.ms. ¢} are compared with their unconditional counterparts in
Fig. 5.41. As may be seen, both in terms of the mean and in terms of the
r.m.s., the state of the turbulent flow is much more uniform across the flow
than is suggested by the unconditional profiles.

Having described some of the features of the intermittent region, we
now return to some of the fundamental questions concerning intermittency.
Why is the turbulent/non-turbulent interface so sharp? What is the nature
and behavior of the viscous superlayer? What are the characteristics of the
fluctuations in velocity in the non-turbulent region?

A feature of all turbulent shear flows is that they entrain fluid. In the
round jet, for example, the mass flow rate increases linearly with the axial
distance x. Since the intermittency factor is self-similar, it follows that the
mass flow rate of turbulent fluid also increases linearly with x. Consequently,
at x/d = 100, 80% of the fluid in turbulent motion has been entrained
between x/d = 20 and x/d = 100. The entrained fluid originates from the
ambient, where @ and ¢ are zero. Only by molecular diffusion can @ and
¢ depart from zero® and, at the high Reynolds numbers of turbulent flows,

3 Where w is zero, so also is the vortex-stretching term @+ VU.
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Viscous
superlayer

Fig. 5.42. A sketch of a turbulent round jet showing the viscous superlayer, and the
path of a fluid particle from a point in the quiescent ambient, O, to the superlayer, E.

molecular diffusion can have a significant effect only if gradients are very
steep. Hence, in the viscous superlayer, |@| and ¢ rise steeply from zero, and
the thickness of the layer (being inversely proportional to |V¢|) is small.

Some characteristics of the viscous superlayer are known from experiments
(e.g., LaRue and Libby (1976)), but some are not. The large-scale turbulent
motions convect the superlayer so that the PDF of its lateral position
is quite accurately given by a Gaussian distribution. Correspondingly, the
profile of y is close to an error function (see Fig. 5.40). The turbulent
motions also deform the superlayer so that it is randomly corrugated, and
over an intermediate range of length scales it is approximately fractal, with
a fractal dimension of 2.36 (Sreenivasan et al. 1989). Since the mass flow
rate of turbulent fluid increases with downstream distance, it follows that
the superlayer propagates relative to the fluid into the irrotational ambient:
the product of the superlayer’s area and this propagation speed gives the
volumetric entrainment rate, which scales as U,6? (independent of Re).

A consistent picture emerges if (as first suggested by Corrsin and Kistler
(1954)) we suppose that the propagation speed u, of the superlayer relative
to the fluid scales with the Kolmogorov velocity u, ~ U,Re™"* (Eq. (5.154)).
Then, so that the overall entrainment rate is independent of Re, the su-
perlayer’s area scales as 62Re'/*. The following crude model then suggests
that the superlayer thickness scales with the Kolmogorov scale n ~ Re™*/*
(Eq. (5.152)).

Figure 5.42 is a sketch of a turbulent round jet showing the path of a
fluid particle from a point O in the ambient to a point E in the viscous
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Fig. 5.43. Profiles of the intermittency factor p, the unconditional mean axial velocity
(U) and the turbulent (U)r and non-turbulent (U)x conditional mean velocities in
a self-similar mixing layer. From the experimental data of Wygnanski and Fiedler
(1970).

superlayer. Let s denote the arclength along the fluid particle’s path measured
from E in the direction of O. The scalar equation D¢/Dt = I' V2¢.is crudely
approximated along this path by the ordinary differential equation
d¢ d*¢
—ty— =T —-.
lds T ds

The appropriate boundary conditions are ¢(c0) = 0 (in the ambient) and
#(0) = ¢ of order unity, in the superlayer. The solution to Eq. (5.307) is

P(s) = o exp(—s/A), (5.308)

where the lengthscale A — proportional to the estimated thickness of the
viscous superlayer — is A = I'/u,. Relative to the local flow width &, this

lengthscale is
A v [T\ (U 34
S = U55 (;) (u—e> = cRe s (5309)

where c is a constant, and the Reynolds number is U,8/v. (Recall that u./U;
scales as Re™'/*) Thus, according to this model, the superlayer thickness
scales with the Kolmogorov scales, as §Re™*. The experimental evidence
(e.g2. LaRue and Libby (1976)) is consistent with this picture, but insufficient
to be deemed convincing confirmation.

We have focused on the vorticity @ and the scalar ¢ because, in the
non-turbulent region, their values can be changed only by molecular effects
(v Vo and T'V2¢), and these are negligible. The velocity, on the other hand,
is affected also by pressure gradients. The turbulent motions in the core of

(5.307)
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Fig. 5.44. Profiles of unconditional (u?), turbulent (u})’>, and non-turbulent (u})2
variances of axial velocity in a self-similar mixing layer. From the experimental data
of Wygnanski and Fiedler (1970).

the flow induce pressure fluctuations which lead to velocity fluctuations in
the non-turbulent region.

Figure 5.43 shows conditional and unconditional mean velocities measured
in a self-similar mixing layer. It may be seen that the non-turbulent velocity
(U)n is appreciably different than the free-stream velocity. For the same
flow, Fig. 5.44 shows the conditional and unconditional variances of the
axial velocity. As may be seen, the r.m.s. of the non-turbulent velocity u}
is not insignificant. A remarkably successful theory due to Phillips (1955)
indicates that the non-turbulent normal stresses (e.g., (#y)?) decrease with
lateral distance (y) as y .

545

EXERCISE
Consider the non-turbulent irrotational flow outside the the temporal
mixing layer. (The flow is statistically homogeneous in the x = x; and
z = x; directions.) Show from the Corrsin—Kistler equation (Section
4.2, Eq. (4.30)) that

(02) = () + (w2). (5.310)

(This relation is found experimentally to be accurate for other free
shear flows, e.g., Wygnanski and Fiedler (1970).)

5.5.3 PDFs and higher moments

An examination of one-point PDFs measured in shear flows leads to a simple
conclusion: in homogeneous shear flow with a uniform mean scalar gradient
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Fig. 5.45. Standardized PDFs of (a) u, (b) v, (c) w, and (d) ¢ in homogeneous shear
flow. Dashed lines are standardized Gaussians. (From Tavoularis and Corrsin (1981).)

the joint PDF of velocity and the scalar is joint normal; whereas in free
shear flows the PDFs are not Gaussian. Figure 5.45 shows the standardized
marginal PDFs of u,v,w and ¢ measured by Tavoularis and Corrsin (1981)
in homogeneous shear flow. No appreciable departure from the standardized
Gaussian is evident. For the same flow, Fig. 5.46 shows velocity—velocity
and velocity—scalar joint PDFs. Again, these are accurately described by
joint-normal distributions. This is an important and valuable observation.

In free shear flows the picture is quite different. Figure 5.47 shows the
scalar PDFs f,(y;¢) in the temporal mixing layer. The scalar values in
the two streams are ¢ = 0 and ¢ = 1; and, because of the boundedness
property (see Section 2.6), ¢(x,t) everywhere lies between zero and unity.
Consequently f,(y;¢) is zero for p < 0 and yp > 1.

As may be seen from Fig. 5.47, in the center of the layer there is a broad,
roughly bell-shaped, distribution that spans the entire range of values. As
the measurement location moves toward the high-speed stream, the PDF
moves to higher values of y, and develops a sp1ke of increasing magnitude
at the upper bound yp = 1.

Qualitatively similar PDF shapes are found in jets (e.g., Dahm and Dimo-
takis (1990)) and wakes (e.g, LaRue and Libby (1974)). The measurements
of Dowling and Dimotakis (1990) in the round jet are particularly valuable
in clearly showing the self-similarity of scalar PDFs.
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Fig. 5.46. Contour plots of joint PDFs of standardized variables measured in ho-
mogeneous shear flow: (a) u and v, (b) ¢ and v, (¢c) u and ¢. Contour values are
0.15,0.10,0.05, and 0.01. Dashed lines are corresponding contours for joint-normal
distributions with the same correlation coefficients. (From Tavoularis and Corrsin
(1981).)

Toward the edge of free shear flows, the changing shape of the PDF
strongly influences the higher moments. Figure 5.48 shows the skewness

S = (¢")/(¢™),
and the kurtosis
Ky = (¢")/(47),

of the scalar measured in a plane wake. In the center of the flow, these are
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Fig. 5.47. PDFs of a conserved passive scalar in the self-similar temporal mixing layer
at various lateral positions. From direct numerical simulations of Rogers and Moser
(1994),
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Fig. 5.48. Profiles of unconditional (Sy and K4) and conditional turbulent (Syr and
Kyr) skewness and kurtosis of a conserved passive scalar in the self-similar plane
wake. From the experimental data of LaRue and Libby (1974).

not too far from the Gaussian values (S, = 0,K, = 3), but they increase
to much larger values at the edge of the flow. Also shown in Fig. 5.48 are
the values Sy and K41 obtained by conditionally averaging in the turbulent
region. These remain closer to the Gaussian values throughout the flow.
We now turn to the PDF f, of the axial velocity Ul(x, ¢) in free shear flows.
Figure 5.49 shows f,(V) at various cross-stream locations in a temporal
mixing layer. In the center of the layer the familiar bell-shaped curve is
observed; but at the edges, the PDF is considerably skewed toward the
velocities within the layer. Unlike the scalar ¢, the velocities are not subject
to boundedness conditions. Also it is evident from Fig. 5.49 that, toward the
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Fig. 5.49. PDFs of axial velocity in a temporal mixing layer. The distance from the
center of the layer is £ = y/d. The dashed line corresponds to the freestream velocity
Uyp. From the DNS data of Rogers and Moser (1994).
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Fig. 5.50. Profiles of skewness (solid line) and kurtosis (dashed line) in the self-similar
round jet. From the experimental data of Wygnanski and Fiedler (1969).

edge of the layer, velocities higher than the free-stream velocity occur with
significant probability.

As is the case for the scalar ¢, the skewness S, and the kurtosis K, of the
axial velocity deviate significantly from Gaussian values (0 and 3) toward
the edges of the flow. For example, Fig. 5.50 shows the values measured by
Wygnanski and Fiedler (1969) in the self-similar round jet.

In summary: in homogeneous turbulence, the velocity—scalar joint PDF
is joint normal. In the center of free shear flows, the PDFs are bell-shaped,
but not exactly Gaussian, and the departure from Gaussianity becomes
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Fig. 5.51. A visualization of fhe flow of a plane mixing layer. A spark shadow graph of
a mixing layer between helium (upper) Uy = 10.1 m s~! and nitrogen (lower) U; = 3.8
m s~! at a pressure of 8 atm. (From Brown and Roshko (1974).)

pronounced in the intermittent region toward the edge of the flow. In the
intermittent region the PDF of the scalar has a spike at the bound, whereas
the PDF of velocity is unbounded.

5.5.4 Large-scale turbulent motion

Important though they are, the one-point statistics we have examined (e.g.,
(U), (uiu;),y, etc.) provide only a very limited description of turbulent flows.
Measurements of the two-point velocity correlations (e.g., Fig. 5.13) show
that the velocity is appreciably correlated over distances comparable to the
flow width. However, even these two-point statistics give little information
about the structure of the instantaneous flow fields that give rise to these
long-range correlations.

Some information on the large-scale turbulent motions is provided by
flow visualization. Examples for a mixing layer and axisymmetric wakes are
shown in Figs. 5.51 and 5.52. The predominant features visible in the mixing
layer are the large ‘rollers.’ These are found to be regions of concentrated
spanwise vorticity that are coherent over substantial spanwise distances. As
the rollers are convected downstream they grow in size and spacing, and
hence decrease in number. A roller can merge with an adjacent roller in
a ‘pairing’ process, or it can be torn apart and its vorticity absorbed by
adjacent rollers.

Large-scale motions have been studied in other free shear flows. Because
they are of the size of the flow’s width, it is inevitable that they are strongly
influenced by the flow’s geometry and boundary conditions, and conse-
quently are different in different flows. To some extent, stability theory has
been successful in explaining the structure of the large-scale motions, hence
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Fig. 5.52. A visualization of statistically axisymmetric wakes: (a) 50%-blockage
screen, (b) 60%, (c) 85%, (d) 100% (i.e., a disk). The momentum thickness of the
wake is 0; smoke wires are located at x/8 = 10 and x/8 = 85. (From Cannon et al.
(1993) with permission of Springer-Verlag,)

supporting the view that these motions arise from the instabilities inherent
in the various flows.

There are several phenomena that are plausibly explained in terms of
the large-scale motions. As a clear example, Oster and Wygnanski (1982)
performed experiments on turbulent mixing layers both with and without
small-amplitude forcing. The forcing consists in oscillating a flap at the
trailing edge of the splitter plate. The amplitude of the flap’s motion (typically
1.5 mm) is quite small, so that in the initial region of the mixing layer
(x < 100 mm) the effects on the mean-velocity and Reynolds-stress profiles
are imperceptible. However, as Fig. 5.53 shows, further downstream there is
a large effect on the growth of the layer. After some distance (x ~ 300 mm)
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Fig. 5.53. The thickness of the mixing layer, 6, against the axial distance, x, for various
forcing frequencies, f: —, 0 Hz, %, 60 Hz; A, 50 Hz; 0,40 Hz; A,30 Hz. (From Oster
and Wygnanski (1982).)

the layer forced at 60 Hz begins to spread at almost twice the rate at which
the unforced layer is spreading. However, then (at x = 900 mm) the layer
ceases to grow, and in fact contracts slightly, before resuming its growth (at
x ~ 1,500 mm). At lower forcing frequencies the same phenomenon occurs,
but at larger distances downstream, where the characteristic timescale of
the layer 6 /Us is larger. In the region where the layer ceases to grow, it is
found that the shear stress (uv) changes sign, so that the production P is
negative: energy is extracted from the turbulence and returned to the mean
flow.

It is clear that the turbulent-viscosity hypothesis cannot explain these
observations, especially the negative production P. However, a plausible
picture connecting the forcing, the inherent instabilities in the flow, and
the large-scale turbulent motions emerges. Forcing at frequency f can be
expected to excite modes of lengthscale ¢ proportional to U;/f. Close to the
splitter plate the layer thickness J is small compared with £. As & increases
toward 4, the larger-scale motions are excited, and pairings or amalgamations
of rollers are promoted, thus increasing the scale of the motions and the
width of the layer. A resonance is achieved, whereby the large-scale motions
lock on to the scale of the forcing. Subsequent pairing or amalgamation
leading to larger scales is inhibited, and hence the layer ceases to grow. In
this region, the structure of the large-scale motions is found to resemble
closely the patterns predicted by stability theory.

For unforced mixing layers, the spreading parameter S varies considerably
from experiment to experiment, from S ~ 0.06 to S ~ 0.11 (Dimotakis 1991).
Oster and Wygnanski (1982) suggested that this is due to the sensitivity of
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the mixing layer to the spectrum of small, uncontrollable disturbances of the
flow, that depend upon the particular apparatus.

In the near field of wakes of blufl bodies (e.g., cylinders and spheres) there
are large-scale motions with preferred frequencies, the clearest example being
vortex shedding from a cylinder. These motions depend, of course, on the
geometry of the body — they are different for screens, spheres, and disks. It is
evident from Fig. 5.52 that differences in the large-scale motions persist into
the far wake. Again, these motions have been linked to basic instabilities,
and deemed responsible for the large differences among observed spreading
rates (Cannon and Champagne (1991), see Table 5.3).

At a minimum there are two lessons to be learned from studies of large-
scale structures. The first is that turbulence and turbulent flows can exhibit
a much richer range of behavior than is admitted by the turbulent-viscosity
hypothesis. The second is that turbulent processes are non-local in space
and time: turbulence has a long memory, and its behavior at a point can be
strongly influenced by the flow remote from that point.



6
The scales of turbulent motion

In examining free shear flows, we have observed that the turbulent motions
range in size from the width of the flow é to much smaller scales, which be-
come progressively smaller (relative to d) as the Reynolds number increases.
We have also seen the importance of the turbulent kinetic energy and of
the anisotropy in the Reynolds stresses. In this chapter we consider how the
energy and anisotropy are distributed among the various scales of motion;
and we examine the different physical processes occurring on these scales.

Two repeating themes in the chapter are the energy cascade and the
Kolmogorov hypotheses. In brief, the idea of the energy cascade (introduced
by Richardson (1922)) is that kinetic energy enters the turbulence (through
the production mechanism) at the largest scales of motion. This energy is
then transferred (by inviscid processes) to smaller and smaller scales until, at
the smallest scales, the energy is dissipated by viscous action. Kolmogorov
(1941b) added to and quantified this picture. In particular he identified the
smallest scales of turbulence to be those that now bear his name.

In the first section, the energy cascade and Kolmogorov hypotheses are
described in more detail. Then various statistics that discriminate among
the various scales of motion are examined; namely, structure functions
(Section 6.2), two-point correlations (Section 6.3), and spectra (Section 6.5).
As a prelude to the discussion of spectra, in Section 6.4 the turbulent velocity
field is expressed as the sum of Fourier modes, and the evolution of these
modes according to the Navier-Stokes equations is deduced. The remaining
sections give the spectral view of the energy cascade (Section 6.6), and discuss
limitations of the Kolmogorov hypotheses (Section 6.7).

6.1 The energy cascade and Kolmogorov hypotheses

We consider a fully turbulent flow at high Reynolds number with charac-
teristic velocity ¢/ and lengthscale £. It is emphasized that the Reynolds
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number Re = UL /v is large; and in fact the concepts are easiest to grasp if
a very high Reynolds number is considered.

6.1.1 The energy cascade

The first concept in Richardson’s view of the energy cascade is that the
turbulence can be considered to be composed of eddies of different sizes.
Eddies of size £ have a characteristic velocity u(£) and timescale 1(¢) = £/u(¥).
An ‘eddy’ eludes precise definition, but it is conceived to be a turbulent
motion, localized within a region of size /, that is at least moderately
coherent over this region. The region occupied by a large eddy can also
contain smaller eddies.

The eddies in the largest size range are characterized by the lengthscale
¢y which is comparable to the flow scale £, and their characteristic velocity
uy = u(£o) is on the order of the r.m.s. turbulence intensity «' = (3k)"/> which
is comparable to ¢/. The Reynolds number of these eddies Rey = ugly/v is
therefore large (i.e., comparable to Re), so the direct effects of viscosity are
negligibly small.

Richardson’s notion is that the large eddies are unstable and break up,
transferring their energy to somewhat smaller eddies. These smaller eddies
undergo a similar break-up process, and transfer their energy to yet smaller
eddies. This energy cascade — in which energy is transferred to successively
smaller and smaller eddies — continues until the Reynolds number Re(¢) =
u(£)¢/v is sufficiently small that the eddy motion is stable, and molecular
viscosity is effective in dissipating the kinetic energy. Richardson (1922)
succinctly summarized the matter thus:

Big whorls have little whorls,
Which feed on their velocity;

And little whorls have lesser whorls,
And so on to viscosity

(in the molecular sense).

One reason that this picture is of importance is that it places dissipation at
the end of a sequence of processes. The rate of dissipation ¢ is determined,
therefore, by the first process in the sequence, which is the transfer of energy
from the largest eddies. These eddies have energy of order u3 and timescale
10 = fo/up, so the rate of transfer of energy can be supposed to scale as
ud /1o = uj /€. Consequently, consistent with the experimental observations
in free shear flows, this picture of the cascade indicates that ¢ scales as u /£y,
independent of v (at the high Reynolds numbers being considered).
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6.1.2 The Kolmogorov hypotheses

Several fundamental questions remain unanswered. What is the size of the
smallest eddies that are responsible for dissipating the energy? As ¢ decreases,
do the characteristic velocity and timescales u(f) and (¢) increase, decrease,
or remain the same? (The assumed decrease of the Reynolds number u(£)¢/v
with ¢ is not sufficient to determine these trends.)

These questions and more are answered by the theory advanced by Kol-
mogorov (1941b)! which is stated in the form of three hypotheses. A conse-
quence of the theory — which Kolmogorov used to motivate the hypotheses —
is that both the velocity and timescales u(¢) and () decrease as ¢ decreases.

The first hypothesis concerns the isotropy of the small-scale motions. In
general, the large eddies are anisotropic and are affected by the boundary
conditions of the flow. Kolmogorov argued that the directional biases of the
large scales are lost in the chaotic scale-reduction process, by which energy is
transferred to successively smaller and smaller eddies,. Hence (approximately
stated):

Kolmogorov’s hypothesis of local isotropy. At sufficiently high Reynolds
number, the small-scale turbulent motions (¢ < o) are statistically isotropic.

(The term ‘local isotropy’ means isotropy only at small scales, and is defined
more precisely in Section 6.1.4.) It is useful to introduce a lengthscale /g,
(with fg; ~ éEO, say) as the demarcation between the anisotropic large eddies
(£ > fg;) and the isotropic small eddies (¢ < fg;). (Justification for this
specification of /g, and of other scales introduced below, is provided in
Section 6.5.)

Just ds the directional information of the large scales is lost as the energy
passe's down the cascade, Kolmogorov argued that all information about
the geometry of the large eddies — determined by the mean flow field and
boundary conditions - is also lost. As a consequence, the statistics of the
small-scale motions are in a sense universal — similar in every high-Reynolds-
number turbulent flow.

On what parameters does this statistically universal state depend? In the
energy cascade (for ¢ < fg;) the two dominant processes are the transfer
of energy to successively smaller scales, and viscous dissipation. A plausible
hypothesis, then, is that the important parametefs are the rate at which
the small scales receivé energy from the large scales (which we denote by
Tg1), and the kinematic viscosity v. As we shall see, the dissipation rate e

I An English translation of this paper is reproduced as Kolmogorov (1991) in a special issue of the

Proceedings of the Royal Society published to mark the fiftieth anniversary of the original publication.
The other papers in this issue, which relate to the Kolmogorov hypotheses, are also of interest.
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is determined by the energy transfer rate 7Tgy, so that these two rates are
nearly equal, ie., ¢  Tg. Consequently, the hypothesis that the statistically
universal state of the small scales is determined by v and the rate of energy
transfer from the large scales 7y can be stated as:

Kolmogorov’s first similarity hypothesis. In every turbulent flow at sufficiently

high Reynolds number, the statistics of the small-scale motions (¢ < ¢g)
have a universal form that is uniquely determined by v and e

The size range ¢ < (g is referred to as the universal equilibrium range. In
this range, the timescales ¢/u(¢) are small compared with £y/uy, so that the
small eddies can adapt quickly to maintain a dynamic equilibrium with the
energy-transfer rate 7g; imposed by the large eddies.

Given the two parameters ¢ and v, there are (to within multiplicative
constants) unique length, velocity, and time scales that can be formed. These
are the Kolmogorov scales:

n=(/e)"%, (6.1)
u, = (ev)'/4, (6.2)
T, = (v/e) (6.3)

Two identities stemming from these definitions clearly indicate that the
Kolmogorov scales characterize the very smallest, dissipative eddies. First, the
Reynolds number based on the Kolmogorov scales is unity, ie., qu,/v = 1,
which is consistent with the notion that the cascade proceeds to smaller
and smaller scales until the Reynolds number u(£)¢/v is small enough for
dissipation to be effective. Second, the dissipation rate is given by

b= v, /1) = v/7 (64)

showing that (u,/) = 1/1, provides a consistent characterization of the
velocity gradients of the dissipative eddies.

Having identified the Kolmogorov scales, we can now state a consequence
of the hypotheses that demonstrates their potency, and clarifies the meaning
of the phrases ‘similarity hypothesis” and ‘universal form.” Consider a point
xp in a high-Reynolds-number turbulent flow at a time ¢,. In terms of the
Kolmogorov scales at (xo, tg), non-dimensional coordinates are defined by

y=(x—x)/n, (6.5)

and the non-dimensional velocity-difference field is defined by

w(y) = [U(x, to) — U(xo, to)] /- (6.6)
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It is not possible to form a non-dimensional parameter from ¢ and v; so
(on dimensional grounds) the ‘universal form’ of the statistics of the non-
dimensional field w(y) cannot depend on ¢ and v. Consequently, according
to the Kolmogorov hypotheses stated above, when the non-dimensional
velocity field w(y) is examined on not too large a scale (specifically |y| <
fgi/m), it is statistically isotropic and statistically identical at all points
(%0,Zo) in all high-Reynolds-number turbulent flows. On the small scales, all
high-Reynolds-number turbulent velocity fields are statistically similar; that is,
they are statistically identical when they are scaled by the Kolmogorov scales
(Egs. (6.5) and (6.6)).

The ratios of the smallest to largest scales are readily determined from
the definitions of the Kolmogorov scales and from the scaling ¢ ~ u}/4,. The
results are

n/t ~ Re™/*, (6.7)
u, /Uy ~ Re™'/*, (6.8)
1,/70 ~ Re™/% ©(6.9)

Evidently, at high Reynolds number, the velocity scales and timescales of the
smallest eddies (u, and 7,) are — as previously supposed — small compared
with those of the largest eddies (uy and to).

Inevitably, as is evident from flow visualization (e.g., Fig. 1.2 on page 5),
the ratio 5 /¢, decreases with increasing Re. As a consequence, at sufficiently
high Reynolds number, there is a range of scales ¢ that are very small
compared with ¢y, and yet very large compared with #, ie., £, > £ > n.
Since eddies in this range are much bigger than the dissipative eddies, it may
be supposed that their Reynolds number Zu(f)/v is large, and consequently
that their motion is little affected by viscosity. Hence, following from this
and from the first similarity hypothesis, we have (approximately stated):

Kolmogorov’s second similarity hypothesis. In every turbulent flow at suffi-
ciently high Reynolds number, the statistics of the motions of scale ¢ in the
range £p > ¢ > n have a universal form that is uniquely determined by e,
independent of v.

It is convenient to introduce a lengthscale ¢p, (with ¢p; = 607, say), so
that the range in the above hypothesis can be written g > ¢ > ¢p;. This
lengthscale ¢p, splits the universal equilibrium range (¢ < fg;) into two
subranges: the inertial subrange (fg; > ¢ > fp;) and the dissipation range
(¢ < €py). As the names imply, according to the second similarity hypothesis,
motions in the inertial subrange are determined by inertial effects — viscous



6.1 The energy cascade and Kolmogorov hypotheses 187
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Fig. 6.1. Eddy sizes £ (on a logarithmic scale) at very high Reynolds number, showing
the various lengthscales and ranges.

effects being negligible — whereas only motions in the dissipation range
experience significant viscous effects, and so are responsible for essentially
all of the dissipation. The various lengthscales and ranges are sketched in
Fig. 6.1. (We shall see that the bulk of the energy is contained in the larger
eddies in the size range fg; = éEO < ¢ < 64, which is therefore called
the energy-containing range. The suffixes EI and DI indicate that /g is the
demarcation line between energy (E) and inertial (I) ranges, as #p; is that
between the dissipation (D) and inertial (I) subranges.)

Lengthscales, velocity scales, and timescales cannot be formed from ¢
alone. However, given an eddy size ¢ (in the inertial subrange), characteristic
velocity scales and timescales for the eddy are those formed from ¢ and ¢:

u(f) = (e0)'” = u, (£/m)'"” ~ uo(£/4o)'"", (6.10)

w(0) = (/)7 = 1,(6/n)** ~ wo(£/40)*. (6.11)

A consequence, then, of the second similarity hypothesis is that (in the
inertial subrange) the velocity scales and timescales u(¢) and 7(¢) decrease as
¢ decreases.

In the conception of the energy cascade, a quantity of central importance
— denoted by 7(¢) — is the rate at which energy is transferred from eddies
larger than ¢ to those smaller than ¢. If this transfer process is accomplished
primarily by eddies of size comparable to £, then 7 (£) can be expected to be
of order u(£)?/t(¢). The identity

u(f)*/1(f) = &, (6.12)

stemming from Eqs. (6.10) and (6.11), is particularly revealing, therefore,
since it suggests that 7'(¢) is independent of ¢ (for ¢ in the inertial subrange).
As we shall see, this is the case, and furthermore 7(¢) is equal to e. Hence
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Fig. 6.2. A schematic diagram of the energy cascade at very high Reynolds number.

we have

Tor = T(le)) = T(0) = Ty = T(lpy) = &, (6.13)

(for fg; > £ > {p;). That is, the rate of energy transfer from the large scales,
Jr1, determines the constant rate of energy transfer through the inertial
subrange, 7 (¢); hence the rate at which energy leaves the inertial subrange
and enters the dissipation range Tp;; and hence the dissipation rate . This
picture is sketched in Fig. 6.2.

6.1.3 The energy spectrum

It remains to be determined how the turbulent kinetic energy is distributed
among the eddies of different sizes. This is most easily done for homogeneous
turbulence by considering the energy spectrum function E(k) introduced in
Chapter 3 (Eq. (3.166)).

Recall from Section 3.7 that motions of lengthscale ¢ correspond to

wavenumber x = 2n//, and that the energy in the wavenumber range
:Kaa Kb) is

Kp
%m=/‘HmM. (6.14)

[n Section 6.5, E(x) is considered in some detail, and one result of interest
1ere is that the contribution to the dissipation rate ¢ from motions in the

‘ange (k,, k) 1S

Kb
s(,‘.a,,cb)=/ 2vic*E (k) dx. (6.15)

It follows from Kolmogorov’s first similarity hypothesis that, in the univer-
sal equilibrium range (k > kg = 27/£g;) the spectrum is a universal function
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of ¢ and v. From the second hypothesis it follows that, in the inertial range
(kg1 < k < kp1 = 21 /lpy), the spectrum is

E(x) = Ce*k 8, (6.16)

where C is a universal constant. (These assertions are justified in Section 6.5.)
To understand some basic features of the Kolmogorov —3 spectrum, we

consider the general power-law spectrum
E(k) = Ax7?, (6.17)

where 4 and p are constants. The energy contained in wavenumbers greater

than « is
A

p—1

ko) = / E(x)dr’ = K=Y, (6.18)

for p > 1, while the integral diverges for p < 1. Similarly the dissipation in
wavenumbers less than « is

* 2vA
8(0,,{)5/ 2vi?E(x') di’ !
0

K3, (6.19)

for p < 3, while the integral diverges for p > 3. Thus, p = %, corresponding
to the Kolmogorov spectrum, is around the middle of the range (1,3) for
which the integrals k.., and &g, converge. The amount of energy in the
high wavenumbers decreases as k) ~ k%7 as k increases, whereas the
dissipation in the low wavenumbers decreases as g, ~ k*> as x decreases
toward zero.

Although the Kolmogorov —g spectrum applies only to the inertial range,
the observations made are consistent with the notion that the bulk of the
energy is in the large scales (£ > fg; or k < 2n/fg;), and that the bulk of the
dissipation is in the small scales (¢ < ¢p; or k > 2n/fpy).

6.1.4 Restatement of the Kolmogorov hypotheses

In order to deduce precise consequences from them, it is worthwhile to
provide here more precise statements of the Kolmogorov (1941) hypotheses.
Kolmogorov presented these in terms of an N-point distribution in the four-
dimensional x—t space, Here, however, we consider the N-point distribution
in physical space (x) at a fixed time ¢ — which is sufficiently general for most
purposes.

Consider a simple domain G within the turbulent flow, and let x©,
xW, ..., x™ be a specified set of points within G. New coordinates and
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velocity differences are defined by

y=x—x7, (6.20)

v(y) = Ux,t) — U(x®, 1), (6.21)
and the joint PDF of v at the N points ), y@, ... y®™ is denoted by fy.

The definition of local homogeneity. The turbulence is locally homo-
geneous in the domain G, if for every fixed N and y"(n = 1,2,...,N),
the N-point PDF fy is independent of x and U(x9, ).

The definition of local isotropy. The turbulence is locally isotropic in
the domain G if it is locally homogeneous and if in addition the
PDF fy is invariant with respect to rotations and reflections of the
coordinate axes.

The hypothesis of local isotropy. In any turbulent flow with a suffi-
ciently large Reynolds number (Re = U/L/v), the turbulence is, to a
good approximation, locally isotropic if the domain G is sufficiently
small (ie., [y™| < L, for all n) and is not near the boundary of the
flow or its other singularities.

The first similarity hypothesis. For locally isotropic turbulence, the
N-point PDF fy is uniquely determined by the viscosity v and the
dissipation rate .

The second similarity hypothesis. If the moduli of the vectors y'™ and
of their differences y™ — y® (m # n) are large compared with the
Kolmogorov scale #, then the N-point PDF fy is uniquely determined
by ¢ and does not depend on v.

It is important to observe that the hypotheses apply specifically to velocity
differences. The use of the N'-point PDF fy allows the hypotheses to be
applied to any turbulent flow, whereas statements in terms of wavenumber
spectra apply only to flows that are statistically homogeneous (in at least
one direction).

For inhomogeneous flows, local isotropy is possible only ‘to a good ap-

proximation’ (as stated in the hypothesis). For example, taking y") = e/ and
¥ = —el (where £ is a specified length and e a specified unit vector), we
have :

@) —o(y?)) = (UEM)) — (UE?P))
~ 2% . LV(U). (6.22)

Evidently this simple statistic is not exactly isotropic, but instead has a
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x+r=x?

Fig. 6.3. A sketch showing the points x and x + r in terms of x® and y™. All points
are within the domain G.

small anisotropic component — of order ¢/L — arising from large-scale
inhomogeneities.

6.2 Structure functions

To illustrate the correct application of the Kolmogorov hypotheses, we
consider — as did Kolmogorov (1941b) — the second-order velocity structure
functions. The predictions of the hypotheses are deduced, and then compared
with experimental data.

By definition, the second-order velocity structure function is the covariance
of the difference in velocity between two points x + r and x:

Dij(r,x,t) = ([Udx +r,t) — Ui(x, )] [Uj(x + r,t) — Uj(x, 1)]). (6.23)

It is rather obvious that the Kolmogorov hypotheses are applicable to this
statistic, but this can be verified by re-expressing it in terms of the position
and velocity differences y and v defined by Eqgs. (6.20) and (6.21):

Dij(y(z) _ym’x(o) +J’(U, t)= <[Ui(y(2)) - Ui(.V“))] [Uj(.V(z)) - Uj(y(l))D, (6.24)

see Fig. 6.3. We assume that all other conditions (e.g., sufficiently large
Reynolds number) are satisfied.

The first implication of the hypothesis of local isotropy is that (for r =
lr| < L) Dy; is independent of x®. Equation (6.24) shows, then, that D;;
does not depend on its second argument, i.e., D;(r, x,t) is independent of
x. It is then evident from its definition (Eq. (6.23)) that D;;(r,t) depends on
r =y@—y", but not on y) and y? separately. Thus D;;(r, 1) is an isotropic
function of r.

To within scalar multiples, the only second-order tensors that can be
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Fig. 6.4. A sketch of the velocity components involved in the longitudinal and trans-
verse structure functions for r = eqr.

formed from the vector r are ¢;; and r;r;. Consequently D;; can be written
rir;
Dyj(r,t) = Dyn(r,1)d;; + [Drr(r,t) — Dyn(r, f)]r—zj, (6.25)

where the scalar functions D;; and Dyy are called, respectively, the longitu-
dinal and transverse structure functions. If the coordinate system is chosen
so that r is in the x; direction (i.e., r = ¢;r) then we obtain

Dll = DLLa D22 = D33 = DNNa

6.26
Dij Oa for i 7& ja ( )

which, together with Fig. 6.4, shows the significance of D;; and Dyy.
In homogeneous turbulence with (U) = 0, a consequence of the continuity
equation is
0
a—riDij(r, t)=0, (6.27)
see Exercise 6.1. In the present context, this equation also applies (to a
good approximation) because of local homogeneity. It then follows from

Egs. (6.25) and (6.27) (see Exercise 6.2) that Dyy is uniquely determined by
D, according to

1 0
Dyn(r,t) = Dy (r,t) + 57 EDLL(B t). (6.28)

Thus, in locally isotropic turbulence, D;j(r,t) is determined by the single
scalar function Dy (r, ).

According to the first similarity hypothes1s given r (|r] € L), D;; is
uniquely determined by ¢ and v. The quantity (er)¥? has dimensions of ve-
locity squared, and so can be used to make D;; non-dimensional. There is
only one independent non-dimensional group that can be formed from r,e
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and v, which can conveniently be taken to be re!/*/v¥*4 = r/n. Thus, accord-
ing to the first similarity hypothesis, there is a universal, non-dimensional
function D;;(r/n) such that (subject to the conditions of the hypothesis)

Dyi(r, 1) = (er)**Dpi(r/n). (6.29)

According to the second similarity hypothesis, for large r/n ( L > r > ),
D;., is independent of v. In this case there is no non-dimensional group that
can be formed from ¢ and r, so Dy is given by

Dyi(r,t) = Caer)*?, (6.30)

where C, is a universal constant . (This implies that, for large r/#, D, tends
asymptotically to the constant value C,.) The transverse structure function
is, from Eq. (6.28),

DNN(ra t) = gDLL(ra t) = %C2(8r)2/3a (631)
and hence, from Eq. (6.25), D;; is given by
4 1 rir;
Dij(r,t) = Cz(sr)2/3 <§5ij — gr—zj> . (6.32)

Thus, in the inertial subrange (£ > r > 5), the Kolmogorov hypotheses are
sufficient to determine the second-order structure function in terms of ¢, r
and the universal constant C,.

The predictions of the Kolmogorov hypotheses embodied in Eq. (6.32) have
been tested by Saddoughi and Veeravalli (1994) in a turbulent boundary layer
— claimed to be the highest-Reynolds-number boundary layer ever attained
in a laboratory. The principal direction of flow is x = x,, and the distance
normal to the wall is y = x,. Measurements are reported at y = 400 mm, at a
location where the boundary layer thickness is 6 = 1,090 mm, the Reynolds
number (based on 4) is 3.6 x 10%, and the Kolmogorov scale is measured to
be n = 0.09 mm. Taking £ = ¢ as the characteristic flow length, the ratio
L/n = 12,000 shows that there is a very large separation of scales.

With r = e;r, and £ > r > 5, the prediction from Eq. (6.32) can be
written

D1 /(er)’? = Gy, (6.33)
Dy/(er)** = Dy /(er)** = %Cz, (6.34)
D,‘j = 0, for i 7& ] (635)

Figure 6.5 shows the measured structure functions divided by (er)*?3, so that



194 & The scales of turbulent motion

(a) 4 T T IIIIIII T 7 llIlIII T T ||||u| T o T T TTIT

C2 = 20

(9]
llllIlIll

[*]

6—2/3r—2/3 D1 ) (r)

(®) '

23,213
& D, (1)

[*]
I|||I|I|||lll|I||||

(©

r]TTIIIl'I'IfIIIIII

1 10 10 103 104 103
"

Fig. 6.5. Second-order velocity structure functions measured in a high-Reynolds-
number turbulent boundary layer. The horizontal lines show the predictions of the
Kolmogorov hypotheses in the inertial subrange, Eqs. (6.33) and (6.34). (From Sad-
doughi and Veeravalli (1994).)

the above predictions can readily be examined. Taking the value C, = 2.0
suggested by these and other data, we draw the following conclusions.

(i) For 7,000 n = 1L > r > 205, Dy,/(er)¥* is within +15% of C,.
(i) There is no perceptible difference between D, and Ds;.
(iii) For 1,200 = 3£ > r > 125, Dy/(er)** is within £15% of £C,.

Over the ranges of r given above, D,; and D», change by factors of 50 and 20,
respectively, and so +15% variations can be considered small in comparison.

Clearly, these experimental observations provide substantial support for
the Kolmogorov hypotheses. However, other flows need to be considered in
order to test the universality of C,, and there are many other statistics that
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can be examined. Further comparisons with experimental data are given in
Section 6.5.

EXERCISES

6.1 For homogeneous turbulence with (U) = 0, show that the struc-
ture function Dy;(r) (Eq. (6.23)) and the two-point correlation R;;(r)
(Eq. (3.160)) are related by

Dyj(r) = 2R;;(0) — R;;(r) — Ry(r)

Show that a consequence of the continuity equation is
oDy 0Dy
—=—=0.
or; or; (6.37)

(Hint: refer to Exercises 3.34 and 3.35 on page 78.)
6.2 Differentiate Eq. (6.25) to obtain

8D,~ r; 8DLL
Fri_] = r—;<r & + 2D - DNN)>. (6.38)
Hence verify Eq. (6.28).
6.3 Show that, for small r (r < #), in isotropic turbulence the second-

order velocity structure functions are

Dii(ry="r’ qu '\ _ e (6.39)
H ox) 15v’ '

2 2
Dyy(r) = r2<<%31> > _ %;8 — 2D, (). (6.40)

6.3 Two-point correlation

The Kolmogorov hypotheses, and deductions drawn from them, have no di-
rect connection to the Navier—Stokes equations (although, as in the previous
section, the continuity equation is usually invoked). Although, in the de-
scription of the energy cascade, the transfer of energy to successively smaller
scales has been identified as a phenomenon of prime importance, the precise
mechanism by which this transfer takes place has not been identified or
quantified. It is natural, therefore, to try to extract from the Navier—Stokes
equations useful information about the energy cascade. The earliest attempts
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(outlined in this section) are those of Taylor (1935a) and of von Karman
and Howarth (1938), which are based on the two-point correlation. The next
two sections give the view from wavenumber space in terms of the energy
spectrum — the Fourier transform of the two-point correlation.

Autocorrelation functions
Consider homogeneous isotropic turbulence, with zero mean velocity, rm.s.
velocity #/(t), and dissipation rate &(t). Because of homogeneity, the two-point
correlation
Rij(r,t) = (u(x + r, t)u;(x, 1)), (6.41)

is independent of x. At the origin it is
Rij(0,) = (uu;) = u?,;. (6.42)

There is neither production nor transport, so the equation for the evolution
of the turbulent kinetic energy k() = 2u/(¢)* (Eq. (5.132)) reduces to

dk
— =—¢ 6.43
TR - (643

Just as with the structure function D;;, a consequence of isotropy is that
R;j can be expressed in terms of two scalar functions f(r,t) and g(r,?):

R(r, 1) = u* (g0, 008 + [ (1, 0) — g(r. 0] 3 ) (6.44)

(cf. Eq. (6.25)). With r = e,r, this equation becomes

Izll/u/2 = f(ra t) = <u1(x + epr, t)ul(xa t)>/<u%>a
Ry /u* = g(r,t) = (ua(x + eyr, tus(x, £))/(ud), (6.45)
R33 = R22a‘ Rij = Oa for i 7& ja

thus identifying f and g as the longitudinal and transverse autocorrelation
functions, respectively. (Note that f and g are non-dimensional with £(0, ) =
g(0,t) = 1.) Again in parallel with the properties of D;;, the continuity
equation implies that 0R;;/dr; = 0 (see Exercise 3.35), which, in combination
with Eq. (6.44), leads to

80,0) = 1,0+ br 2 f(r,1). (6.46)

Thus, in isotropic turbulence the two-point correlation R;j(r, ) is completely
determined by the longitudinal autocorrelation function f(r,r). Figure 6.6
shows the measurements of f(r,t) in nearly isotropic grid-generated turbu-
lence obtained by Comte-Bellot and Corrsin (1971).
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Fig. 6.6. Measurements of the longitudinal velocity autocorrelation functions f(r,t) in
grid turbulence: x,/M = 42,0;98,0; 172, A. (From Comte-Bellot and Corrsin (1971).)

There are two distinct longitudinal lengthscales, L;,(t) and A(t), that can
be defined from f: and then there are corresponding transverse lengthscales
Ly (t) and A,(¢) defined from g.

Integral lengthscales

The first of the lengthscales obtained from f(r,¢) is the longitudinal integral
scale

L“(I) = /0 f(r, t) dr, (647)

which we have already encountered (e.g., in Section 5.1, Fig. 5.13 on page
110). The integral scale L;(t) is simply the area under the curve of f(r,?), so
inspection of Fig. 6.6 immediately reveals that L;; grows with time (in grid
turbulence). As previously observed, L;; is characteristic of the larger eddies.
In isotropic turbulence, the transverse integral scale

Ly(t) = / g(r,t)dr (6.48)
0
is just half of L;,(t) (see Exercise 6.4).

EXERCISES
6.4 Show that Eq. (6.46) can be rewritten

£(:0) = 3 (100 + 3 0f 01, (649



198 6 The scales of turbulent motion

and hence that, in isotropic turbulence, the transverse integral scale

Laxn(t) = /000 g(r,t)dr (6.50)
is half of the longitudinal scale, i.e.,
Las(t) = LLyy(e). (6.51)
6.5 Show from Eq. (6.46) that
/000 rg(r,t)ydr =0, (6.52)

(assuming that f(r,t) decays more rapidly than r~2 for large r).

Taylor microscales

The second lengthscale obtained from f(r,t) is the longitudinal Taylor mi-
croscale A(t). Since f(r,t) is an even function of r and no greater than
unity, the first derivative at the origin f'(0,t) = (8f /dr),— is zero, while the
second derivative f”(0,t) = (8*f/dr?),— is non-positive. As we shall see, in
turbulence f”(0) is strictly negative, so A(t) defined by

24(t) = [=31"(0,1)]

is real, positive, and has dimensions of length.

A geometric construction makes this abstruse definition clear. Let p(r) be
the parabola osculating f(r) at r = 0 (i.e,, the parabola with p(0) = f(0),
P'(0) = f'(0), and p”(0) = f"(0)). Evidently p(r) is

pir)y=1+ 1oy
=1—r/A;. (6.54)

e (6.53)

Thus, as sketched in Fig. 6.7, the osculating parabola intersects the axis at
r= /1]’.

As the following manipulation shows, f”(0,) (and hence A(t)) is related
to velocity derivatives:

—uf"(0,1) = 11m — f(r )
2

0
= —hm ew = (i (x +er, hui (x, 1))

. 0*uy
- 11—1}(} <(—a—g>x+e1r ul(x’ t)>
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Fig. 6.7. A sketch of the longitudinal velocity autocorrelation function showing the
definition of the Taylor microscale Ay.

0%y,
-~ {(58)=)
][ ou our \’
- :a—( 5—)—(5—)
8u1 2
= <<5€—1> > (6.55)

ouy \* 2u'?
-— = —. 6.56

The transverse Taylor microscale A,(t), defined by

Thus we obtain

Zo(0) = [~1g"0,0] ", (6.57)
is, in isotropic turbulence, equal to A;(t)/~/2 (see Exercise 6.6). It then follows
from these two equations and the relation ¢ = 15v((du,/6x,)*) (Eq. (5.171))
that the dissipation is given by

e=15vi*/ 1. (6.58)
In a classic paper marking the start of the study of isotropic turbulence,

Taylor (1935a) defined A, and obtained the above equation for ¢. He then
stated that ‘A, may roughly be regarded as a measure of the diameter of
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the smallest eddies which are responsible for the dissipation of energy.” This
deduction from Eq. (6.58) is incorrect, because it incorrectly supposes that
W is the characteristic velocity of the dissipative eddies. Instead, the charac-
teristic length and velocity scales of the smallest eddies are the Kolmogorov
scales n and u,.

To determine the relationship between the Taylor and Kolmogorov scales,
we define L = k*?/¢ to be the lengthscale characterizing the large eddies,
and the turbulence Reynolds number to be

12 2
Re; = KCL k— (6.59)
v ev
Then the microscales are given by
Jg/L = JTORe;"?, (6.60)
n/L = Re; ", (6.61)
dg = J107*3L3, (6.62)

Thus, at high Reynolds number, A, is intermediate in size between # and L.

The Taylor scale does not have a clear physical interpretation. It is,
however, a well-defined quantity that is often used. In particular, the Taylor-
scale Reynolds number

R, =u'l, /v, (6.63)

is traditionally used to characterize grid turbulence. Observe, from Eq. (6.60),
that R; varies as the square-root of the integral-scale Reynolds number

R, = (2Re,)"”. (6.64)
In addition, it may be observed that the ratio
Ag/{/ = (15v/¢)'* = 157, (6.65)
correctly characterizes the timescale of the small eddies.
EXERCISE
6.6 Show from Eq. (6.46) that

g'(r,t) =2f"(r,t) + 1rf"(r,1), (6.66)
and hence that the transverse Taylor microscale
24(t) = [—1g"(0, 1)
is related to the longitudinal scale A¢(t) by
Lg(1) = 25(0)/ /2. (6.68)

-2 (6.67)
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du \'\  2u?
g

The Karman—Howarth equation

Show that

von Karman and Howarth (1938) obtained from the Navier—Stokes equation
an evolution equation for f(r, t). We outline here the principal steps, the result,
and some implications: a detailed derivation can be found in the original
work or in standard references (e.g, Hinze (1975), Monin and Yaglom
(1975)).

The time derivative of R;;(r,x,t) can be expressed as

0 0
ERij(ra t) = Ewi(x + r, t)uj(x, 1))

= <uj(x, t) %ui(x +r, t)>

+ <ui(x +rt) %uj(x, t)>, (6.70)

and then the Navier-Stokes equations, i.e.,

gl_ll _ _8(u,~uj) _ l —al 82uj

(6.71)

ot ox;  pox; " Bx;0x,

can be used to eliminate the time derivatives on the right-hand side of
Eq. (6.70). Three types of terms arise, corresponding to the convection,
pressure-gradient, and viscous terms in Eq. (6.71). For isotropic turbulence
the pressure-gradient term in the equation for R;(r,t) is zero.
The convective term involves two-point triple velocity correlations, such
as
Si(r, 1) = (uix, u;(x, e (x + v, 1)), (6.72)

Just as R;; is uniquely determined by f (Eq. (6.44)), in isotropic turbulence

Sijx is uniquely determined by the longitudinal correlation
I_((r, t) = S“l(elr, t)/u/3
= (u(x, ) uy (x + eyr, 1)) /u>. (6.73)

It can be shown that k(r,t) is an odd function of r, and that the continuity
equation implies that k'(0, ) = 0, so that its series expansion is

k(r,t) =k"r*/31+k'r/5!... (6.74)
(k¥ is the fifth derivative of k(r,t) at r = 0).
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By this procedure, an exact equation for f(r,t) is obtained from the
Navier-Stokes equations: it is the Kdrman—-Howarth equation

d u? 0 - 2vu? 0 [ ,0f
dawrn—"L %40 = LAY 6.
ot u'f) r# 8r(r k) rt or (r or (6.75)

The principal observations to be made are the following.

(i) Thereis a closure problem. This single equation involves two unknown
functions, f(r,t) and k(r, t).
(ii) The terms in k and v represent inertial and viscous processes, respec-
tively.
(iii) At r = 0, the term in k vanishes (on account of Eq. (6.74)); while,
from the fact that f is even in r, we obtain

10 (4N g5
FalE) e @

Hence, for r = 0, the Karman-Howarth equation reduces to (¢ times)
the kinetic-energy equation:

2

d%u’(:t)2 = —IOVII;—é = —%s. (6.77)

(iv) In the Richardson-Kolmogorov view of the energy cascade at high
Reynolds number, the transfer of energy from larger to smaller scales
is an inertial process (at least for r > 5). Consequently, this transfer
of energy to smaller scales is accomplished by the term in k in the
Karman-Howarth equation.

(v) If u(x,t) were a Gaussian field then k(r, t) — like all third moments —
would be zero. Hence ‘the energy cascade depends on non-Gaussian
aspects of the velocity field.

EXERCISES
6.7 By following a procedure similar to Eq. (6.55), show that

3
u/3]2///(0’ t) — <<%> >
1

=5 (%)m, (6.78)

where S is the skewness of the velocity derivative (Eq. (6.85)). (Hint:
see also Eq. (3.148).)
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6.8

6.9

Show that, in isotropic turbulence, the longitudinal structure function
and autocorrelation function are related by

W(t)}f(r,t) = w(t)* — §Dpi(r, 1), (6.79)
With the third-order structure function being defined by
Dpon(r,t) = ([um(x +err,t) — uy(x, 1)), (6.80)
show that
W (t)k(r,t) = 1Dy (r,1). (6.81)

Show that the Karman-Howarth equation (Eq. (6.75)) re-expressed
in terms of structure functions is

0 1 0 , v 0 ( 40Dy ‘
EDLL + F 5(7‘ DLLL) = 7 ar (7‘ ar 38. (682)
Integrate this equation to obtain
T4 0 oD
735 st = Dels 1) ds = 6v 2D — fer. (6.83)
0

Further observations

The Karman-Howarth equation has been studied extensively, and many
more results have been obtained than can be mentioned here. Some of the
better known and most informative results are now given; more comprehen-
sive accounts are provided by Batchelor (1953), Monin and Yaglom (1975),
and Hinze (1975).

The skewness of the velocity derivative

The quantity k”(0, t), which determines k(r,t) to leading order (Eq. (6.74)),
can be re-expressed as

where

u/3]2///(0’ t) — <
S

2 ou;
== { ww; — 6.84
<w,w1 F > (6.84)

SEDAEY
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is the wvelocity-derivative skewness (which is found to be negative), see Ex-
ercise 6.7. So, there is a connection among this skewness, vortex stretching,
and the transfer of energy between different scales.

The Kolmogorov % law

The Karman-Howarth equation can be re-expressed in terms of the structure
functions Dy (r,¢) and Dppp(r,1),

Dppi(r,t) = ([wi(x + err, 1) — uy(x,0)]). (6.86)
The result (see Exercise 6.9) is the Kolmogorov equation (Kolmogorov 1941a)

3 s* EDLL(S, t)ds = 6v ODus

G ; a — DLLL — %sr, (687)

from which several useful results can be deduced. Kolmogorov argued that
in locally isotropic turbulence, the unsteady term on the left-hand side is
zero, and that the viscous term is negligible in the inertial subrange This
leads to the Kolmogorov % law:

DLLL(r, t) = —isr. (688)

5

Kolmogorov further argued that the structure-function skewness
8" = Drii(r,t)/Dr(r.t)?, (6.89)

is constant, leading to

_4 2/3
Dujn0==<5&> (er)*?, (6.90)

which is the same as the prediction from the Kolmogorov hypotheses
(Eq. (6.30)). For D (r,t) in the inertial subrange, this development shows,
therefore, the consistency between the Kolmogorov hypotheses and the

Navier-Stokes equations. It also relates the constant C, to the skewness
S :

The Loitsyanskii integral

On multiplying the Karman-Howarth equation (Eq. (6.75)) by r* and inte-
grating between zero and R we obtain

R
%/zﬁﬁ@ﬂM—ﬁﬂH&o=hﬁwﬂ&u (6.91)
0
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Loitsyanskii (1939) considered the limit R — oo, and assumed that f and &
decrease sufficiently rapidly with r that the Loitsyanskii integral

B, = /OO WA f(r,t)dr (6.92)
0

converges, so that the terms in k(R,t) and f'(R,t) vanish. With these as-
sumptions, Eq. (6.91) indicates that B, does not change with time, and so
B, became known as the Loitsyanskii invariant. However, the assumptions
made are incorrect. Depending on how the isotropic turbulence is created,
the Loitsyanskii integral can be finite or it can diverge (Saffman 1967). When
it is finite, it is found that the term in k in Eq. (6.91) does not vanish as
R tends to infinity, and in fact B, increases with time (see, e.g., Chasnov
(1993)).

The final period of decay

As isotropic turbulence decays the Reynolds number decreases so that inertial
effects diminish relative to viscous processes. Eventually, when the Reynolds
number is sufficiently small, inertial effects become negligible.

For this final period of decay, Batchelor and Townsend (1948) showed that
the Karman-Howarth equation — with neglect of the inertial term — admits
the self-similar solution

f(r,t) = exp[—r?/(8v1)], (6.93)

which is in excellent agreement with experimental data. It is emphasized that
this solution applies to very low Reynolds number — much lower than is
generally of interest.

EXERCISES
6.10  Verify that Eq. (6.93) satisfies the Karman-Howarth equation for
the final period in which the inertial term involving k is negligible.
Show that the turbulent kinetic energy decays as k ~ t~5/? in the final
period.
6.11  For homogeneous isotropic turbulence, consider the sixth-order ten-

Sor
Hijkpgr = < O @i i > . (6.94)

dx, 0x, 0x,

This is an isotropic tensor and hence can be written as the sum
of scalar coefficients multiplying Kronecker delta products, e.g.,
a10;,0;46. There are 15 distinct Kronecker delta products (corre-
sponding to different orderings of the suffixes). Argue, however, that
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in view of symmetries (e.g., Hijpgr = Hjikgpr), a general representation
is

Hijkpqr = aléipéjqékr + az(éipéjkéqr + 51‘45ik517r + 5kr5i15pq)
+ a3(8ip0rOgic + 8jg0irOpic + 01r0ig0p;) + A4(Big0picdr + 0 OpjOe)
+ as(8ij0p0qr + 0ijOqkOpr + Oudpi0gr
548,00y + O 5B Oom + 83Sig). (6.95)

Show that the continuity equation implies that H;u,, = 0, which

leads to the relations
3a; + 2a; + 2a; =0,

3a; + d4as =0, (6.96)
3as + 2a4 + 2as5 = 0.
By considering the quantity
0 8ui 8uj
8x,~ 8xj an .
(which is zero in homogeneous turbulence) show that H; . is zero,
and that this leads to the relation

a + 7(12 + 5(13 + 4(14 + 18(15 = 0. (697)
Show that the four relations Egs. (6.96)—(6.97) determine all of the

coefficients in terms of a, as
4 _ 1 __3 _
ay = —gal, ay = —gal, ag = _Zal’ as = day. (698)

Hence show that

8u1 3\ _ € 3/2
<<5;1> / =Hiuym=a==S (m) s (6-99)

where S is the velocity-derivative skewness (see Egs. (6.84) and (6.85)).
(Thus, in isotropic turbulence, the 729 components of Hijipgr are
completely determined by the velocity-derivative skewness S, and the
Kolmogorov timescale 1, = (v/¢)"/2)

Use Egs. (6.95) and (6.99) to obtain the results

8 i :
<cu,»cuj5xi> =—2q,, (6.100)

<% % %> = Hiikqu = 375‘11- (6101)

Ox; Ox4 0Xxy
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6.4 Fourier modes

For isotropic turbulence, the Karman—-Howarth equation (Eq. (6.75)), which
stems from the Navier-Stokes equations, fully describes the dynamics of
the two-point velocity correlation. It does not, however, provide a very clear
picture of the processes involved in the energy cascade. Some further insights
can be gained by examining the Navier-Stokes equations in wavenumber
space. In this section we examine the behavior of discrete Fourier modes
dictated by the Navier-Stokes equations for homogeneous turbulence in
which the mean velocity is zero.

The first subsection provides the mathematical background for the repre-
sentation of the velocity field as the three-dimensional Fourier series

u(x,t) = > _ i, t). (6.102)

(This extends the material of Appendix E to three-dimensional vector fields.)
Then the equation for the evolution of the Fourier modes #(x, t) is deduced
from the Navier-Stokes equations. Finally, the balance equation for the
kinetic energy at wavenumber k,

E(x,t) = (& (x,1) - i(x, 1)), (6.103)

is derived and discussed.

In addition to the insights that it provides on the energy cascade, there
are other motivations for studying the Fourier representation of the Navier—
Stokes equations. As is discussed in Chapter 9, direct numerical simulations
(DNS) of homogeneous turbulence are usually performed in wavenumber
space (ie., by solving for #(x, t)); and rapid-distortion theory (RDT) — which
in Chapter 11 is applied to homogeneous turbulence subjected to very large
mean velocity gradients — is also set in wavenumber space.

6.4.1 Fourier-series representation

An implication of the Fourier series Eq. (6.102) is that the turbulent velocity
field is periodic. Accordingly we consider the cube 0 < x; < £ in physical
space, where the length of the side £ is large compared with the turbulent
integral scale L,,. Then the velocity field is supposed to be periodic, ie.,

u(x + NL,t) = u(x, t), (6.104)

for all integer vectors N. The effects of this artificially imposed periodicity
vanish as £/L,; tends to infinity.
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In the x, direction, Fourier modes are of the form
cos(2nnx; /L) = cos(xon; x,), (6.105)
and sin(xon; x,), for integer n;, where x, is the lowest wavenumber:
Ko =2n/L. (6.106)
Or, in complex form, the Fourier modes are
e oM = cos(kon X, ) + isin(kgn; x;), (6.107)

for positive and negative integers »,. Similarly, in the other two directions
the Fourier modes are e”0™*2 and ¢®0™*; and the general three-dimensional
mode is just the product of the one-dimensional modes. By defining the
wavenumber vector

K = Kon = Ko(en; + exny + e3ns), (6.108)
we can write the general Fourier mode succinctly as
eix-x — eixonlxl eixonzxz eixonpg‘ (6109)

The Fourier mode given by Eq. (6.109) can be interpreted in terms of the
magnitude k = |x| and direction ¢ = x/k of the wavenumber vector. Let s
be a coordinate in physical space in the direction of e, i.e., s = e+ x. Then we
observe that

K*X=Ke+*x = KS. (6.110)

Thus e** is constant in the plane normal to x (constant s), while in the
direction of « it varies as a one-dimensional Fourier mode of wavenumber «.
As an illustration, Fig. 6.8 shows the Fourier mode with (ny,n2,n3) = (4,2,0).

The Fourier modes are orthonormal. To state this property simply in
equations, we introduce two definitions. First, given two wavenumber vectors
x and «/, we define

1, if k=¥,
Orea —{ 0 if k£ (6.111)

Second, we denote by ( ). the volume average over the cube 0 < x; < L.
The orthonormality property is then

<eix-xe—ix'-x>E — 5,"”, (6.1 12)

(see Exercise 6.12).
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X2

AN N

¢ =2n/Ix|

Fig. 6.8. A sketch of the Fourier mode corresponding to k¥ = x((4,2,0). The oblique
lines show the crests, where R(e**) = cosx - x is unity.

For a periodic function g(x) (e.g., a component of velocity at a given time),
its Fourier series is

g(x) = Ze”‘“ (6.113)

where the sum is over the infinite number of discrete wavenumbers x = kgn,
and g(x) is the complex Fourier coefficient at wavenumber k. Since g(x) is
real, g(x) satisfies conjugate symmetry,

g(x) = g'(—x), (6.114)

where an asterisk denotes the complex conjugate.
Given g(x), the Fourier coefficients can be determined from the orthogo-
nality condition (Eq. (6.111)):

<g(x —ix’ x <Zg(x iKenx o~ iK x>
c
= 8(K)buw = (), (6.115)

It is convenient to define the operator F,{ } by

Felgx)} =

g(x le
= ///g(x e ™% dxy dx, dxs, (6.116)
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so that the previous equation can be written, simply, as

Fe{g(x)} = 8(x). (6.117)

Thus the operator F,{ } determines the coefficient of the Fourier mode of

wavenumber k.
One of the principal reasons for invoking the Fourier representation is the

form taken by derivatives. In Eq. (6.116), if g(x) is replaced by dg/0x;, we

obtain
0g(x))} _ /08
f,‘{ 0x; }_ <5xje c

a —iKx
= (st

= (iKx;g(x)e ™),
= iK,8(K). (6.118)

c

Differentiation with respect to x; in physical space corresponds to multipli-
cation by ik; in wavenumber space.
The Fourier series of the turbulent velocity field is

u(x,t) ="K, t), (6.119)

vhere the Fourier coefficients of velocity are
ij(x, t) = Fe{uj(x,t)}. (6.120)

‘he Fourier modes ™™ are non-random and fixed in time. Hence the time-
ependent, random nature of the turbulent velocity field u(x, t) implies that
1e Fourier coefficients #(k,t) are time-dependent and random. Since the
1ean (u(x,t)) is zero, it follows from Eq. (6.120) that the means (#(x, 1))
re also zero. Note that, for each , @(x, t) is a complex vector that satisfies
njugate symmetry, i.e.,

ik, 1) = i’ (—x, 1), (6.121)
EXERCISES
12 Show that, for integer n, A
c
. ) for n# 0
2ninx/ L — 4 ’
/0 2mins/L g { L o (6.122)

and hence establish the orthonormality property Eq. (6.112).
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6.13  Show from Eq. (6.118) that
F{Vie(x)} = —K°g(x). (6.123)

6.14  Given that the volume-average velocity (u(x,t)): is zero, show that
the coefficient of the zeroth Fourier mode is zero:

#(0,t) = 0. (6.124)
6.15  Show that the Fourier coefficient &(x) of the vorticity @ = V x u is
o(k) = Folo(x)} = ik x (k). (6.125)

Show that «, #(kx), and &(x) are mutually orthogonal.

6.16  In general, an incompressible velocity field can be written as the sum
of an irrotational component V¢ and a rotational component V x B,
where ¢(x) is the velocity potential, and B(x) is the vector potential,
which is divergence free (V- B = 0):

u=Ve¢+VxB. (6.126)

For a periodic velocity field, show that ¢ is zero, and obtain a
relationship between B(x) = F,.{B(x)} and &(x) = F,{o(x)}.

6.4.2 The evolution of Fourier modes
In wavenumber space, the divergence of velocity is
du;
Fed =L % =ix;lt; = ik * &, 6.127
{5x1} g (©127)
so that the continuity equation V - # = 0 indicates that # is normal to «:

K-i=0. (6.128)

There is reason to examine in more detail the orAientation of a vector (such
as &) relative to the wavenumber k. Any vector G can be decomposed into
a component G ! that is parallel to x, and a component G that is normal to
K, ie, G = G + Gl, see Fig. 6.9. With e = k/x being the unit vector in the
direction of x, we have

G' =e(e-6’)=x(x-6’)/rc2, (6.129)
or
Gl =5 (6.130)

K2
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K]

Fig. 6.9. A sketch (in two-dimensional wavenumber space) showing the decomposition

2 . Al ~L .
of any vector G into a component G parallel to k, and a component G° perpendicular
to k.

ALl A Al .
Hence, from G =G — G, we obtain

Al A A

G =G —kk:G)/K, (6.131)
or |
Gt = PGy, (6.132)
where the projection tensor Py(x) is
Py=06;— %? (6.133)
A The pr1nc1pa1 observation is that the projection tensor Pj(x) determines
G = «Gy to be the projection of G onto the plane normal to . This

projection tensor is used below in writing the Navier-Stokes equations in
wavenumber space.

The equation for the evolution of the velocity vector in wavenumber space
ii(k,t) is obtained by applying the operator F{ } (Eq. (6.116)) term by
term to the Navier-Stokes equations:

du, + o(uju) ) Pu; 1 dp

= 13
ot oxy 0x; an p ax] (6139
The time derivative is simply
ou; da; '
Fod =LV =—"H .
{ ot } dt (6.133)

while, for the viscous term, application of Eq. (6.118) twice produces

o%u N
T { Bk a]xk} = vty (6.136)
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With p(x,t) = F{p(x,t)/p} being the Fourier coefficient of the dynamic
pressure (p/p), the pressure-gradient term is

1 dp =
fx{ 5 x; } = —IK;p. (6.137)
For the moment, the nonlinear convection term is written
0 A
Fiy () p = Gj(x, 1), (6.138)
8xk
thus defining the Fourier coefficients G. On combining these results we obtain
di; N
d—t’ + v’ = —ik;p — G, (6.139)

When Eq. (6.139) is multiplied by «;, the left-hand side vanishes (on
account of the continuity equation x;&; = 0, Eq. (6.128)), leaving

K = iK;G;. (6.140)

This is, in wavenumber space, the Poisson equation for pressure obtained
from the Navier—Stokes equations, i.e.,

d (0
F{—V'p} =]:,‘{a—xj<5x—k(ujuk)>}. (6.141)

By solving Eq. (6.140) for p, we obtain for the pressure term in Eq. (6.139)
—irp = 526, = 6. (6.142)

That is, the pressure term exactly balances -G ”, the component of —G in
the direction of x. What remains, then, on the right-hand side of Eq. (6.139)

is —Gl, the component of -G perpendicular to k:
dit; N KK
d—tJ + VK2uj = —(5,'1‘ — ‘——:C )Gk
= —PuGy = —Gr. (6.143)

The viscous term in this equation has a simple effect. Consider, for example,
the final period of decay of isotropic turbulence in which the Reynolds
number is so low that convection is negligible relative to the effects of
viscosity. Then, from a specified initial condition #@(k,0), Eq. (6.143) with
neglect of the term G has the soluticn

i(re, 1) = i, 0)e ™" (6.144)
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Thus, in the final period of decay, each Fourier coefficient evolves inde-
pendently of all other modes, decaying exponentially with time at the rate
vx2. High-wavenumber modes decay more rapidly than do low-wavenumber

modes.
Expressed in terms of #(x) (the dependence on ¢ being implicit), the

nonlinear convective term is

. 0 .
Gj(xa t) = fx{ éx—k(ujuk)} = lkax{ujuk}

= l‘kax{(Z ﬁj(x/)ei""x> (Z ﬁk(x//)eix”-x>}

= iKy Z Zu_}(x i (x// i(w/ -+ yx —mx>£
lKk Z Z uJ(x uk(x s 5!
= iy Zuj(x )i (k — &) (6.145)
4

(The six steps in this development invoke Eqgs. (6.138), (6.118), (6.119), (6.116),
(6.112) and (6.111), respectively.) On substituting this result into Eq. (6.143)
we obtain, in its final form, the evolution equation for #(x,t):

(di + vrc2> (K, t) = —ik, P (k) Z (', iy (k — ¥, t). (6.146)
t -

The left-hand side involves & only at x. In contrast, the right-hand side
involves & at ¥ and &”, such that ¥ + x” = k; and, in fact, the contributions
from ¥ = k and k" = k are zero. Thus in wavenumber space the convection
term is nonlinear and non-local, involving the interaction of wavenumber
triads, K, ¥, and k”, such that ¥ + " = k.

EXERCISE
6.17  Let x? «°, and x° be three wavenumber vectors such that

K+ k°+ & =0, (6.147)

and define a(t) = #(x?t), b(¢) = t(x®, 1), and ¢(t) = a(x*, t). Consider
a periodic velocity field, which at time ¢ = 0 has non-zero Fourier
coeflicient only at the six wavenumbers *+x,, T x;,, and +«.. Consider
the initial evolution of the velocity field governed by the Euler
equations. Use Eq. (6.146) with v = 0 to show that, at ¢t = 0;
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(a)
daJ e a a bt - nbn
T —ikg P (%) (becy + ¢ by), (6.148)
(b) g
a(%a.a')=_3{a-b K-ct+a-c k*-b} (6.149)
(c)

d L] *
a(a-a'+b-b +cc’)=0, (6.150)

(d) there are 24 modes with non-zero rates of change. Sketch their
locations in wavenumber space.

6.4.3 The kinetic energy of Fourier modes

For the periodic case being considered, Eq. (6.146) is the Navier-Stokes
equations in wavenumber space. It is a deterministic set of ordinary differ-
ential equations for the Fourier coefficients #(x,t). In order to describe the
turbulence statistically, we now consider various means.

Since (by assumption) the mean velocity (U(x,t)) is zero everywhere, the
Fourier coefficients of (U(x,t)) — ie. (f(k,t)) — are also zero. The next
simplest statistic to consider is the covariance of two Fourier coefficients, i.e.,

(@, 1) (x, 1)). (6.151)

It is shown in Exercise 6.18 that these coefficients are uncorrelated, unless
the wavenumbers sum to zero, i.e., ¥’ +& = 0, or equivalently, ¥’ = —«. Thus,
all the covariance information is contained in

R,’j(x, t) = <ﬁ:(x, t)ﬁj(x, t))
= ((—x, 1)itj(x, 1)). (6.152)

It is readily shown that IA{ij(x, t) are the Fourier coefficients of the two-point
velocity correlation

Ry, 1) = Fe{Ry(x,1)} (6.153)
(see Exercise 6.18) so that R;(x,t) has the Fourier series
Rij(r, t) = (u(x, t)u;(x +r,t))
= Ry, 1)e™", (6.154)

(see Exercise 6.19).
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The velocity-spectrum tensor is defined by

O, 1) = > 5(k — K)Ry(x, 1), (6.155)

where & is a continuous wavenumber variable. Evidently the spectrum tensor
is the Fourier transform of the two-point correlation, since Egs. (6.154) and

(6.155) yield
Ri(r,t) = / / / ®,(k, 1)e*" di. (6.156)

Setting ¥ = 0 in Egs. (6.154) and (6.156), we then obtain

Ry(0,t) = (u;) = > _ Ryj(m,1) = / / / ®,;(k, t) dx. (6.157)

Thus R,»j(x, t) is identified as the contribution to the Reynolds stress from
the Fourier mode with wavénumber x; while

/ / /’C @,(k, ) di

is the contribution to (u;u;) from modes in a specified region X of wavenum-
ber space. Other properties of R;; and ®;; are given in Exercise 6.20.
Of particular interest is the kinetic energy of the Fourier mode, defined as

E(i,1) = L(8 (s, 0)t(, 1)) = L Ral, ). (6.158)

The turbulent kinetic energy is

k(t) = L (uu) ZZR,,(K, Zﬁ(x,t):///%d)ﬁ(fc,t)dic, (6.159)

which identifies E(k, ) as the contribution to k from wavenumber «.
The dissipation rate &(t) is also related to E(x, t), by
2 &
8(t)=—v<ujV u]> = —V 11_1;%% j(r,t)

= —vlim) " (—ri)R;j(x, 1)

r—0

=S 2vitE(x,1) = / / WD, (&, 1) d&, (6.160)

(see also Exercise 6.23). Thus E(x, t) and 2VK2E(x, t) are the contributions to
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the kinetic energy and dissipation rate, respectively, from the Fourier mode
K.

The evolution equation for E(k,t) can be deduced from that for #(x, )
(Eq. (6.146)):

%E(x, 1) = T(k,1) — 2v&’E(x, 1), (6.161)
where

T(x) = K, Pr()R {i > i) ()it — &) } (6.162)
and R{ } denotes the real part. When it is summed over all , the left-hand
side of Eq. (6.161) is dk /dt, while the last term on the right-hand side sums
to —e. For isotropic turbulence dk /dt equals —e, and so (as can be confirmed
directly) the sum of T is zero:

> T(x,t)=0. (6.163)

Thus the term TA"(x, t) represents a transfer of energy between modes.

There is a direct correspondence between Eq. (6.161) for E(x,t) and the
Karman-Howarth equation for f(r, t), Eq. (6.75). They contain essentially the
same information, but expressed differently. An advantage of the formulation
in terms of Fourier modes is that it provides a clear quantification of the
energy at different scales of motion, and that an explicit expression for
the energy-transfer rate TA"(x, t), which plays a central role in the energy
cascade, is obtained. Indeed, using direct numerical simulations of isotropic
turbulence, it is possible to measure ?(x, t) and related quantities (see e.g.,
Domaradzki (1992)).

EXERCISES
6.18  Show that the covariance of two Fourier coefficients of velocity can
be expressed as

(t (', )ik, 1)) = f,‘/{u»(x’ 1)} Feluj(x,0)})
(', 0™ ) (o, 1) ™) )
[:6/ / (X', tyuj(x, 1)) e+ e d'.
(6.164)

With the substitution x = x' 5-r, and from the fact that in homoge-
neous turbulence the two-point correlation R;(r, ) is independent of
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6.19

6.20

6.21

position, show that the last result can be re-expressed as

<ﬁi(l€/, I)ﬁj(K, t)) _ <Rij(r9 t)e—ix-r>ﬁ<e—ix’(#+x)>ﬁ
— F R0} (6.165)

(Hint: see Eq. (E.22).) Hence, by setting ¥ = —x, verify Eq. (6.153).
Through the substitutions

w(x) =Y i) =Y e i(x), (6.166)
© K

u(x+r) =Y i), (6.167)

show that, in homogeneous turbulence,

Ry(r) = (Ry(r))c = Y _ & (i (w)it(x)), (6.168)
hence establishing Eq. (6.154).
From the definition of IA{ij(x) (Eq. (6.152)) show that

Rj(k) >0, for i=]j, (6.169)

Ri(x) = 0. (6.170)
From conjugate symmetry show that
Ryj(x) = Rj(—x) = R} (x). (6.171)
From the incompressibility condition « - #(x) = 0 show that
K Ryj(x) = K;Ryj(x) = 0. (6.172)

Note that all of these properties also apply to the velocity-spectrum
tensor @;;(x).

Let Y be any constant vector, and define g(x) = Y - #(x). Obtain the
result

YY;R,i(k) = (§" ()8 (k) = 0, (6.173)
to show that both f{ij(x) and ®;;(k) are positive semi-definite, i..,
Y,Y;Rj(x) = 0, Y,Y;®,(k) > 0, (6.174)
for all Y. (This is a stronger result than Eq. (6.169).)
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6.22  Show that E(x) (Eq. (6.158)) is real, non-negative, with

E(x) = E(—x). (6.175)

6.23  Starting from the spectral representation for u(x) (Eq. (6.119)), show
that the spectral representation of du;/0x; is

8u,»

= ikidu(x)e™™. (6.176)

8xk

Hence show the relations
ou; Ou; \ A
<5c; E> = zx: KikeRij(x)
= Z 2vi’E (%)

=// Zw_cz%q)ii(k)dl_c. (6.178)

6.5 Velocity spectra

In the previous section, the velocity-spectrum tensor ®;;(x,t) is defined (for
homogeneous turbulence) as the Fourier transform of the two-point velocity
correlation R;(r). (We now use k for the continuous wavenumber vari-
able, in place of k used above.) In Section 6.5.1 the properties of ®y;(x,1)
are reviewed and related quantities are introduced; primarily, the energy-
spectrum function E(x,t) and the one-dimensional spectra E;(x,,t). The
Kolmogorov hypotheses have implications for the forms of these spectra at
high wavenumber (i.e., in the universal equilibrium range). These implica-
tions are presented in Section 6.5.2, and experimentally measured spectra
are presented as further tests of the hypotheses. Section 6.6 describes the en-
ergy cascade in wavenumber space in terms of the energy-spectrum function
E(x, 1).
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6.5.1 Definitions and properties
The velocity-spectrum tensor

In homogeneous turbulence, the two-point velocity correlation and the
velocity-spectrum tensor form a Fourier-transform pair:

®,i(x) = (2:[ E / 7 / Rij(r)e ™" dr, (6.179)

Rij(r) = / /w / @;i(x)e™" dx. (6.180)

Here k¥ = {k, k2, K3} is the (continuous) wavenumber vector; and, to abbre-
viate the notation, the dependences of R;; and ®;; on time are not shown
explicitly. The velocity-spectrum tensor ®;;(x) is a complex quantity that has
the properties

Dyj(x) = Djy(x) = ®ji(—x), (6-181)

Kiq)ij(l() = qu)ij(x) =0. (6182)

Equation (6.181) stems from the symmetry properties of Ryj(r) and from the
fact that R;(r) is real; while Eq. (6.182) is a result of incompressibility (see
Exercise 6.20). In addition ®;;(x) is positive semi-definite, i.e.,

@,(x)Y;Y; > 0, (6.183)

for all vectors Y (see Exercise 6.21). It then follows that the diagonal
components of @;;(k) (ie., i = j) are real and non-negative, and therefore so
also is the trace:

®;i(k) = D (k) > 0. (6.184)

The velocity-spectrum tensor ®;;(x) is a useful quantity to consider be-
cause (as shown in Section 6.4.3) it represents the Reynolds-stress density in
wavenumber space: that is, ®;;(x) is the contribution (per unit volume in
wavenumber space) from the Fourier mode ¢** to the Reynolds stress (u;u;).
In particular, on setting r = 0 in Eq. (6.180) we obtain

Ri;(0) = (uu,) = / 7 / ®,(x) dx. (6.185)

(Note that ®;; has dimensions of (velocity)®/ (wavenumber)®, or equivalently
(velocity)® x (length)?.)
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The information contained in ®;;(x) can be considered in three parts.
First, the subscripts (i and j) give the directions of the velocity in physical
space. So, for example, ®,(x) pertains entirely to the field uy(x). Second,
the wavenumber direction &/|k| gives the direction in physical space of the
Fourier mode. Third, the wavenumber’s magnitude determines the lengthscale
of the mode, i.e., £ = 2n/|k| (see Fig. 6.8).

Velocity-derivative information is also contained in ®;;(x), in particular,

ou; du;\ (]
<5x—k 5;) — [[[ sxyuax, (6.186)

so that the dissipation rate is

£ = / /w / 21 L dy(x) dx, (6.187)

(see Exercise 6.23). The relationship between ®;;(x) and the integral length-
scales is given below (Egs. (6.210) and (6.213)).

The energy-spectrum function

Being a second-order tensor function of a vector, ®@;;(x) contains a great deal
of information. A simpler though less complete description is provided by
the energy-spectrum function E(k), which is a scalar function of a scalar.

The energy-spectrum function is obtained from ®;;(x) by removing all
directional information. The information about the direction of the velocities
is removed by considering (half) the trace, ie., 1®;(x). The information
about the direction of the Fourier modes is removed by integrating cver
all wavenumbers x of magnitude || = k. To express this mathematically,
we denote by S(k) the sphere in wavenumber space, centered at the origin,
with radius «; and integration .over the surface of this sphere is denoted by
$( )dS(x). Thus the energy-spectrum function is defined as

E(x) = ]{ 1®,(x) dS(x). (6.188)

Alternatively, on account of the sifting property of the Dirac delta function
(see Eq. (C.11)), an equivalent expression is

E(k) = // 10(x)6 (|| — ) dx, (6.189)

where « is here an independent variable (i.e., independent of ).
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The properties of E(x) follow straightforwardly from those of ®;;(x):
E(x) is real, non-negative, and, for negative «, it is undefined according to
Eq. (6.188), or zero according to Eq. (6.189). Integration of E(k) over all x
is the same as integration of 1®;(x) over all x. Thus, from Egs. (6.185) and
(6.187), we obtain for the turbulent kinetic energy

k= / E(x)dx, (6.190)
0
and for the dissipation
&= / 2vk2E (k) dx. (6.191)
0

Evidently, E(x)dx is the contribution to k from all wavenumbers x in the
infinitesimal shell k < || < k¥ + dx in wavenumber space.

In general, @;;(x) contains much more information than does E(x); but,
in isotropic turbulence, ®;i(x) is completely determined by E(x). If the
turbulence is isotropic, the directional information in ®;;(x) can depend only
on k, and, to within scalar multiples, the only second-order tensors that can
be formed from x are ¢;; and k;k;. Consequently, in isotropic turbulence,
®;;(x) is given by

(k) = A(x)d;; + B(k)kix;, (6.192)

where A(x) and B(k) are scalar functions of k. These scalar functions are
readily determined (see Exercise 6.25), to yield the result that, in isotropic
turbulence, the velocity-spectrum tensor is

E E(x) KiK;
U( K) = K2 (511 K_zj)
_E (rc)
= I Py(x), (6.193)
where Pj(k) is the projection tensor (Eq. (6.133)).

If it is assumed that ®,;(x) is analytic at the origin, then E(k) varies as
k* for small x (see Exercise 6.26). However, it is possible for ®;;(x) to be
non-analytic, with E(k) varying as x? (Saffman 1967). In direct numerical
simulations both x? and x* behaviors can be obtained (Chasnov 1995). There
have been suggestions (e.g., Reynolds (1987)) that grid turbulence produces

x* behavior, but the evidence is not conclusive.

EXERCISES
6.24 Show that

§ dS(k) = 4nk?, (6.194)
§ ki, dS(x) = Kt (6.195)
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(Hint: argue that the integral in Eq. (6.195) must be isotropic, ie., a
scalar multiple of d;;.)

6.25  Show that application of the incompressibility condition x,®;;(x) = 0
to Eq. (6.192) yields

B(x) = —A(x) /x> (6.196)

Using the results of Exercise (6.24), show that the energy-spectrum
function corresponding to Eq. (6.192) is

E(x) = 6nKk*A(x) + 2nx*B(x). (6.197)

Hence deduce Eq. (6.193).
6.26  If @;(x) is analytic at the origin, it has an expansion of the form
@) = O + Oy + O reurc, + ..., (6.198)

where ®™ are constant tensors. Show that incompressibility dic-
tates (I)E?) = 0, and that the positive semi-definiteness of ®;;(x) (see
Eq. (6.183)) dictates @ﬁjl,l = 0. Then show that (to leading order for
small k) the energy-spectrum function is

E(x) = $nx*®), + ... (6.199)

Taylor’s hypothesis

In direct numerical simulations of turbulence it is possible to extract the
velocity-spectrum tensor ®;;(x) and the energy-spectrum function E(x). To
determine these quantities experimentally requires the measurement of the
two-point velocity correlation R;;(r) for all r — which clearly is not feasible.
However, with a single probe (e.g., a hot-wire anemometer) it is possible, to
an approximation, to measure R;;(r) along a line.

One technique is to use a ‘flying hot wire.” The probe is moved rapidly
through the turbulence at a constant speed V, along a straight line that we
take to be parallel to the x, axis (ie., the probe moves in the direction of the
e, basis vector). If the probe is located at x, at time ¢t = 0, then at time ¢ it
1s at

X(t) =Xy + eth, (6.200)
and the velocity measured by the probe is

U™ ()= UX(t),t) —e,V. (6.201)
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The temporal autocovariance obtained from U™\(t) is

R s) = ([UM (1) = (U )] [U] (1 + 5) = (U (e +5))])
= (u(X (1), )uy(X(t + 5), t +5))
= (u(X (1), )u;(X(t) + e;ri t +11/V)), (6.202)

where r; = Vs is the distance moved by the probe in time s. If the turbulence
is statistically homogeneous in the x, direction, then, in the hypothetical
limit of the probe’s speed V tending to infinity, we obtain

RY(s) = (ui(xo + &, V,0)u;(xo + &Vt + e,r1,0))
= <ui(x09 O)uj(x() + eyry, 0)>
= Ryj(eir1, x0,0). (6.203)

Thus, in these circumstances, the temporal autocovariance measured by the
probe yields the spatial autocovariance at (x,,0). For the practical case of
finite V, clearly Eq. (6.203) is an approximation — one that i 1mproves as Vv
increases.

A simpler and much more common technique is to use a single stationary
probe. This method is applicable to statistically stationary flows in which
(at the measurement location) the turbulence intensity ' is small compared
with the mean velocity (U), which we take to be in the x, direction. In
a frame moving with the mean velocity, the probe is moving with velocity
e,V = —(U) = —e,(U,). Hence the flying-hot-wire analysis applies (with
ry = —(U))s).

The approximation of spatial correlations by temporal correlations — e.g.,
Eq. (6.203) — is known as Taylor’s hypothesis (Taylor 1938) or the frozen-
turbulence approximation. Its accuracy depends both upon the properties
of the flow and on the statistic being measured. In grid turbulence with
u'/(U;) < 1, it is quite accurate, and higher-order corrections can be made
(Lumley 1965). In free shear flows, on the other hand, many experiments
(e.g., Tong and Warhaft (1995)) have shown Taylor’s hypothesis to fail.

One-dimensional spectra

Nearly all the existing experimental data on turbulence spectra come from
stationary hot-wire measurements. The quantities deduced from the mea-
surements (using Taylor’s hypothesis) are of the form

Ryi(erri, 1) = (u) f(r1,1), (6.204)

Ra(eiry, 1) = (u3)g(r1, 1), (6.205)
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where f and g are the longitudinal and transverse autocorrelation functions
(Eq. (6.45)). Here we define and deduce the properties of the one-dimensional
spectra E;;(k;,t) obtained from R;j(e;r;,t), and show their relationship to
(I),'-}(x, t) and E(k,t) in isotropic turbulence. In the next section, experimental
data on E;j(k,,t) are used to assess the Kolmogorov hypotheses.

The one-dimensional spectra E;j(x;) are defined to be twice the one-
dimensional Fourier transform of R;j(e,ry):

1~ .
Eij(i) = — / Ryj(eyry)e™™ 1" dry. (6.206)

(Henceforth the dependence on t is not shown explicitly.) For the diagonal
components — taking i = j = 2 as an example — Ry(e,r) is real, and an even
function of r;. Consequently Ex(k,) is also real and even, so that Eq. (6.206)
can be rewritten

2 oo}
Exn(x)) = ;/ Ry (e ry) cos(x,r;)dry, (6.207)
0
with the inversion formula
Ryy(ery) = / E(xy) cos(x,ry) dky, (6.208)
0

(cf. Egs. (D.8) and (D.9)). The factor of two in the definition of Ejj(x;) is
added so that (setting r; = 0 in Eq. (6.208)) we obtain

Ral0) = () = [ Esoy)d (6.209)

The one-dimensional spectrum is related to the velocity-spectrum tensor
by

Exn(k) = 2// O (x) dk, dx;, (6.210)

(see Exercise 6.27). It should be appreciated that E,(k;) has contributions
from all wavenumbers x in the plane e, * ¥k = k,, so that the wavenumber
magnitude |x| of the Fourier modes contributing to E,,(k;) can be appreciably
larger than x,.

The one-dimensional spectrum E; (k) is related to the longitudinal auto-
correlation function by

Eyi(xy) =

% / £(ry) cos(xyr) dry, (6.211)
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Fig. 6.10. A sketch of wavenumber space showing the definition of the radial coordi-
nate ;.

and to the longitudinal structure function by

Duterr) =2 [ Enon)l1 = costry)] d. (6:212)
0
With x; = 0, Eq. (6.211) yields for the longitudinal integral scale
E
L, = / f(r)dr, = ”—<“—(>9. (6.213)

There are similar results for the transverse correlations.

In isotropic turbulence the one-dimensional spectra are determined by the
energy-spectrum function E(k). Writing Eq. (6.210) for E, (x;) and substi-
tuting Eq. (6.193) for ®;;(x), we obtain

E(x,) = / / izz ( ) dic, dics. (6.214)

The integration is over the plane of fixed x,, and the integrand is radially

symmetric about the k, axis. Hence, introducing the radial coordinate x, (see
Fig, 6.10)

KD =K+ K=K — K, (6.215)

and noting that 2nk, dk, = 2z« dx (for fixed ), Eq. (6.214) can be rewritten
© E(x) K3
E“(Kl) = /K1 T (1 — —K_;> dx. (6216)

This formula underscores the previous observation that E; (x,) contains
contributions from wavenumbers k greater than x; — a phenomenon called
aliasing. Indeed, it is readily shown (see Exercise 6.28) that E;(x,) is a
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monotonically decreasing function of x,;, so that E;; is maximum at zero
wavenumber, irrespective of the shape of E(x).

The above formula can be inverted (see Exercise 6.28) to obtain E(x) in
terms of E;;(k,) (for isotropic turbulence):

_ d 1 dE“(K)
E(x) dK<; i ) (6.217)

Just as the transverse velocity autocorrelation function g(r) is, in isotropic
turbulence, determined by its longitudinal counterpart (Eq. (6.46)), so also
Ex(xy) is determined by E,(x,). The relationship can be obtained by taking
the cosine Fourier transform of Eq. (6.46) (see also Eq. (6.211)):

dE, (x
Ex(k) = %(EII(KI) — K —E“—LQ> (6.218)
K
EXERCISES
6.27 From Eq. (6.180) show that
R22(e1r1 / // (1)22(16 dK2 dK3 e"‘l" dKl, (6219)
and from Eq. (6.208) show that
Rzz(elrl) = / %Ezz(Kl)em” dKl. (6.220)
Hence verify Eq. (6.210).
6.28  Differentiate Eq. (6.216) to obtain
dE ®
ulk) _ —2k, / E(x)x> dx, (6.221)
dKl K1
d*Ey () 2E(xy) %
= —2 [ E@)xdx. 6.222
= Eoctae 622)

K1
Hence verify Eq. (6.217). Use Eq. (6.221) to show that E, (k) is a
monotonically decreasing function of «;, and hence is maximum at
Ky = 0.

6.29  Show that in isotropic turbulence,

E(x) = LE,(x) (6.223)

d
d 2
- dd_K (LE01(K) + Ex(x) (6.224)
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6.30  Show that, in isotropic turbulence, the longitudinal integral scale is

_om * E(x)
L“ = 2<u%> /0 —K dK. (6225)
6.31  Show that, in isotropic turbulence, Ej(x;) and E(k) are related by
* E(k) K?
dEzz(K) /(Jo 1 dEzz(Kl)
= —K§ ——— _ . 22
E(x) K{ i + e d dx, (6.227)

Power-law spectra

In examining the Kolmogorov hypotheses (in Section 6.5.2), we are interested
in power-law spectra of the form

Ey (k) = C Ak, (6.228)
(over some range of k), where C; is a constant and A4 is a normalization fac-
tor (e.g., A = (u3)L,;”). Such spectra are examined in detail in Appendix G.
If Ey (k) is given by Eq. (6.228) then it follows from Eq. (6.217) that E(x) is
E(k) = CAx™?, (6.229)

with
C =3ip2+p)C, (6.230)

and from Eq. (6.218) that Ej (k) is

" Exn(k) = C{Ak™?, (6.231)

with
Ci =31 +p)C;. (6.232)

Thus the power-law exponent p is the same for the three spectra, and the
constants C, C,, and C; are related.

Comparison of spectra

In Section 6.5.3, we introduce a model spectrum (Eq. (6.246)) which pro-
vides a reasonably accurate representation of measured turbulence spectra.
Figure 6.11 shows the various spectra — E(x), Ej (x,), and Exn(k;) — given
by this model for isotropic turbulence at Reynolds number R; = 500. The
following observations are made.
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Fig. 6.11. Comparison of spectra in isotropic turbulence at R; = 500: solid line, E(x);
dashed line, E,(x,); dot-dashed line, Ex(x;). From the model spectrum, Eq. (6.246).
(Arbitrary units.)

(i) In the center of the wavenumber range, all the spectra exhibit power-
law behavior with p = 2. In this range, consistent with Eqs. (6.230)
and (6.232), the values of E,;, E» and E are in the ratios 1:3:3.

(ii) At high wavenumber, the spectra decay more rapidly than a power
of k, consistent with the underlying velocity field being infinitely
differentiable.

(iii) At low wavenumber, E(x) tends to zero as x*. In contrast, the one-
dimensional spectra are maximum at zero wavenumber. This again
illustrates the fact that the one-dimensional spectra contain contribu-
tions from wavenumbers x greater than x; (see Eq. (6.216)).

(iv) At low wavenumber, the one-dimensional spectra E;; and Ej, are in
the ratio 2:1 — consistent with the ratios of the integral length scales
L, and Ly, (see Egs. (6.51) and (6.213)).

6.5.2 Kolmogorov spectra

According to the Kolmogorov hypotheses, in any turbulent flow at suffi-
ciently high Reynolds number, the high-wavenumber portion of the velocity
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spectra adopts particular universal forms. This conclusion, and the forms of
the Kolmogorov spectra, can be obtained via two different routes. The impli-
cations of the Kolmogorov hypotheses for the second-order velocity structure
functions are given in Section 6.2 (e.g., Eqgs. (6.29) and (6.30)). The first route
is to obtain the Kolmogorov spectra as the appropriate Fourier transforms
of the structure functions. However, we follow the second route, which is
simpler though less rigorous: this is to apply the Kolmogorov hypotheses
directly to the spectra.

Recall that (for any turbulent flow at sufficiently high Reynolds number)
the Kolmogorov hypotheses apply to the velocity field on small length-
scales, specifically in the universal equilibrium range defined by ¢ < fg;. In
wavenumber space the corresponding range is k¥ > kg = 21/ g

According to the hypothesis of local isotropy, velocity statistics pertaining
to the universal equilibrium range are isotropic. Consequently, for k¥ > kg,
the velocity-spectrum tensor ®;;(x) is given in terms of the energy-spectrum
function E(x) by Eq. (6.193); and the isotropic relations among E;(x;),
Ej(k;), and E(k) apply (see Eqs. (6.214)—(6.218)).

According to the first similarity hypothesis, velocity statistics pertaining
to the universal equilibrium range have a universal form that is uniquely
determined by ¢ and v. Consequently, for k > kg, E(x) is a universal
function of k, ¢, and v. Using ¢ and v to non-dimensionalize ¥ and E(x),
simple dimensional analysis shows that this universal relation can be written

E(k) = (2v%) “o(xcn)
= unp(kn), (6233)

where ¢(kn) is a universal non-dimensional function — the Kolmogorov
spectrum function. Alternatively, if ¢ and x are used to non-dimensionalize
E(x), the relation is '

E(x) = &k W(kn), (6.234)

where W(kn) is the compensated Kolmogorov spectrum function. These uni-
versal functions are related by

P(n) = (xkn)*o(xn), (6.235)

and Egs. (6.233) and (6.234) apply for k > kg, which corresponds to

Kkn > =1 (6.236)

ber

The second similarity hypothesis applies to scales in the inertial subrange,
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Fig. 6.12. Wavenumbers (on a logarithmic scale) at very high Reynolds number
showing the various ranges.

ie., n € £ < £, or more precisely #p; < £ < fg;. The corresponding range in
wavenumber space is kg; < kK < Kpj, see Fig. 6.12; or, in terms of k7,

1> kn>n/b, (6.237)
or
2 2
Ko = — > xkn > =0 = k. (6.238)
{py L

In the inertial subrange, according to the second similarity hypothesis,
E(x) has a universal form uniquely determined by ¢, independent of v.
In Eq. (6.234) for E(x), v enters solely through n. Hence the hypothesis
implies that, as its argument k7 tends to zero (ie., kn < 1, cf. Eq. (6.237)),
the function ¥ becomes independent of its argument, i.e., it tends to a
constant, C. Hence the second similarity hypothesis predicts that, in the
inertial subrange, the energy-spectrum function is

E(x) = Ce?Pk™, (6.239)

(ie, Eq. (6.234) with ¥ = C.) This is the famous Kolmogorov —3 spectrum,

and C is a universal Kolmogorov constant. Experimental data support the
value C = 1.5 (see e.g,, Fig. 6.17 below, and Sreenivasan (1995)).

According to the hypothesis, in the inertial subrange, ®@;;(x) is an isotropic
tensor function and E(k) is a power-law spectrum (i.e., Eq. (6.228) with
p= %). Consequently, as shown in Section 6.5.1, the one-dimensional spectra
are given by

Ey(x;) = Cieli", (6.240)

Exn(i)) = Ce**k ", (6.241)
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where
C = %C ~ 0.49, (6.242)

C,=4C, = 2%C ~ 065 (6.243)

(see Eqs. (6.228)—(6.232)).

Some properties of power-law spectra are given in Appendix G. There is
a direct correspondence between the form of E;(k;) (Eq. (6.240)) and that
of the second-order velocity structure function

Dy (r) = Cyler)*?, (6.244)

(Eq. (6.30)) in the inertial range. The powers p and q (E(x) ~ k7, Dy, (r) ~ r9)
are related by p = § =1l+qg=1+ %; and the constants (to an excellent
approximation) by

C,~4C, =20 (6.245)
(see Eq. (G.29)).

6.5.3 A model spectrum

Before examining experimental data to test further the Kolmogorov hypothe-
ses, we introduce a simple model spectrum that is used for comparison. The
model for the energy-spectrum function is

E(x) = C82/3K_5/3fL(;<L)f,,(m7), (6.246)

where f; and f, are specified non-dimensional functions. The function f
determines the shape of the energy-containing range, and tends to unity
for large kL. Similarly, f, determines the shape of the dissipation range,
and it tends to unity for small k5. In the inertial subrange both f; and f,

are essentially unity, so the Kolmogorov —% spectrum with constant C is
recovered.

The specification of fLis

xL .5/3+P0
[(xL)?* + cL]1/2> ’

where p, is taken to be 2, and c;, is a positive constant. Clearly f; tends to
unity for large x L, while the exponent 3 + p, leads to E(x) varying as k? = x2
for small kL. (With the alternative choice po = 4, Eq. (6.247) is known as the
von Kdarman spectrum (von Karman 1948), which has E(x) ~ x* for small .

fu(xL) = ( (6.247)
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Fig. 6.13. The model spectrum (Eq. (6.246)) for R; = 500 normalized by the Kol-
mogorov scales.

The specification of f, is

falrn) = exp{—B{[(xn)* + c;]'* — c,}}, (6.248)

where § and c, are positive constants. Note that, for ¢, = 0, this reduces to

fn(xn) = exp(—Bxn). (6.249)

Because the velocity field u(x) is infinitely differentiable, it follows that,
for large k, the energy-spectrum function decays more rapidly than any
power of k (see Appendix G). Hence the exponential decay (as suggested
by Kraichnan (1959)). Several experiments support the exponential form
with f = 5.2 (see Saddoughi and Veeravalli (1994)). However, the simple
exponential (Eq. (6.249)) departs from unity too rapidly for small x#, and the
value of f is constrained to be f ~ 2.1 (see Exercise 6.33). These deficiencies
are remedied by Eq. (6.248).

For specified values of k, ¢ and v, the model spectrum is determined
by Eqgs. (6.246)—(6.248) with C = 1.5 and f = 5.2. Alternatively, the non-
dimensional model spectrum is uniquely determined by a specified value of
R;. The constants ¢; and ¢, are determined by the requirements that E(x)
and 2vk’E(x) integrate to k and &, respectively: at high Reynolds number
their values are ¢, =~ 6.78 and ¢, ~ 0.40 (see Exercise 6.32). For isotropic
turbulence, corresponding models for the one-dimensional spectra Eji(k;)
and Ex(k,) are obtained from Eqgs. (6.216)—(6.218).

Figure 6.13 is a log—log plot of the model spectrum (with Kolmogorov
scaling) for R; = 500. The power laws E(x) ~ x? at low wavenumber and
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E(x) ~ k7 in the inertial subrange are evident, as is the exponential decay
at large «.

EXERCISE
6.32 Show that, at very high Reynolds number, the integral of the model
spectrum (Eq. (6.246)) over all « yields

k = C(eL)*? / (kL)™PfL(xL)d(kL). (6.250)
0
Show that, with f; given by Eq. (6.247) (with p, = 2), the integral in
Eq. (6.250) is
_ ar¢) _
cr”? =P 1262, (6.251
/ (x2 +1 11/6 =L Sr(g)r(%) ‘L ( )
Hence show that, for C = 1.5, the high-Reynolds-number asymptote
of ¢, is
cL ~ (1.262C)* ~ 6.783. (6.252)

6.5.4 Dissipation spectra

In this and the next four subsections, experimental data, the Kolmogorov
hypotheses, and the model spectrum are used to examine velocity spectra
in turbulent flows. In most of the relevant experiments, Taylor’s hypothesis
is invoked in order to obtain measurements of the one-dimensional spectra
E,-j(Kl).

Figure 6.14 is a compilation of measurements of E; (x;), plotted with
Kolmogorov scaling. As is the case with E(x) (Eq. (6.233)), the Kolmogorov
hypotheses imply that the scaled spectrum ¢, = E,;(k;)/(ev*)"/* is a universal
function of «,#, at sufficiently high Reynolds number, and for x; > «g;. The
data shown in Fig. 6.14 come from many different flows, with Taylor-scale
Reynolds numbers from 23 to 3,180. It may be seen that, for ;5 > 0.1, all the
data lie on a single curve. The high-Reynolds-number data exhibit power-
law behavior for x;n < 0.1, the extent of the power-law region generally
increasing with R;. Thus the data are consistent with E;;(x;)/(sv®)"/* being
a universal function of x5 for k; > g, with the departures from universal
behavior in Fig. 6.14 arising from the energy-containing range x < xg;. The
model spectra (also shown in Fig. 6.14 for various R;) appear to represent
the data quite accurately.

Compensated one-dimensional spectra (i.e., ;cf/ 3E11(;<1)) with Kolmogorov
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Fig. 6.14. Measurements of one-dimensional longitudinal velocity spectra (symbols),
and model spectra (Eq. (6.246)) for R; = 30,70, 130, 300,600, and 1,500 (lines). The
experimental data are taken from Saddoughi and Veeravalli (1994) where references
to the various experiments are given. For each experiment, the final number in the
key is the value of R;.

scaling are shown in Fig. 6.15 on a linear-log plot, which emphasizes the
dissipation range. For x;n7 > 0.1, there is close agreement between mea-
surements in grid turbulence (R; =~ 60) and in a turbulent boundary layer
(R; = 600), again supporting the universality of the high-wavenumber spec-
tra. The straight-line behavior evident in this plot for x;n7 > 0.3 corresponds
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Fig. 6.15. Compensated one-dimensional velocity spectra. Measurements of Comte-
Bellot and Corrsin (1971) in grid turbulence at R; ~ 60 (triangles), and of Saddoughi
and Veeravalli (1994) in a turbulent boundary layer at R; ~ 600 (circles). Solid

line, model spectrum Eq. (6.246) for R; = 600; dashed line, exponential spectrum
Eq. (6.253); dot—dashed line, Pao’s spectrum, Eq. (6.254).

to exponential decay of the spectrum at the highest wavenumbers. Again,
the model spectrum represents the data accurately.

Also shown in Fig. 6.15 are the one-dimensional spectra deduced from
two alternative models for f,(xn). These are the exponential

falien) = exp(—PBokn), (6.253)
where B, is given by Eq. (6.258), and the Pao spectrum
fa(rn) = exp[—3C(kn)*"], (6.254)

(see Pao (1965) and Section 6.6). It is evident from Fig. 6.15 that these
alternatives do not represent the data as well as the model spectrum does.

Having established that the model spectrum describes the dissipation range
accurately, we now use it to quantify the scales of the dissipative motions.
Figure 6.16 shows the dissipative spectrum D(kx) = 2vk?E(k) according to
the model for R; = 600, and also the cumulative dissipation

Eox) = /0 D(x') dx’. (6.255)
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Fig. 6.16. The dissipation spectrum (solid line) and cumulative dissipation (dashed
line) corresponding to the model spectrum Eq. (6.246) for R; = 600. £ = 2n/xk is the
wavelength corresponding to wavenumber «.

The abscissa shows the wavenumber « and the corresponding wavelength
¢ = 2n/x, both normalized by the Kolmogorov scale 5. Characteristic
wavenumbers and wavelengths obtained from these curves are given in
Table 6.1. It may be seen that the peak of the dissipation spectrum oc-
curs at ky ~ 0.26, corresponding to ¢/n =~ 24, while the centroid (where
Eox) = %8) occurs at xn =~ 0.34, corresponding to ¢/n ~ 18. Thus the
motions responsible for the bulk of the dissipation (0.1 < xy < 0.75, or
60 > ¢/ > 8) are considerably larger than the Kolmogorov scale. (There is
no inconsistency between this observation and the Kolmogorov hypotheses:
the hypotheses imply that the characteristic size of the dissipative motions
scale with n, not that it be equal to #.) On the basis of these observations
we take the demarcation lengthscale between the inertial and dissipative
ranges to be /p; = 607. (The significance of /p; is illustrated in Figs. 6.2 and
6.12.)

EXERCISE
6.33  Show that, at high Reynolds number, the expression for dissipation
obtained from integration of the model spectrum (Eq. (6.246)) is

g =2C ve?3y=43 /Oo(;cn)l/3f,,(m7)d(m7). (6.256)
0
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Table 6.1. Characteristic wavenumbers and lengthscales of the dissipation
spectrum (based on the model spectrum Eq. (6.246) at R; = 600)

Defining wavenumbers kn  £/n
Peak of dissipation spectrum (.26 24
E(ox) = 0.1¢ 0.10 63
E(ox) = 0.5¢ 0.34 18
E(0k) = 0.9¢ 0.73 8.6

Show that, if f, is given by the exponential Eq. (6.253), then the
integral in Eq. (6.256) is

/ x'Bebor dx = 41T (). (6.257)

0

Hence show that the high-Reynolds-number asymptote of f3, is
Bo = [2C l“(g)]“/3 ~ 2.094, (6.258)

for C = 1.5. Confirm that the Pao spectrum (Eq. (6.254)) satisfies
Eq. (6.256).

6.5.5 The inertial subrange

The second Kolmogorov hypothesis predicts a —3 spectrum in the inertial

subrange. The power-law behavior evident in Fig. 6.14 is best examined by
plotting the compensated spectrum ¢/ 3;<f/ °E, 1(k1). For then the Kolmogorov
hypotheses predict that this .quantity adopts the constant value C; (see
Eq. (6.240)) in the inertial range. The compensated spectra measured in a
high-Reynolds-number boundary layer are compared with the Kolmogorov
prediction in Fig. 6.17. It may be seen that the data are within 20% of the
predicted value over two decades of wavenumbers — over which range Kf/ ;
increases by more than a factor of 2,000.

The model spectrum is, of course, constructed to yield the Kolmogorov
behavior in the inertial subrange, and this behavior is evident in Fig. 6.17.
Figure 6.17 also provides some evidence of local isotropy in this distinctly
anisotropic turbulent flow: for x;n > 2 x 1073, E»; and Es; are very similar,
and (as predicted by local isotropy) the plateau value of their compensated
spectra is % that of E;; (Eq. (6.243)). A more direct test (that includes

3
the dissipation range) is to compare the measured value of En(k;) with
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Fig. 6.17. Compensated one-dimensional spectra measured in a turbulent boundary
layer at R; ~ 1,450. Solid lines, experimental data Saddoughi and Veeravalli (1994);
dashed lines, model spectra from Eq. (6.246); long dashed lines, C, and C} correspond-
ing to Kolmogorov inertial-range spectra. (For E;;, Ej; and Es; the model spectra are
for R; = 1,450, 690, and 910, respectively, corresponding to the measured values of

(ul), (u3), and (u3).)

that calculated from E;j(x;) with the assumption of isotropy, Eq. (6.218).
Saddoughi and Veeravalli (1994) performed this test and found that the
measured and calculated values differ by no more than 10% throughout the
equilibrium range.
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Table 6.2. Characteristic wavenumbers and lengthscales of the energy
spectrum (based on the model spectrum Eq. (6.246) at R; = 600)

Defining wavenumber kLiy £/Lj;
Peak of energy spectrum 1.3 5.0
ks = 0.1k 1.0 6.1
ko) = 0.5k . 3.9 1.6
ko) = 0.8k 15 0.42
ko) = 0.9k 38 0.16

6.5.6 The energy-containing range

Two factors make the examination of the energy-containing range more
difficult. First, unlike the universal equilibrium range, the energy-containing
range depends on the particular flow. Second, the one-dimensional spectra
provide little direct information. This is because E;(x;) contains contribu-
tions from all wavenumbers of magnitude greater than «; (ie., [k] > k).
The energy-spectrum function E(x) is the most informative quantity. For
isotropic turbulence this can be obtained experimentally by differentiating
one-dimensional spectra (see Eqgs. (6.217) and (6.223)) — although this is a
poorly conditioned process. With these difficulties in mind, we examine E(x)
in grid turbulence (which is reasonably isotropic).

Appropriate scales for normalization are the turbulent kinetic energy k,
and the longitudinal integral length scale L,;. For, in isotropic turbulence,
E(x) has the integral properties

/ " E()dx =k, (6.259)
JO

= E
/ EM) g = 2L, (6.260)
0 K 37'[

With these scalings, Fig. 6.18 shows measurements of E(x) in grid turbulence
at R; ~ 60, and also the model spectrum for R, = 60 and R, = 1,000. It
may be seen that (with this scaling) the shape of the spectrum does not
vary strongly with the Reynolds number, and that the model provides a
reasonable representation of the data. Also shown in Fig. 6.18 is the model
spectrum Eq. (6.246) with p, = 4 (which gives E(x) ~ «x* for small xL).
Compared with p, = 2, the shape is little different, and the 10% difference
in the peak values is most likely within experimental uncertainties.
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Fig. 6.18. The energy-spectrum function in isotropic turbulence normalized by k
and L;. Symbols, grid-turbulence experiments of Comte-Bellot and Corrsin (1971):
O,R, =71;0,R; = 65;A,R; = 61. Lines, model spectrum, Eq. (6.246): solid, py = 2,
R, = 60; dashed, py = 2, R, = 1,000; dot—dashed py =4, R; = 60.
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Fig. 6.19. The cumulative turbulent kinetic energy k() against wavenumber x and
wavelength ¢ = 2n/x for the model spectrum.

For the model spectrum, Fig. 6.19 shows the cumulative kinetic energy

ko =/ E(x')dx, (6.261)
0

plotted against £/L;; = 2n/(xL,;), and some of the numerical characteristics

of ko, are given in Table 6.2. The centroid of the spectrum is at xLj;

~

4 ({/Ly; = 1%), and 80% of the energy is contained in motions of lengthscale
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Fig. 6.20. The model spectrum for various Reynolds numbers, scaled by (a) k and Ly,
and (b) Kolmogorov scales.

éLH < £ < 6Ly;. On this basis we take the lengthscales characterizing the
energy-containing motions to be 4 = L;; and fg = 1Ly,

6.5.7 Effects of the Reynolds number

Figure 6.20(a) shows the model spectrum normalized by k and L, for a range
of Reynolds numbers. It may be seen that the energy-containing ranges of
the spectra (0.1 < kL;; < 10, say) are very similar, whereas, with increasing
R,, the extent of the —g region increases, and the dissipation range (where
the spectrum rolls off) moves to higher values of kL;.

The same spectra, but normalized by the Kolmogorov scales, are shown in
Fig. 6.20(b). Now the dissipation ranges (kn > 0.1, say) are very similar, while
the energy-containing range moves to lower values of k7 as R, increases.

Figure 6.21 contrasts high-Reynolds-number (R; = 1,000) and low-
Reynolds-number (R; = 30) energy and dissipation spectra. As is the usual
practice with log-linear plots such as this, the spectra are multiplied by « so
that the area under the curve xE(x) represents energy. That is, the energy in
the wavenumber range (k,, k) is

Kp Kp
k(xa,icb)=/ E(k) dx=/ kE(x)dIn«k. (6.262)

With the Kolmogorov scaling employed, the high-Reynolds-number spectrum
contains more energy (i.e., a greater value of k/ uﬁ). Consequently the energy
spectra are scaled by different numerical factors so that they can be compared
on the same plot. The important observation to be made with Fig. 6.21 is
that, at low Reynolds number, the energy and dissipation spectra overlap
significantly: there is no clear separation of scales.

The overlap between the energy and dissipation spectra can be quantified
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Fig. 6.22. The fraction of the energy at wavenumbers greater than x  (k(«)/k) and

the fraction of the dissipation at wavenumbers less than x (ggy)/¢) for the model

spectrum at R; = 1,000 (solid line) and at R; = 30 (dashed line). For the two Reynolds

numbers, the horizontal bars identify the ‘decade of wavenumbers of most overlap’

between the energy and dissipation spectra.

as shown in Fig. 6.22. For R; = 30 and 1,000, Fig. 6.22 shows the fraction of
the energy due to wavenumbers greater than « (i.e., ky)/k) and the fraction
of dissipation due to wavenumbers less than « (i.e., gqy/¢). If there were a
complete separation of scales then, with increasing , k(.,/k would decrease
to zero before ¢, /¢ rose from zero. It may be seen from Fig. 6.22 that there
is considerable overlap for R; = 30, whereas at R; = 1,000 there is much
less — but it is not negligible.

As shown in Fig. 6.22, for given R;, a ‘decade of maximum overlap’
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Fig. 6.23. The fraction f, of the energy and dissipation contributed by the wavenumber
decade of maximum overlap as a function of R; for the model spectrum.

(Km» 10x,,) and an ‘overlap fraction’ f, can be identified and defined by

fo = Kimmr/k = E@.106m) /& (6.263)

Thus the decade of wavenumbers (k,, 10k,,) contributes a fraction a little
less than f, both to the energy and to the dissipation. For R; = 30 and
1,000 the values of f, are 0.75 and 0.11. Figure 6.23 shows f, as a function
of R; for the model spectrum. Evidently very large Reynolds numbers are
required in order for there to be a decade of wavenumbers in which both
energy and dissipation are negligible.

An important tenet in the picture of the energy cascade is that (at high
Reynolds number) the rate of energy dissipation ¢ scales as u3/¢,, where
uo and ¢, are characteristic velocity scales and lengthscales of the energy-
containing eddies. Taking u, = k'/?> and ¢, = L,,, this tenet is ¢ ~ k¥?/L,;.
Now, from the definition L = k*?/¢, we have

'k3/2 k3/2 Lll
= =1~ (_L_) (6.264)

so that the scaling of ¢ with k32/L,; is equivalent to the constancy of L,/L.
Figure 6.24 shows the lengthscale ratio L,,/L as a function of R;. Evidently,
according to the model spectrum, at high Reynolds number L,/L tends
asymptotically to a value of 0.43. However, this ratio increases significantly
as R; decreases — for example, it exceeds the asymptotic value by 50% at
R, = 50. '
Finally, Fig. 6.25 shows the relationship between the different turbulence
Reynolds numbers. From the definitions of Re;, R;, and Eq. (6.64) we have
1/2 2
KPL_ K LR}, (6.265)

v &V

RCL =
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Fig. 6.24. The ratio of the longitudinal integral lengthscale L, to L = k*?/e as a
function of the Reynolds number for the model spectrum.
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Fig. 6.25. Turbulence Reynolds numbers Re; (solid line) and Rer (dashed line) as
functions of R; for the model spectrum.

Whereas, based on v and L{;, we have

'L 2L
Rer = —— = \[5 — Rer ~ %R}, (6.266)

vV

In turbulent flows, the flow Reynolds number Re = UL /v is typically an
order of magnitude greater than Rer (e.g., /U = 0.2,L;/L = 0.5), leading
to the rough estimate R; =~ /2Re.

EXERCISE

6.34  For a high Reynolds number, and for wavenumber « in the inertial
subrange, use the Kolmogorov spectrum (Eq. (6.239)) to estimate that
the fraction of energy arising from motions of wavenumber greater
than « is

1— k(z”‘) ~ 3C(kL)™" (6.267)

~ 1.28(k L) (6.268)

How does this estimate compare with the values given in Table 6.2?
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6.5.8 The shear-stress spectrum

Thus far we have examined the velocity spectra only for isotropic turbulence,
or the isotropic portions of the spectra for locally isotropic turbulence. In
these cases the shear-stress spectra, e.g., ®,(x) and E,(x,), are zero. In simple
shear flows with S = 6(U;)/0x, > 0 being the only significant mean velocity
gradient, the mean shear rate S causes the turbulence to be anisotropic. This
anisotropy is evident in the Reynolds stresses (e.g., (1) /k = —0.3) and, in
view of the relation

(uuy) = /0“0 Epy(ky) dxy, (6.269)

the spectrum must therefore also be anisotropic over at least part of the
wavenumber range. Given the prominent role played by the shear stress
both in momentum transport and in production of turbulence energy, it is
important to ascertain the contributions to (u;u,) from the various scales
of motion. The simple, consistent picture that emerges is that (inevitably)
the dominant contribution to (u;u,) is from wavenumbers in the energy-
containing range, and at higher wavenumbers E,(x) decays more rapidly
than does E;(x;) (consistent with local isotropy).

If 7(x) is the characteristic timescale of motions of wavenumber x, then
the influence of the mean shear S is characterized by the non-dimensional
parameter St(x). It is reasonable to suppose that, if St(x) is small, then so
also is the level of anisotropy created by the mean shear.

In the dissipation range the appropriate timescale is 7,. Hence, as first sug-
gested by Corrsin (1958), a criterion for the isotropy of the smallest scales is

St, < 1. (6.270)

The parameter St, varies as R;' (see Exercise 6.35), so that Eq. (6.270)
amounts to a high-Reynolds-number requirement.

In the inertial subrange, the appropriate timescale is that formed from
and ¢, i.e., (k) = (k%¢)"'/3. Hence the criterion for isotropy at wavenumber
K is

St(k) = Sk~ 1% « 1. (6.271)
With the lengthscale Ls defined by
Lg = ¢/28§73/2, ~ (6.272)

this criterion can be re-expressed as

kLg > 1. (6.273)
(Exercise 6.35 shows that Lg is typically a sixth of L = k3/%/g)
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At very high Reynolds number there is a wavenumber range
Lg' <k <y (6.274)

within the inertial subrange. The small level of anisotropy in this range can
be hypothesized to be a small perturbation (caused by S) of the background
isotropic state — which is characterized by ¢. It follows from this hypothesis
that the shear-stress spectrum E,(x) is determined by x;, ¢, and S, and,
furthermore, that — as a small perturbation — it varies linearly with S.
Dimensional analysis then yields

Eq(x1)

= E;»(xkiL
WLs 12(k1Ls), (6.275)

where Elz is a non-dimensional function and the velocity scale ug is
us = (¢/S)"2. (6.276)

(Exercise 6.35 shows that us is typically jk'/2.) The linearity of E;, with S
then determines E», yielding

Ea(ky)
u‘zsLs

= —Cpl(x1Ls)™", (6.277)

or

Ep(ki) = —CpSe'i; 7, (6.278)

where Cy; is a constant. This result is due to Lumley (1967a).

Figure 6.26 shows E»(k,) (scaled by Ls and us) measured at four different
locations and Reynolds numbers in turbulent boundary layers. Evidently,
for k;Ls >'1, the data are in reasonable agreement with Eq. (6.277) with
C12 = 015

It is of course significant that E (k) decays more rapidly than does
Ei((x4) (as x1_7/ > compared with ;cl_s/ *) so that the anisotropy decreases with
k;. This can be seen directly in the spectral coherency Hi,(x), which is
the u;—u, correlation coefficient of the Fourier modes. Figure 6.27 shows
measurements of Hy,(x) in a turbulent boundary layer. On the basis of this
and other data Saddoughi and Veeravalli (1994) propose the criterion

kiLs >3 (6279)

for the locally isotropic region of the spectrum. This is consistent with
by = %L“ marking the start of the inertial subrange, since (with some
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0.15; symbols, experimental data of Saddoughi and Veeravalli (1994) from turbulent
boundary layers with R; ~ 500 to 1,450.
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Fig. 6.27. The spectral coherency measured in a turbulent boundary layer at R, =
1,400 (Saddoughi and Veeravalli 1994).

assumptions) the data of Saddoughi and Veeravalli (1994) suggest that
(2n/lg)Ls = 6.

EXERCISE
6.35  For a simple turbulent shear flow with & = 6(U,)/dx,, P/e ~ 1, and
o = —(uu,) /k =~ 0.3, obtain the following results:
1
Sk/je=-—~=3, (6.280)

x e
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St, = P Re;'? ~ 3Re;
[0 A1
201P
= /2 2R &~ 9R!
\/: ~TR M 9RT (6.281)
P\ 2
Le=srer= (B) Tworain am)
£
D\ 112
us = (¢/8)* = a'’? (?> k'? ~ lzkl/z. (6.283)

6.6 The spectral view of the energy cascade

In Sections 6.2-6.5 we introduced several statistics used to quantify turbulent
motions on various scales, and we examined these statistics through exper-
imental data, the Kolmogorov hypotheses, and a simple model spectrum.
We are now in a position to provide a fuller account of the energy cascade
than is given in Section 6.1. This section therefore serves to summarize and
consolidate the preceding development.

Energy-containing motions

We again consider very-high-Reynolds-number flow, so that there is a clear
separation between the energy-containing and dissipative scales of motion
(ie, Li;/n ~ Re** > 1). The bulk of the turbulent kinetic energy is contained
in motions of lengthscale ¢, comparable to the integral lengthscale L (6L; >
> %L“ = /gy, say), whose characteristic velocity is of order k'/2. Since their
size is comparable to the flow dimensions £, these large-scale motions can be
strongly influénced by the geometry of the flow. Furthermore, their timescale
Li;/k"? is large compared with the mean-flow timescale (see Table 5.2
on page 131), so that they are significantly affected by the flow’s history.
In other words, and in contrast to the universal equilibrium range, the
energy-containing motions do not have a universal form brought about by
a statistical equilibrium.

All of the anisotropy is confined to the energy-containing motions, and
consequently so also is all of the production of turbulence. On the other hand,
the viscous dissipation is negligible. Instead, during the initial steps in the
cascade, energy is removed by inviscid processes and transferred to smaller
scales (¢ < fgp) at a rate Tg(, which scales as k*?/L,,. This transfer process
depends on the non-universal energy-containing motions, and consequently
the non-dimensional ratio 7g;/(k*?/L,,) is not universal.
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The energy-spectrum balance

For homogeneous turbulence (with imposed mean velocity gradients) this
picture is quantified by the balance equation for the energy-spectrum function
E(x,t). This equation (derived in detail in Hinze (1975) and Monin and
Yaglom (1975)) can be written

g—tE(x, 1) = Pe(k, t) — %7;(16, 1) — 2vi*E(k,1). (6.284)

The three terms on the right-hand side represent production, spectral transfer,
and dissipation.

The production spectrum P, is given by the product of the mean velocity
gradients d(U;)/0x; and an anisotropic part of the spectrum tensor. The
contribution to the production from the wavenumber range (k,, k) is denoted
by

Kb
Plcasy) = / P, dx, (6.285)

and, to the extent that all of the anisotropy is contained in the energy-
containing range, we therefore have

P = P(O,oo) ~ ,P(Os’CEI)’ (6286)

Picgro/ P < 1. (6.287)

In the second term on the right-hand side of Eq. (6.284), Zi(k) is the
spectral energy transfer rate: it is the net rate at which energy is transferred
from modes of lower wavenumber than x to those with wavenumbers higher
than x. This is simply related to 7(¢) — the rate of transfer of energy from
eddies larger than ¢ to those smaller than ¢ — by

T(6) = T.Cn/0). (6.288)

The rate of gain of energy in the wavenumber range (x,,xy) due to this
spectral transfer is

/Kb —%TK(K) dic = Ti(ka) — Te(ko)- (6.289)

Since 7, vanishes at zero and infinite wavenumber, this transfer term makes
no contribution to the balance of turbulent kinetic energy k.

An exact expression for 7, can be obtained from the Navier—Stokes
equations (see, e.g., Hinze (1975)). There are two contributions: one resulting
from interactions of triads of wavenumber modes, similar to Eq. (6.162); the
other (examined in detail in Section 11.4) expressing a primarily kinematic
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Kg1 Kp1 K

Fig. 6.28. For homogeneous turbulence at very high Reynolds number, sketches of (a)
the energy and dissipation spectra, (b) the contributions to the balance equation for
E(x,t) (Eq. (6.284)), and (c) the spectral energy-transfer rate.

effect that mean velocity gradients have on the spectrum. The final term in
Eq. (6.284) is the dissipation spectrum D(x,t) = 2vi?E(k, t).

Figure 6.28 is a sketch of the quantities appearing in the balance equation
for E(k,t). In the energy-containing range, all the terms are significant
except for dissipation. With the approximations k) = k,gou, =~ 0 and
Poxe) = P, when it is integrated over the energy-containing range (0, k1),
Eq. (6.284) yields

— xP -1 6.290
dt P EL, ( )

where 7gz; = 7.(kgp). In the inertial subrange, spectral transfer is the only
significant process so that (when it is integrated from kg; to kp;) Eq. (6.284)
yields

0~ Tgr — Ipy, (6-291)

where 7p; = 7T.(kp1). Whereas in the dissipation range, spectral transfer
balances dissipation so that (when it is integrated from xp; to infinity)
Eq. (6.284) yields

0~ Tp —¢. (6.292)
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When they are added together, the last three equations give (without ap-
proximation) the turbulent-kinetic-energy equation dk/dt = P — .

The above equations again highlight the essential characteristics of the
energy cascade. The rate of energy transfer from the energy-containing
range Tg; depends, in a non-universal way, on several factors including the
mean velocity gradients and the details of the energy-containing range of the
spectrum. However, this transfer rate then establishes an inertial subrange
of universal character with 7 (k) = 7g;; and finally the high wavenumber
part of the spectrum dissipates the energy at the same rate as that at which
it receives it. Thus both 7p; and ¢ are determined by, and are equal to, 7g;.
Quite often, when ‘dissipation’ is being considered — e.g., in characterizing
the inertial range spectrum as E(x) = Ce?3x™>/3 - it is conceptually superior
to consider 7g; in place of &.

The cascade timescale

An analogy of questionable validity is that the flow of energy in the inertial
subrange is like the flow of an incompressible fluid through a varjable-area
duct. The constant flow rate is 7¢; (in units of energy per time) while the
capacity of the cascade (analogous to the duct’s area) is E(k) (in units of
energy per wavenumber). So the speed (in units of wavenumber per time) at
which the energy travels through the cascade is

k(x) = Te1/E (k) = &*3'3/C, (6.293)

the latter expression being obtained from the Kolmogorov spectrum and the
substitution 7g; = ¢. Notice that this speed increases rapidly with increasing
wavenumber.

It follows from the solution of the equation dx/dt = « that, according to
this analogy, the time ¢, ., that it takes for energy to flow from wavenumber
K, to the higher wavenumber «y, is

oy = 3C8 7 (177 = 17
=3[ L) = (L) ). (6.294)

With the relations kg = 2n/fgy, bgp = %L“, and L /L ~ 0.4, this formula
yields '

Hnpre) = 15T (6.295)

giving the estimate that the lifetime of the energy once it enters the inertial
subrange is just a tenth of its total lifetime © = k/e.
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Spectral energy-transfer models
In the universal equilibrium range (x > kgi), the balance in the spectral en-
ergy equation (Eq. (6.284)) is between the energy transfer and the dissipation,
see Fig. 6.28(b). Hence (at any time ¢) Eq. (6.284) reduces to

0= —ad;’f,c(x) — 2vi’E(k). (6.296)

During the period from 1940 to 1970 many models for the spectral energy
transfer rate 7, were proposed, which allow the form of the spectrum E(k) to
be deduced from Eq. (6.296). The proposals of Obukhov (1941), Heisenberg
(1948), and many others are reviewed by Panchev (1971). Appropriate to the
physics of the cascade, most of these models are non-local in the sense that
T.(x) is postulated to depend on E(x’), for k' # k. However, to illustrate the
approach, we consider the simple local model due to Pao (1965). Similar to
Eq. (6.293), the speed of energy transfer k(k) is defined by

i(x) = Tu(x)/E (k). (6.297)

The single (though strong) assumption in Pao’s model is that k¥ depends
solely on ¢ and x. Dimensional analysis then determines

T(x) = E(k)k(x) = E(x)o g2k, (6.298)

where o is a constant. With this expression for 7, Eq. (6.296) can be
integrated (see Exercise 6.36) to yield the Pao spectrum

E(x) = C&k7 exp[—2C(kn)*], (6.299)

cf. Eq. (6.254). This is compared with experimental data in Fig. 6.15.

EXERCISE
6.36  Substitute Eq. (6.298) into Eq. (6.296) to obtain

ad; In [E(K)K5/3] = —2ave !, (6.300)

and then integrate to obtain
E(x) = Bx P exp(—3ave™' Pk,
= Br~>" exp[—3a(kn)*?], (6.301)
where f§ is a (dimensional) constant of integration. Argue that, for

consistency with the Kolmogorov spectrum (for small x#), B'is re-
quired to be g = Ce*. Show that the dissipation given by Eq. (6.301)
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is
/ 2vi’E(k)dx = £ /a, (6.302)
0
and hence that « is identical to the Kolmogorov constant C. Confirm

that, with § = Ce** and « = C, Eq. (6.301) yields the Pao spectrum,
Eq. (6.299).

6.7 Limitations, shortcomings, and refinements

In considerations of turbulent motions of various scales, the notions of the
energy cascade, vortex stretching, and the Kolmogorov hypotheses provide
an invaluable conceptual framework. However, both conceptually and em-
pirically, there are some shortcomings. Indeed, since around 1960, a major
line of research (theoretical, experimental, and computational) has been to
examine these shortcomings and to attempt to improve on the Kolmogorov
hypotheses. While it is appropriate to provide some discussion of these issues
here, it should be appreciated that they have minor impact on the study and
modelling of turbulent flows. This is simply because the small scales (¢ < fg;)
contain little energy (and less anisotropy) and so have little direct effect on
the flow.

6.7.1 The Reynolds number

A limitation of the Kolmogorov hypotheses is that they apply only to high-
Reynolds-number flows, and that a criterion for ‘sufficiently high Reynolds
number’ is not provided. Many laboratory and practical flows have rea-
sonably high Reynolds number (e.g., Re ~ 10,000,R; ~ 150), and yet even
the motions on the dissipative scales are found to be anisotropic (see, e.g.,
George and Hussein (1991)).

Close scrutiny of the inertial range spectra show that the Kolmogorov
—2 spectrum is approached slowly as the Reynolds number increases. From
experiments on grid turbulence at quite high Reynolds number (R; ~ 50-
500) Mydlarski and Warhaft (1998) conclude that the inertial-range spectrum
is indeed a power law, E(k) ~ k7, but that the exponent p depends on R;
(see Fig. 6.29). As the curve in Fig. 6.29 illustrates, it is quite plausible that
p approaches § at very large R;, but, at R; &~ 200 (which is typical of many
laboratory flows), p is around 1.5.

It is certainly an oversimplification to suppose that the energy cascade
consists of the one-way transfer of energy from eddies of size ¢ to those
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Fig. 6.29. The spectrum power-law exponent p (E(x) ~ x77) as a function of the
Reynolds number in grid turbulence: symbols, experimental data of Mydlarski and

Warhaft (1998); dashed line, p = 3; solid line, empirical curve p = § — 8R;*/*,

of a somewhat smaller size (e.g., %é), and that this energy transfer depends
solely on motions of size ¢. Spectral energy transfer is almost impossible
to measure experimentally (but see Kellogg and Corrsin (1980)), whereas
it can be extracted from direct numerical simulations (which are restricted
to moderate or low Reynolds numbers). The picture that emerges from the
DNS study of Domaradzki and Rogallo (1990) is that there is energy transfer
both to smaller and to larger scales, with the net transfer being toward
smaller scales. In wavenumber space, the energy transfer is accomplished by
triad interactions, that is, interactions among three modes with wavenumbers
k%, k°, and k¢ such that k* + k® + k° = 0 (see Eq. (6.162)). The DNS results
suggest that the transfer is predominantly local (e.g., between modes a and
b with |k?| ~ |k®|), but that it is effected by interactions with a third mode
of significantly smaller wavenumber (i.e., |k°| < |k?|). (Further studies have
been performed by Domaradzki (1992) and Zhou (1993).)

6.7.2 Higher-order statistics

All the experimental data considered so far in this chapter pertain to second-
order velocity statistics (i.e., statistics that are quadratic in velocity). These
are the most important quantities since they determine the kinetic energy
and the Reynolds stresses.

The simplest examples of higher-order statistics are the normalized velocity-

derivative moments
ou \" ou \ "
M, = {2 e X .
Gy (2 (6309
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Fig. 6.30. Measurements (symbols) compiled by Van Atta and Antonia (1980) of
the velocity-derivative kurtosis as a function of Reynolds number. The solid line is

K ~R)%

For n = 3 and n = 4 these are the velocity-derivative skewness S and
kurtosis K. (Recall that, for a Gaussian random variable, S is zero and K is
3.) According to the Kolmogorov hypotheses, for each n, M, is a universal
constant. However, it is found that § and K are not constant, but increase
with Reynolds number. Figure 6.30, for example, shows that measurements
of the kurtosis increase from K =~ 4 in low-Reynolds-number grid turbulence
to K =~ 40 at the highest Reynolds numbers measured. In contrast to the
Reynolds-number effects discussed previously, here K does not appear to
reach an asymptote, but instead the data are consistent with an indefinite
increase, possibly as K ~ R},

The velocity-derivative moments M, (e.g., the skewness S and the kurtosis
K) pertain to the dissipative range. The simplest higher-order statistics
pertaining to the inertial subrange are the longitudinal velocity structure
functions, '

D,(r) = {(Au)"), (6.304)
ie., the moments of the velocity difference defined (at x,t) by
Aru=Ui(x +eyr, t) — Uy(x, ). (6.305)

Recall that the second- and third-order structure functions D,(r) and Ds(r)
are considered in Sections 6.2 and 6.3, where they are denoted by D;; and
Dppy(r).

According to Kolmogorov’s second hypothesis, for inertial-range separa-
tions (L > r > #) D,(r) depends only on ¢ and r, and hence dimensional
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Fig. 6.31. Measurements (symbols) compiled by Anselmet et al. (1984) of the longi-

tudinal velocity structure function exponent {, in the inertial subrange, D,(r) ~ ré.

The solid line is the Kolmogorov (1941) prediction, ¢, = %n; the dashed line is the

prediction of the refined similarity hypothesis, Eq. (6.323) with u = 0.25.

analysis yields
D,(r) = Cy(er)"”, (6.306)

where C,,Cs,... are constants. Measurements confirm this prediction for
n =2 (with C, = 2.0, see Fig. 6.5 on page 194); and also for n = 3, for which
the Kolmogorov % law (Eq. (6.88)) yields C; = —%. Higher-order structure
functions, for n up to 18 have been measured by Anselmet et al. (1984). In
the inertial subrange, a power-law dependence on r is observed,

D,(r) ~ r*, (6.307)

but the measured exponents, shown in Fig. 6.31, differ from the Kolmogorov
prediction Eq. (6.306), i.e., {, =n/3.

It is instructive to examine the PDFs that underlie these higher-order
moments. Figure 6.32 shows the standardized PDF of du;/dx; measured in
the atmospheric boundary layer — a very-high-Reynolds-number flow. This
PDF is denoted by f,(z), where Z is the standardized derivative

5 5 )\ 172

Uy Uy

= — — . .308
z 0x;4 <(0x1> > (® )

Observe that the tails of the distribution (beyond four standard derivations,
say) are close to straight lines on this plot, corresponding to exponential tails:
the dashed lines shown in Fig. 6.32 are the approximations

fz(z) = 0.2exp(—1.1|z]), for z > 4, (6.309)

fz(z) = 0.2exp(—1.0|z|), for z < —4. (6.310)
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Fig. 6.32. The PDF fz(z) of the normalized velocity derivative Z =
(Ouy /0x1)/{(@u; /8x;)?)'/? measured by Van Atta and Chen (1970) in the atmospheric
boundary layer (high Re). The solid line is a Gaussian; the dashed lines correspond
to exponential tails (Egs. (6.309) and (6.310)).

(Note that the slower decay for negative z is consistent with the observed
negative skewness S.) This exponential decay is of course much slower than
that of the standardized Gaussian, which is also shown in Fig. 6.32.

What is the significance of these tails? First, they correspond to rare
events: taking Eq. (6.310) as an approximation for large |z|, it follows that
there is less than 0.3% probability of |Z| exceeding 5. However, these low-
probability tails can make vast contributions to higher moments. Table 6.3
shows the tail contribution (|Z| > 5) to the moments

MO =2 / 2"fz(z) dz, (6.311)
5

for fz(z) being given by Eq. (6.310). Observe, for example, that the contribu-
tion to the superskewness Mg is 220, compared with the Gaussian value of
15. Some laboratory measurements of the PDF of du; /dx, and its moments
over a range of Reynolds number are described by Belin et al. (1997).

6.7.3 Internal intermitténcy

The discrepancies between the Kolmogorov predictions and the experimental
values of the higher-order moments M, and D,(r) are attributed to the
phenomenon of internal intermittency, and are largely accounted for in the
refined similarity hypotheses proposed by Obukhov (1962) and Kolmogorov
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Table 6.3. Contributions M from the exponential tails (|Z| > 5) of the
PDF of Z to the moments M, according to Eqs. (6.310) and (6.311)

Tail contribution Gaussian value

Moment n MO" M,
0 0.003 1
2 0.1 1
4 4.2 3
6 220 15
8 1.5 x 10¢ 105
10 1.4 x 108 945

(1962). To describe these ideas it is necessary to introduce several quantities
related to dissipation.
The instantaneous dissipation ¢o(x,t) is defined by

€0 = 2V5y;Sij (6.312)

and, for a given distance r, the average of & over a sphere V(r) of radius r

Unfortunately, for practical purposes, it is impossible to measure g and é,.
Instead, one-dimensional surrogates are used, namely

0u1
Zg = 15v (0x1> , (6.314)
1 r
£ (x,t) = ;/ Eo(x + eyr,t)dr. (6.315)
0

In locally isotropic turbulence, each of these quantities has mean & It is
generally supposed that the statistics of ¢y and & are qualitatively similar,
but there are certainly substantial quantitative differences.

As early as 1949 (e.g., Batchelor and Townsend (1949)) experiments re-
vealed that the instantaneous dissipation &, intermittently attains very large
values. The peak value of /¢ observed increases with Reynolds number: in
a laboratory experiment (moderate R;) Meneveau and Sreenivasan (1991)
observed a peak value of 2,/¢ ~ 15, whereas in the atmosphere’s surface
layer (high R;) the corresponding observation was 50. Kolmogorov (1962)
conjectured that mean-square dissipation fluctuations scale as

(e5)/6" ~ (L/nY", (6.316)
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and similarly
(e2) /e ~ (L/ry", for n<r <L, (6.317)

where u is a positive constant — the intermittency exponent. Experiments
confirm Eq. (6.317) for the surrogate £, and determine u = 0.25 + 0.05
(Sreenivasan and Kailasnath 1993). It may be seen from the definition of
80 (Eq. (6.314)) that (83)/¢* is precisely the velocity-derivative kurtosis K.
Thus, taking u = 1 and recalling the relation L/ ~ R 2 Eq. (6.316) for the
surrogate leads to

K ~R*? =R}, (6.318)

which is consistent with experimental data (see Fig. 6.30).

6.7.4 Refined similarity hypotheses

Considering the velocity increment A,u (Eq. (6.305)), the first (original)
Kolmogorov hypothesis states that the statistics of A,u (for r < L) are
universal, determined by the mean dissipation ¢ and v. The idea behind the
refined similarity hypotheses (Obukhov 1962, Kolmogorov 1962) is that A,u
is influenced not by the mean dissipation ¢, but by the local value (averaged
over the distance r), namely ¢,. Thus the first refined similarity hypothesis
is that (for r <« L) the statistics of A,u conditional on ¢, are universal,
determined by ¢, and v. The second refined similarity hypothesis is that, for
n < r < L, these conditional statistics depend only on ¢,, independent of v.

Application of the second refined similarity hypothesis to the moments of
A,u yields

(Avu)'|e, = €) = Cyler)"?, (6.319)
where C, are universal constants (cf. Eq. (6.306)), and € is a sample-space

variable. The structure function D,(r), which is the unconditional mean, is
then obtained as

Dy(r) = {(A;u)") = ({(Aru)"e,))
= C,(e"*)r". (6.320)

For n = 3, since (¢,) equals ¢, the original and the refined hypotheses make the
same prediction; which, with C; = —4, is the Kolmogorov % law (Eq. (6.88)).
For n = 6, and using Eq. (6.317) for (¢?), the prediction is

Dg(r) ~ EL* ", (6.321)

ie., a power law in r (Eq. (6.307)) with exponent (s = 2 — yu = 1.75 for
p = 0.25. This value of (¢ is in agreement with the data shown in Fig. 6.31.
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For other values of n, (¢/3) can be determined from the PDF of ¢,.
Obukhov (1962) and Kolmogorov (1962) conjectured that e, is log-normally
distributed, ie., In(¢,/¢) has a Gaussian distribution. From this assumption
of log-normality, and from the scaling of (&) (Eq. (6.317)), it follows (see
Exercise 6.37) that the moments of &, scale as

(ef') /e" ~ (L/r)mm=Dul2, (6.322)
Consequently, the structure function (Eq. (6.320)) is predicted to scale as
D,(r) ~ r', with
{w=1n[l — Lu(n—3)). (6.323)
For n not too large (n < 10, say), this prediction is in reasonable agreement
with the data shown in Fig. 6.31. For large n, the discrepancies are attributed
to the deficiencies in the log-normal assumption, which has been roundly
criticized by Mandelbrot (1974) and others.
For the second-order structure function D,(r), Eq. (6.323) yields
L=%3+lu~i+ L (6.324)
Correspondingly, the inertial-range spectrum is predicted to be a power law
E(x) ~ k7 with
p=3+iu~i+i (6.325)
Hence the predicted modification to the —3 spectrum is very small.
For the velocity-derivative moments, the refined hypotheses yield

0u1 " P e\"/?
<(a_x1> £,=E>=Cn<—) , (6.326)

v
where C, are constants, and hence

()

0x Co(g)?)

. . F (6.327)
1

(=)

Using the log-normal assumption to evaluate the moments of ¢, (Eq. (6.322)),
for the skewness and kurtosis we obtain

—S ~ (L/ry*/3, (6.328)

K ~ (L/r)~ (6.329)

n —

Hence, irrespective of the value of yu, a prediction is

—S ~ K¥8, (6.330)
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Fig. 6.33. Measurements of the velocity-derivative skewness S and kurtosis K compiled
by Van Atta and Antonia (1980). The line is —S ~ K%,

Figure 6.33 shows that the data are indeed consistent with this prediction,
although there is considerable scatter.

The research literature in this area is vast. Useful reviews are provided by
Nelkin (1994) and Stolovitzky et al. (1995).

EXERCISE

6.37  The positive random variable ¢, is log-normally distributed if

¢ = ln(sr/sref) (6331)

is Gaussian, where ¢ is a positive constant. Let ¢ be Gaussian with
variance 2.

(a) Show that the moments of ¢, are

() = el exp(n(g) + ina?), (6.332)
(b) Show that, if ¢, is taken to be (g,), then
(e/)/(e,)" = exp[ia?n(n—1)] . (6.333)
(c) If the mean square of ¢, depends on the parameter r according
to
(e7)/(e,)* = A(L/7)", (6.334)

where A, L, and u are positive constants, show that

o’ =InA+ pln(L/r), (6.339)

(&) / (e, )" = A"=DP(L [y, (6.336)
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6.7.5 Closing remarks

A great deal of research work has focused on the shortcomings of the
original Kolmogorov hypotheses, and on the details of the refined similarity
hypotheses. It is again emphasized, however, that, in the context of the mean
velocity field and Reynolds stresses in turbulent flows, these issues are of
minor significance. The turbulence energy and anisotropy are predominantly
contained in the large-scale motions. Internal intermittency, on the other
hand, concerns rare events that are manifest only in high-order statistics of
small-scale quantities. In the context of the energy cascade and turbulent
flows, of much more importance than internal intermittency is the question
of what determines the rate of energy transfer 7g; from the energy-containing
scales. It is a difficult question, because the large scales are not universal.
This question is addressed in Chapter 10.



7
Wall flows

In contrast to the free shear flows considered in Chapter 5, most turbulent
flows are bounded (at least in part) by one or more solid surfaces. Examples
include internal flows such as the flow through pipes and ducts; external
flows such as the flow around aircraft and ships’ hulls; and flows in the
environment such as the atmospheric boundary layer, and the flow of rivers.

We consider three of the simplest of these flows (sketched in Fig. 7.1),
namely: fully developed channel flow; fully developed pipe flow; and the
flat-plate boundary layer. In each of these flows the mean velocity vector is
(or 1s nearly) parallel to the wall, and, as we shall see, the near-wall behaviors
in each of these cases are very similar. These simple flows are of practical
importance and played a prominent role in the historical development of the
study of turbulent flows.

Central 1ssues are the forms of the mean velocity profiles, and the friction
laws, which describe the shear stress exerted by the fluid on the wall. In ad-
dition the mixing length is introduced in Section 7.1.7; the balance equations
for the Reynolds stresses are derived and examined in Section 7.3.5; and the
proper orthogonal decomposition (POD) is described in Section 7.4.

7.1 Channel flow
7.1.1 A description of the flow

As sketched in Fig. 7.1, we consider the flow through a rectangular duct of
height h = 25. The duct is long (L/é > 1) and has a large aspect ratio
(b/6 > 1). The mean flow is predominantly in the axial (x = x;) direction,
with the mean velocity varying mainly in the cross-stream (y = x,) direction.
The bottom and top walls are at y = 0 and y = 24, respectively, with the
mid-plane being y = . The extent of the channel in the spanwise (z = x3)
direction is large compared with & so that (remote from the end walls) the

NYKA
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Fig. 7.1. Sketches of (a) channel flow, (b) pipe flow, and (c) a flat-plate boundary
layer.

flow 1s statistically independent of z. The centerline is defined by y = 4,z = 0.
The velocities in the three coordinate directions are (U, V, W) = (U;, U,, Us)
with fluctuations (u,v,w) = (uy, us, u3). The mean cross-stream velocity (W)
is zero.

Near the entry of the duct (x = 0) there is a flow-development region.
We, however, confine our attention to the fully developed region (large x),
in which velocity statistics no longer vary with x. Hence the fully developed
channel flow being considered is statistically stationary and statistically
one-dimensional, with velocity statistics depending only on y. Experiments
confirm the natural expectation that the flow is statistically symmetric about
the mid-plane y = §: the statistics of (U,V, W) at y are the same as those
of (U,—V,W) at 26 — y (see Egs. (4.31)(4.34)).

The Reynolds numbers used to characterize the flow are

Re = (20)U /v, (7.1)

Reo = Uod /v, (7.2)
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where Uy = (U),—;s is the centerline velocity, and U is the bulk velocity

J
% /0 (U) dy. (7.3)

The flow is laminar for Re < 1,350, and fully turbulent for Re > 1,800,
although transitional effects are evident up to Re = 3,000 (see Patel and
Head (1969)).

U

7.1.2 The balance of mean forces
The mean continuity equation reduces to
d(V)
dy
since (W) is zero, and (U) is independent of x. With the boundary condition
(V'),=0, this dictates that (V') is zero for all y, so that the boundary condition

at the top wall (V),_»s = 0 is also satisfied.
The lateral mean-momentum equation reduces to

=0, (7.4)

d 1 &{p)
0=——@") -~ =, 7.5
50— 5 (1.5
which, with the boundary condition (v?),_o = 0, integrates to
(©*) +{p)/p = pu(x)/p, (7.6)

where p. = (p(x,0,0)) is the mean pressure on the bottom wall. An important
deduction from this equation is that the mean axial pressure gradient is
uniform across the flow:

o{p) _ dpu
gl (7.7
The axial mean-momentum equation,
&) d 1 9(p)
0= _— — X7
v 4y a (uv) 5 ox (7-8)
can be rewritten
dt dp.
&~ dx _ (7.9)
where the total shear stress 7(y) is

For this flow there is no mean acceleration, so the mean momentum equation
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(Eq. (7.9)) amounts to a balance of forces: the axial normal stress gradient
is balanced by the cross-stream shear-stress gradient.

Since 7 is a function only of y, and p, is a function only of X, it is evident
from Eq. (7.9) that both dt/dy and dp,/dx are constant. The solutions for
7(y) and dp,/dx can be written explicitly in terms of the wall shear stress

7 = 7(0). (7.11)
Because t(y) is antisymmetric about the mid-plane, it follows that ©(8) is
zero; and at the top wall the stress is 7(26) = —t. Hence, the solution to
Eq. (7.9) is
dpw .
__d—x_ = *5—, (712)
and
— _y
o(y) = Tw<1 5). (1.13)

The wall shear stress normalized by a reference velocity is called a skin-
friction coefficient. On the basis of Uy and U we define

¢ =1./(30U5), (7.14)

Cr = /(LpT?). (7.15)

To summarize: the flow is driven by the drop in pressure between the
entrance and the exit of the channel. In the fully developed region there is
a constant (negative) mean pressure gradient d(p)/0x = dp,/dx, which is
balanced by the shear-stress gradient dz/dy = —r,,/6. For a given pressure
gradient dp,,/dx and channel half-width J, the linear shear-stress profile is
given by Egs. (7.12) and (7.13) - independent of the fluid properties (e.g.,
p and v), and independent of the state of fluid motion (i.e., laminar or
turbulent). Note that, if the flow 1s defined by p,v,d, and dp,/dx, then U,
and U are not known a priori. Alternatively, in an experiment U can be
imposed and then the pressure gradient is unknown. In both cases the skin-
friction coefficient is not known a priori. Of course, as the following exercise
demonstrates, all of these quantities are readily determined for laminar flow.

EXERCISES ___
7.1 For laminar flow, from Egs. (7.10) and (7.13), show that the mean
velocity profile is

U(y) = ﬁ%(2-%). (7.16)
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Fig. 7.2. Mean velocity profiles in fully developed turbulent channel flow from the

DNS of Kim et al. (1987): dashed line, Re = 5,600; solid line, Re = 13,750.

7.2

Hence obtain the following results:

ToO _
U= 2 =3[,
07 2oy 2
Re = 3Rey,
o 4 16
£ Re, 3Re’
9 12
Cr=—-—=—.
f Reo Re
The friction velocity is defined by
U, = \/7u/p-

Show tHat, in general, ,
¢t = 2u./Up),

and that for lamihar flow

w_J 2 _ /8
Uy VRe V3Re

(7.17)

(7.18)
(7.19)

(7.20)

(7.21)

(7.22)

(1.23)

Evaluate u, /U, for the upper limit of laminar flow, i.e., Re = 1,350.

7.1.3 The near-wall shear stress

Figure 7.2 shows the mean velocity profiles obtained by Kim et al. (1987)
from direct numerical simulations of fully developed turbulent channel flow
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Fig. 7.3. Profiles of the viscous shear stress, and the Reynolds shear stress in turbulent
channel flow: DNS data of Kim et al. (1987): dashed line, Re = 5,600; solid line,
Re = 13,750.

at Re = 5,600 and Re = 13,750.' The objective of this and the next subsection
is to explain and quantify these profiles.

The total shear stress t(y) (Eq. (7.10)) is the sum of the viscous stress
pvd(U)/dy and the Reynolds stress —p(uv). At the wall, the boundary
condition U(x,t) = 0 dictates that all the Reynolds stresses are zero. Con-
sequently the wall shear stress is due entirely to the viscous contribution,

1e.,
Ty = pVv (M> . (7.24)
dy /),

Profiles of the viscous and Reynolds shear stresses are shown in Fig. 7.3.

The important observation that the viscous stress dominates at the wall
is in contrast to the situation in free shear flows. There, at high Reynolds
number, the viscous stresses are everywhere negligibly small compared with
the Reynolds stresses. Also, near the wall, since the viscosity is an influential
parameter, the velocity profile depends upon the Reynolds number (as may
be observed in Fig. 7.2) — again in contrast to free shear flows.

It is evident that, close to the wall, the viscosity v and the wall shear
stress 1, are important parameters. From these quantities (and p) we define
viscous scales that are the appropriate velocity scales and lengthscales in the
near-wall region. These are the friction velocity

Tw

e = [, (7.25)
p

! The higher-Reynolds number data are briefly presented by Moser. Kim, and Mansour (1999). A
description of DNS of channel flow is given in Chapter 9,
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Fig. 7.4. Profiles of the fractional contributions of the viscous and Reynolds stresses
to the total stress. DNS data of Kim et al. (1987): dashed lines, Re = 5,600; solid
lines, Re = 13,750.

and the viscous lengthscale
5, =v /L =1 . (7.26)

The Reynolds number based on the viscous scales u.d, /v is identically unity,
while the friction Reynolds number is defined by
)
Re,= 22 -2 (7.27)
y 0,
(In the DNS of Kim et al. 1987, the friction Reynolds numbers are Re, = 180
at Re = 5,600, and Re, = 395 at Re = 13,750.)
The distance from the wall measured in viscous lengths — or wall units —
is denoted by

yr=2 =4 (7.28)
0, y

Notice that y* is similar to a local Reynolds number, so its magnitude can
be expected to determine the relative importance of viscous and turbulent
processes. In support of this supposition, Fig. 7.4 shows the fractional con-
tributions to the total stress from the viscous and Reynolds stresses in the
near-wall region of channel flow. When thay are plotted against y*, the pro-
files for the two Reynolds numbers almost collapse. The viscous contribution
drops from 100% at the wall (y* = 0) to 50% at y*+ = 12 and is less than

10% by y* = 50.
Different regions, or layers, in the near-wall flow are defined on the basis
of y*. In the viscous wall region y* < 50, there is a direct effect of molecular
viscosity on the shear stress; whereas, conversely, in the outer layer y* > 50
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the direct effect of viscosity is negligible. Within the viscous wall region, in
the viscous sublayer y* < 5, the Reynolds shear stress is negligible compared
with the viscous stress. As the Reynolds number of the flow increases, the
fraction of the channel occupied by the viscous wall region decreases, since
d,/0 varies as Re;! (Eq. (7.27)).

EXERCISE

7.3 An experiment is performed on fully developed turbulent channel
flow at Re = 10°. The fluid is water (v = 1.14 x 107® m? s~!) and the
channel half-height is 6 = 2 cm. The skin-friction coefficient is found
to be C; = 4.4 x 1073, Determine: U, u./U, Re,, and §,/5. What are
the thicknesses of the viscous wall region and of the viscous sublayer,
both as fractions of § and in millimeters?

7.1.4 Mean velocity profiles

Fully developed channel flow is completely specified by p,v,d, and dp,/dx;
or, equivalently, by p,v,d, and u,, since we have

5 dp,\ 2
"y = (—; d—’l) : (7.29)

There are just two independent non-dimensional groups that can be formed
from p,v,d,u,, and y (e.g., y/é and Re, = u,d/v) and consequently the mean
velocity profile can be written

(U) = wFo (%, Re.), (7.30)

where F; is a universal non-dimensional function to be determined.

While this approach to determining the mean velocity profile appears
natural, it is, however, preferable to proceed somewhat differently. Instead
of (U), we consider the velocity gradient d(U)/dy, which is the dynamically
important quantity. The viscous stress and the turbulence production, for
example, are both determined by d(U)/dy. Again on dimensional grounds,
d(U)/dy depends on just two non-dimensional parameters, so that (without
any assumption) we can write

dU) u. [y y
L = 2 ), 7.31

dy y (5v’ ) (73D)
where @ is a universal non-dimensional function. The idea behind the choice
of the two parameters is that J, is the appropriate lengthscale in the viscous
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wall region (y* < 50) while ¢ is the appropriate scale in the outer layer

(y* > 50). The relation
(51 ) /(5) =Re: (7.32)

shows, as is inevitable, that these two parameters contain the same informa-
tion as y/é and Re. (Eq. (7.30)).

The law of the wall

Prandtl (1925) postulated that, at high Reynolds number, close to the wall
(y/8 < 1) there is an inner layer in which the mean velocity profile is
determined by the viscous scales, independent of 6 and U,. Mathematically,
this implies that the function ®(y/é,,y/6) in Eq. (7.31) tends asymptotically
to a function of y/d, only, as y/d tends to zero, so that Eq. (7.31) becomes

d(U)  u, y y
i - y(DI(E), for 5 < 1, (7.33)
where
y . yy
Ol =] = O =, = . .
‘(&) o, (5; 5) (7.39)
With y* = y/5, and u*(y*) defined by
(U)
+ —
ut = o (7.35)
Eq. (7.33) can alternatively be written
dut 1
The integral of Eq. (7.36) is the law of the wall:
u" = fu(y™), (7.37)
where
v
£y = [ Sy (1.38)
0

The important point is not Eq. (7.38), but the fact that (according to Prandtl’s
hypothesis) u* depends solely on y* for y/& < 1.

For Reynolds numbers not too close to transition, there is abundant
experimental verification that the function f, is universal, not only for
channel flow, but also for pipe flow and. boundary layers. As is now shown,
the form of the function f.(y*) can be determined for small and large values
of y*.
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Fig. 7.5. Near-wall profiles of mean velocity from the DNS data of Kim et al. (1987):
dashed line, Re = 5,600; solid line, Re = 13,750; dot-dashed line, u* = y*.

The viscous sublayer

The no-slip condition (U),_, = 0 corresponds to f,(0) = 0, while the viscous
stress law at the wall (Eq. (7.24)) yields for the derivative

£.(0)=1. (7.39)

(This is simply a result of the normalization by the viscous scales.) Hence,
the Taylor-series expansion for fu(y") for small y™* is

fuly") =y" +O0(y*™). (7.40)

(In fact, closer examination reveals that, after the linear term, the next
non-zero term is of order y™, see Exercise 7.9.)

Figure 7.5 shows the profiles of u* in the near-wall region obtained from
direct numerical simulations. The departures from the linear relation ut = y*
are negligible in the viscous sublayer (y* < 5), but are significant (greater
than 25%) for y* > 12.

The log law

The inner layer is usually defined as y/§ < 0.1. At high Reynolds number,
the outer part of the inner layer corresponds to large yt, ie., y© = 0.16 /4, =
0.IRe, > 1. As has already been discussed, for large y* it can be supposed
that viscosity has little effect. Hence, in Eq. (7.33), the dependence of ®(y/d,)
on v (through 4,) vanishes, so that ®; adopts a constant value denoted by
k1

1
Di(y*) = - for }’5_ <1 and y* > L (7.41)
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Fig. 7.6. Near-wall profiles of mean velocity: solid line, DNS data of Kim et al. (1987):
Re = 13,750; dot-dashed line, u™ = y™; dashed line, the log law, Egs. (7.43)(7.44).

Thus, in this region, the mean velocity gradient is

dut 1
— = — 7.42
which integrates to
1
== Iny* + B, (7.43)

where B is a constant. This is the logarithmic law of the wall due to von
Karman (1930) — or simply, the log law - and « is the von Karman constant.
In the literature, there is some variation in the values ascribed to the log-law
constants, but generally they are within 5% of

k=041, B=S52. (7.44)

Figure 7.6 shows a comparison between the log law and the DNS data in the
inner part of the channel (y /5 < 0.25). Clearly there is excellent agreement
for y* > 30.

The log law is more clearly revealed in a semi-log plot. Figure 7.7 shows
measured profiles of u*(y*) for turbulent channel flow at Reynolds numbers
between Rep ~ 3,000 and Re, ~ 40,000. It may be seen that the data collapse
to a single curve — in confirmation of the law of the wall — and that for
y* > 30 the data conform to the log law, except near the channel’s mid-plane
(the last few data points for each Reynolds number).

The region between the viscous sublayer (y* < 5) and the log-law region
(y* > 30) is called the buffer layer. It is the transition region between the
viscosity-dominated and the turbulence-dominated parts of the flow. The
various regions and layers that are used to describe near-wall flows are
summarized in Table 7.1 and Fig. 7.8.
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Fig. 7.7. Mean velocity profiles in fully developed turbulent channel flow measured
by Wei and Willmarth (1989): O,Rey = 2,970; O, Rey, = 14,914; A, Rey = 22,776;
V, Rey = 39,582; line, the log law, Egs. (7.43)—(7.44).

Table 7.1. Wall regions and layers and their defining properties

Region Location Defining property

Inner layer y/é < 0.1 (U) determined by u, and y*, indepen-
dent of Uy and 6

Viscous wall region yt < 50 The viscous contribution to the shear
stress is significant

Viscous sublayer yt <5 The Reynolds shear stress is negligible
compared with the viscous stress

Outer layer yt > 50 Direct effects of viscosity on (U) are

Overlap region yt > 50,y/8 <0.1

Log-law region ¥yt >30,y/6 <03

Buffer layer

5<yt <30

negligible

Region of overlap between inner and
outer layers (at large Reynolds numbers)
The log-law holds

The region between the viscous sublayer
and the log-law region

The velocity-defect law

In the outer layer (y* > 50), the assumption that ®(y/4,,y/d) is independent
of v implies that, for large y/d,, ® tends asymptotically to a function of y/é
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Fig. 7.8. A sketch showing the various wall regions and layers defined in terms of
yt =y/3, and y/é, for turbulent channel flow at high Reynolds number (Re, = 10%).

only, ie.,

i Y XY g, (2
y}s‘ﬂwq’( T 5) CDO( 5). (7.45)
Substituting @, for ® in Eq. (7.31) and integrating between y and J then
yields the velocity-defect law due to von Karman (1930):

Up—(U) _ Y
=y (-5-) (7.46)
where
1
y 1 ,
F—=/—CD’d. 7.47
o(3) = |, %00 (7.47)

By definition, the velocity defect is the difference between the mean velocity
(U) and the centerline value U,. The velocity-defect law states that this
velocity defect normalized by u, depends on y/§ only. Unlike the law-of-the-
wall function f,(y™), here there is no suggestion that Fp(y/d) is universal:
it is different in different flows.

At sufficiently high Reynolds number (approximately Re > 20,000) there
1s an overlap region between the inner layer (y/8 < 0.1) and the outer layer
(y/8, > 50) (see Fig. 7.8). In this region, both Egs. (7.33) and (7.45) are valid,
yielding (from Eq. (7.31))

d(

YU _ o (Yo (Y
T ‘q)l(av)_q)"(é)’ for 8, < y < 4. (7.48)
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Fig. 7.9. The mean velocity defect in turbulent channel flow. Solid line, DNS of Kim
et al. (1987), Re = 13,750; dashed line, log law, Egs. (7.43)—(7.44).

This equation can be satisfied in the overlap region only by ®; and ®; being
constant, which leads to
d(U 1
YU _1 s <y<o (7.49)
u, dy K
This argument, due to Millikan (1938), provides an alternative derivation of
the log law. It also establishes the form of the velocity-defect law for small

y/é, ie.,
Uo — (U)

: =FD(X) =_-;1;1n(l) +B, for —ﬁ- <1 (7.50)

o o
where B, is a flow-dependent constant. (The overlap region and the argu-
ments leading to the log law are considered further in Section 7.3.4.)

Figure 7.9 shows the velocity defect in the DNS of turbulent channel
flow. It may be seen that the log law is followed quite closely between
y/6 =0.08 (y+ =~ 30) and y/é = 0.3. Even in the central part of the channel
(0.3 < y/& < 1.0) the deviations from the log law are quite small; but it
should be appreciated that the arguments leading to the log law are not
applicable in this region.

Let Uy denote the value of (U) on the centerline obtained by extrapo-
lation of the log law. For y/é =1, Eq. (7.50) then yields

UO - UO,Iog — Bl! (751)

which provides a convenient way of determining B;. It may be seen from
Fig. 7.9 that the difference Uy — Uy, is very small — about 1% of Uy —
which makes B, difficult to measure. The DNS data yield B; ~ 0.2, but,
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from a survey of many measurements, Dean (1978) suggests B; ~ 0.7. The
uncertainty in B, is of little consequence: the point is that it is small.

In the outer layer of boundary layers, the deviations from the log law are
more substantial. Consequently the velocity defect law is discussed further
in that context (Section 7.3) .

7.1.5 The friction law and the Reynolds number

Having characterized the mean velocity profile, we are now in a position to
determine the Reynolds-number dependence of the skin-friction coefficient
and other quantities. The primary task is to establish relationships among
the velocities Uy, U, and u..

A good estimate of the bulk velocity U is obtained by using the log law
(Eg. (7.50)) to approximate (U) over the whole channel. (For consistency at
y = 0, this requires taking B, = 0.) As we have seen, in the center of the
channel, the departures from the log law are quite small (Fig. 7.9): near the
wall (y© < 30) the approximation is poor (Fig. 7.6), but this region makes a
negligible contribution to the integral of (U) (except at very low Reynolds
number). The result obtained with this approximation is

%—0_15%—w>
Cue 5/ Tw @
1
5/ —= 1 dy =— = 24. (7.52)

This estimate agrees well with the experlmental data which are scattered
detween 2 and 3 (Dean 1978), and the DNS value of 2.6.
The log law in the inner layer (Eq. (7.43)) can be written

{U) 1
" ~ 1 5v + B, (7.53)
vhereas in the outer layer it is (Eq. (7.50))
Uy — (U> _ 1 y

Vhen these two equations are added together the y dependence vanishes to
ield

- (5)
— =—1In{ — | + B+ B4
U, K 0,

1

K

U\
1n[Re0(u—°) J+B + B,. (7.55)
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Fig. 7.10. The skin-friction coefficient ¢; = 7y [3pU¢) against the Reynolds number
(Re = 20U /v) for channel flow: symbols, experimental data compiled by Dean (1978);
solid line, from Eq. (7.55); dashed line, laminar friction law, ¢t = 16/(3Re).

For given Rep this equation can be solved for U,/u,, hence determining
the skin-friction coefficient ¢; = 7,,/(2pUj) = 2(u./Us)*. With the aid of the
approximation Eq. (7.52), Re = 2Ué /v and C; = 1,/(1pU?) can then also be
determined.

Figure 7.10 shows the skin friction coefficient ¢; obtained from Egq. (7.55)
as a function of Re. Also shown is the laminar relation and the experimental
data compiled by Dean (1978). For Re > 3,000, Eq. (7.55) provides a good
representation of the skin-friction coefficient. It is interesting to note that
Patel and Head (1969) found that Re = 3,000 is the lowest Reynolds number
at which a log law with universal constants is observed.

The ratios of the mean flow to viscous scales are shown in Figs. 7.11 and
7.12. The lengthscale ratio 6 /6, = Re, increases almost linearly with Re — a
good approximation being Re, ~ 0.09Re**. Consequently, at high Reynolds
number the viscous lengthscale can be very small. As an example, for a
channel with § = 2 cm, at Re = 10° the viscosity scale is §, ~ 10~° m, so
the location y* = 100 is just 1 mm from the wall. Needless to say, there are
considerable difficulties in making measurements in the viscous wall region
of high-Reynolds-number laboratory flows.

In contrast, the velocity ratios increase very slowly with Re (Fig. 7.12)
— a simple approximation being U,/u, ~ 5 log,yRe. As a consequence, a
significant fraction of the increase in mean velocity between the wall and
the centerline occurs in the viscous wall region. In the example introduced
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Fig. 7.11. The outer-to-inner lengthscale ratio §/5, = Re, for turbulent channel flow
as a function of the Reynolds number (obtained from Eq. (7.55)).
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Fig. 7.12. Outer-to-inner velocity-scale ratios for turbulent channel flow as functions

c()}f/the Reynolds number (obtained from Eq. (7.55)): solid line, U/u.; dashed line
0/ Uz

above (6 = 2 cm, Re = 10°) it follows that, at y* = 10 (i.e, y ~ 0.1 mm), the
mean velocity is over 30% of the centerline value, U,,.

Figure 7.13 shows the Reynolds-number dependence of the y locations
‘hat delineate the various regions and layers. According to this plot, a log-
aw region (300, < y < 0.35) exists for Re > 3,000 — in agreement with the
>xperimental observations of Patel and Head (1969). On the other hand, a
Reynolds number in excess of 20,000 is required for there to be an overlap
"egion, according to the criterion 508, < y < 0.15. As has already been
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Fig. 7.13. Regions and layers in turbulent channel flow as functions of the Reynolds
number. -

observed, the log law persists beyond the region suggested by the overlap
argument.

7.1.6 Reynolds stresses

Figures 7.14-7.16 show the Reynolds stresses and some related statistics
obtained from the DNS of channel flow at Re = 13,750. In order to discuss
these statistics, it is useful to divide the flow into three regions: the viscous
wall region (y*t < 50); the log-law region (509, < y < 0.3, or 50 < y* < 120
at this Reynolds number); and the core (y > 0.39).

In the log-law region there is approximate self-similarity. The normalized
Reynolds stresses (u;u;)/k are essentially uniform, as are the production-
to-dissipation ratio, P /e, and the normalized mean shear rate, Sk/¢ (where
S = d(U)/0dy). Their values are given in Table 7.2. It is interesting to observe
that the values of (wu;)/k are within a few percent of those measured by
Tavoularis and Corrsin (1981) in homogeneous shear flow (see Table 5.4 on
page 157). Production P and dissipation ¢ are almost in balance, the viscous
and turbulent transport of k being very small in comparison.

On the centerline, both the mean velocity gradient and the shear stress
vanish, so that the production P is zero. Figure 7.16 shows the gradual
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Fig. 7.14. Reynolds stresses and kinetic energy normalized by the friction velocity
against y* from DNS of channe] flow at Re = 13,750 (Kim et al. 1987).
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Fig. 7.15. Profiles of Reynolds stresses normalized by the turbulent kinetic energy
from DNS of channel flow at Re = 13,750 (Kim et al. 1987).
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Fig. 7.16. Profiles of the ratio of production to dissipation (P/¢), normalized mean
shear rate (Sk/e), and shear stress correlation coefficient (p,.) from DNS of channel
flow at Re = 13,750 (Kim et al. 1987). ‘
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Table 7.2. Statistics in turbulent channel flow, obtained from the DNS data of
Kim et al. (1987), Re = 13,750

Location

Peak production Log law, - Centerline
t=118 yt=98 y+ =395

(u2>/k - 170 .02 084
(v*)/k 0.04 0.39 0.57
(w2 /k 0.26 0.59 0.59
(u) /k —0.116 —0.285 0
Pus —0.44 —0.45 0
Sk/fe 15.6 3.2 0
Ple 1.81 0.91 0

changes of P/e, Sk/e, and p,, from their log-law values to zero on the
centerline. Figure 7.15 indicates that the Reynolds stresses are anisotropic
on the centerline, but considerably less so than in the log-law region (see
also Table 7.2).

The viscous wall region (y* < 50) contains the most vigorous turbulent
activity. The production, dissipation, turbulent kinetic energy and anisotropy
all achieve their peak values at y* less than 20. We shall examine the behavior
in this region in more detail.

The boundary condition U = 0 at the wall determines the way in which
the Reynolds stresses depart from zero for small y. For fixed x, z, and ¢, and
for small y, the fluctuating velocity components can be written as Taylor
series of the forms

u=a,+byy+cy’+..., (7.56)
v=a,+ by +ceyi+..., (7.57)
w =a3+b3y+c3y2+.... (758)

The coefficients are zero-mean random variables, and, for fully developed
channel flow, they are statistically independent of x, z, and t. For y = 0,
the no-slip condition yields u = @, = 0 and w = a3 = 0; and similarly the
impermeability condition yields v = a, = 0. At the wall, since u and w are
zero for all x and z, the derivatives (0u/dx),— and (6w/0z),, are also zero.
Hence the continuity equation yields

(@) _=h=0. (7.59)
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Fig. 7.17. Profiles of Reynolds stresses and kinetic energy normalized by the friction
velocity in the viscous wall region of turbulent channel flow: DNS data of Kim et al.
(1987). Re = 13,750.

The significance of the coefficient b, being zero is that, very close to the
wall, there is two-component flow. That is, to order y, v is zero whereas u and
~ are non-zero. The resulting motion corresponds to flow in planes parallel
‘0 the wall. (This is called two-component flow, rather than two-dimensional
Iow, because u and w vary in the y direction.)

The Reynolds stresses can be obtained from the expansions (Egs. (7.56)—
7.58)) simply by taking the means of the products of the series. Taking
iccount of the coefficients that are zero (ie., ai, a,, a3, and b,), to leading
rder in y the Reynolds stresses are

W) = ®Hy +..., (7.60)
) = @)y + ..., (7.61)
(w?) = (b3)y* +..., (7.62)
(uv) = (byc))y* + ... (7.63)

hus, while (42), (w?), and k increase from zero as y2, —(uv) and (v?) increase
nore slowly —as y> and y*, respectively. These behaviors can be clearly seen
n log-log plots of (uu;) against y (not shown), and they are also evident in
“ig. 7.17, which shows the profiles of (i;u ;) and k in the viscous wall region.
For fully developed channel flow, the balance equation for turbulent kinetic
‘nergy is
% %(vp’), (7.64)
ee Exercise 7.4. Figure 7.18 shows the terms in this equation for the viscous

2
0= P-eﬂﬂ <2 -
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Fig. 7.18. The turbulent-kinetic-energy budget in the viscous wall region of channel
flow: terms in Eq. (7.64) normalized by viscous scales. From the DNS data of Kim et
al. (1987). Re = 13,750.

wall region. In order, the terms are production, pseudo-dissipation, viscous
diffusion, turbulent convection, and pressure transport.

Like —(uv), the production P increases from zero as y>. It reaches its
peak value well within the buffer layer, at y* ~ 12. In fact, it can be
shown (Exercise 7.6) that the peak production occurs precisely where the
viscous stress and the Reynolds shear stress are equal. Around this peak,
production exceeds dissipation (P /e ~ 1.8), and the excess energy produced
is transported away. Pressure transport is small, while turbulent convection
transports energy both toward the wall and into the log-law region. Viscous
transport — v d?k/dy? — transports kinetic energy all the way to the wall.

Perhaps surprisingly, the peak dissipation occurs at the wall, where the
kinetic energy is zero. Although the fluctuating velocity vanishes at y = 0,
the fluctuating strain rate s;; and hence the dissipation do not (Exercise 7.7).
The dissipation at the wall is balanced by viscous transport,

’k
e=8=v—, for y=0, (7.65)

the other terms in Eq. (7.64) being zero. (See also Exercises 7.5 and 7.7.)

For fully turbulent flow, the statistics considered here (normalized by the
viscous scales) have only a weak dependence on Reynolds number in the
inner layer (y/6 < 0.1). Figure 7.19 shows profiles of the r.m.s. of u and v
measured at various Reynolds numbers. The peak value of u'/u, appears
independent of Re; but at y* = 50 (which is within the inner layer for all but
the lowest Reynolds number) the value of u'/u, increases by 20% between
Rey = 14,914 and Rey = 39,582. These and other Reynolds-number effects
are discussed by Wei and Willmarth (1989) and Antonia et al. (1992).
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Fig. 7.19. Profiles of r.m.s. velocity measured in channel flow at various Reynolds
numbers by Wei and Willmarth (1989). Open symbols: o' /u, = (u2)'/?/u,; O, Rey =
2,970; O,Req = 14,914; A, Req = 22,776; V,Rey = 39,582. Solid symbols: v'/u, =
{t?)1/2/u, at the same Reynolds numbers.

EXERCISES
Starting from Egs. (5.139) and (5.164), show that the turbulent kinetic
energy equation for fully developed channel flow can be written

d o op) o d _p_
gy (e + T S wn) =p—e 069
or
d ) p')  dk\ _
a (%(vu u) + , ®> =P—E (7.67)

For this flow, determine ‘the relationship between & and & (see Exer-
cise 5.25 on page 133).

By using the expansions Egs. (7.56)(7.58), show that, very close to
the wall, the orders of the terms in the kinetic-energy equation are

P=00"  e=0(),
d%k d*(v?)
v = O vegst =00, (7.68)
d 1 d ’
@@w.@ = 0(?), ;®<vp)=0(y}

For fully developed turbulent channel flow, show that the Reynolds
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7.7

1.8

shear stress can be written

WYY _
and hence that the production rate is
i _Y\e_,
P> (1-3)s—vs (7.70)

From this expression for P, show that the peak production P occurs
at the location y where the viscous and Reynolds stresses are equal.
Show that this peak value is

vul) = 1e(3)/ra]? < L. (7.71)

T

Show that the fluctuating rate of strain at a stationary solid wall
(y=0)1s
_ ou -

0 — 0
dy
Lfow  au\ 1| ou ow | 1[0 b O
N U U N LA Y T
2\0x;  0x; 2| oy 5 dy 0 b 0
w 0 3
0 -
L oy -
(1.72)

where b; and b; are the coefficients in Eqgs. (7.56) and (7.58). Hence,
obtain the following result due to Hanjalic and Launder (1976): for
y=0

&= 2v(sysi;) = v({b}) + (b3))

o2 k12 \?
=va—y’§=2v( gy ) . (7.73)

Show that ¢ and & are equal at y = 0.

" Let & denote the dissipation at the wall normalized by the viscous
0 p y

scales, i.e.,
dy

'_3.
uT

(1.74)

& = &m0
Use Fig. 7.18 to estimate the value of ¢f. Show that the Kolmogorov
scale at the wall is
Ny=0

B2 = ()~ LS, (1.75)
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7.9 The expansion for the Reynolds shear stress at the wall (Eq. (7.63))
can be written

() = —ouly™ ..., (7.76)
where the non-dimensional coefficient ¢ may be assumed to be inde-

pendent of the Reynolds number. Show from the momentum equa-
tion (Egs. (7.10) and (7.13)) that this implies the following expansion

for (U):
42
W=yt zyReT — oyt (7.77)
Why does it follow that the expansion for the law of the wall is
fuy*) =y* = Loyt .0 (7.78)

7.1.7 Lengthscales and the mixing length

Three fundamental properties of the log-law region are the form of the mean
velocity gradient,

+
5=%J>=:a;, orjy%=;l+; (1.79)
the fact that production and dissipation are almost in balance,
P/e=~1; (7.80)
and the near constancy of the normalized Reynolds shear stress,
—(uv) /k ~ 0.3. (7.81)

A fourth property, that follows from these three, is the near constancy of the
turbulence-to-mean-shear timescale ratio
Sk | k
€ (uv)
From these relations, it is a matter of algebra to deduce that the turbulence
lengthscale L = k3/? /¢ varies as
(uv)

|(u)|'7? (P
L= _
24 U, I k

At high Reynolds number, in the overlap region (509, < y < 0.18), the
Reynolds stress is essentially constant, so that then L varies linearly with y:

L = CLya (7.84)

% ~3. (7.82)

=372

(7.83)
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with
—32

()| L 25, (7.85)

Comr (g) k
Notice that S, P, and ¢ vary inversely with y, whereas L and t = k/e vary
linearly with y.

(At the moderate Reynolds numbers accessible in DNS, there is no overlap
region, and the shear stress changes appreciably over the log-law region. This,
together with imperfections in the approximations Eqs. (7.79)~(7.81), results
in Eq. (7.84) providing a poor approximation to L obtained from DNS.)

The turbulent viscosity vr(y) is defined so that the Reynolds shear stress
is given by

d(U)

dy °
It can be expressed as the product of a velocity scale u” and a lengthscale
b

(7.86)

—(uv) = vr

— (7.87)

One of these scales can be specified at will, and then the other determines
vr. A propitious (implicit) specification is

u' = |(uw)|'2. (7.88)
By substituting Eqgs. (7.87) and (7.88) into Eq. (7.86) and taking the absolute

value we obtain the explicit relation

u =4,

(7.89)

d(U)
W"
(In the upper half of the channel (§ < y < 24) the velocity gradient d(U)/dy
is negative and the Reynolds stress (uv) is positive. The absolute values in
Egs. (7.88) and (7.89) ensure that «” is non-negative for all y.)

In the overlap region (508, < y < 0.18) that occurs at high Reynolds
number, the shear stress —(uv) differs little from u?, and the mean velocity
gradient is u, /(xy). Consequently, u” equals u,, and then Eq. (7.89) determines
{m to be

o = K. (7.90)

Like L = k3% /¢, the lengthscale /, varies linearly with y.
The above relations constitute Prandtl’s mixing-length hypothesis (Prandtl
1925). In summary, the turbulent viscosity is given by

d(U)

& (7.91)

VT = u’fm = gﬁl

b
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where £, is the mixing length. In the overlap region, ¢, varies linear with y,
the constant of proportionality being the Karman constant, «.

In order to use the mixing-length hypothesis as a model of turbulence, it
is necessary to specify £, outside the overlap region, i.e., in the viscous wall
region and in the core. The discussion of this topic is deferred to Section 7.3.

EXERCISE
7.10  From Egs. (7.79)(7.80), obtain the following estimates for the Kol-
mogorov scale in the log-law region:

1 K 1/4
;7_v ~ (ky)'", % - (F) : (7.92)
7.2 Pipe flow

Since Reynolds’ experiment in 1883, pipe flow has played an important role
in the development of our understanding of turbulent flows. In particular, it is
quite simple to measure the drop in pressure over a length of fully developed
turbulent pipe flow, and hence to determine the skin-friction coefficient, C;.
In an influential set of experiments performed during the 1930s, Nikuradse?
measured C; as a function of the Reynolds number for smooth pipes, and
for pipes with varying amounts of wall roughness.

The main purpose of this section is to describe the effects of wall roughness,
which are similar in pipe, channel, and boundary-layer flows. First the
smooth-wall case is briefly outlined.

7.2.1 The friction law for smooth pipes
We consider the fully developed turbulent flow in a long straight pipe of
circular cross section, with internal diameter D — see Fig. 7.1. In polar-
cylindrical coordinates (x,r, §), velocity statistics depend solely on the radial
coordinate, r. The mean centerline velocity is denoted by Uy,

UO = <U(X’, 0, 9))’ ’ (793)
and the bulk velocity is

1

U ——/ (U)2nrdr, (7.94)

nR?

2 See Schlichting (1979) for a description of Nikuradse’s experiments and for references.
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Fig. 7.20. Mean velocity profiles in fully developed turbulent pipe flow. Symbols,
experimental data of Zagarola and Smits (1997) at six Reynolds numbers (Re ~
32x 10%, 99 x 10°, 409 x 10%, 1.79 x 108, 7.71 x 10, 29.9 x 10°). Solid line, log law with
x = 0436 and B = 6.13; dashed line, log law with x = 0.41, B = 5.2.

where R = {D is the pipe’s radius. We take 6 = R to be the characteristic
flow width, and then the conventionally defined Reynolds number is

Re= UD _2U° (7.95)

Vv Vv

As for channel flow, we define y to be the distance from the wall, ie.,
y=R-—r. (7.96)

There is an abundance of experimental data showing that the mean velocity
profile in the inner region (y/é < 0.1) is in accord with the universal law
of the wall ut = f,(y*). Figure 7.20 shows mean velocity profiles measured
by Zagarola and Smits (1997) in fully developed turbulent pipe flow at
Reynolds numbers from Re ~ 30 x 10° to Re ~ 30 x 10°. For comparison,
the log law is shown with the standard constants (x = 0.41, B = 5.2) and
with those that best fit the data (x = 0.436, B = 6.13). It may be seen that,
for y* > 30, the profiles follow the log law for a range of y* that increases
with Re; and, as expected, the profiles deviate from the log law as the pipe’s
centerline is approached. The same data restricted to y/R < 0.1 are shown
in Fig. 7.21. Clearly, for all Reynolds numbers, the measured velocities for
y* > 30 and y/R < 0.1 differ little from the log law.

The friction law for pipe flow is traditionally expressed in terms of the



292 7 Wall flows

351

25

Fig. 7.21. Mean velocity profiles in fully developed turbulent pipe flow. Symbols,
experimental data of Zagarola and Smits (1997) for y/R < 0.1, for the same values of
Re as in Fig. 7.20. Line, log law with x = 0.436 and B = 6.13.

friction factor f
ApD

where Ap is the drop in pressure over an axial distance £. This is just four
times the skin-friction coefficient C; (see Exercise 7.12). Just as with channel
flow, a friction law can be obtained by using the log law to approximate
the velocity profile over the whole flow (see Exercises 7.14 and 7.15). With a
small adjustment to the constants, the result (Eq. (7.110)) is Prandtl’s friction
law for smooth pipes

Ry log,o(v/f Re) — 0.8, (7.98)

JI

which implicitly yields f as a function of Re. As may be seen from Fig. 7.22,
this friction law is in excellent agreement with experimental data over the
entire range of turbulent Reynolds numbers.

EXERCISES

7.11  Starting from the Reynolds equations in polar-cylindrical coordinates
(Egs. (5.45)—(5.47)), show that, for fully developed turbulent pipe flow,
the shear stress

U
(r) = pv dfjr> — p{uv) (7.99)
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Fig. 7.22. The friction factor f against the Reynolds number for fully developed flow
in smooth pipes. Dashed line, Hagen—Poiseuille friction law for laminar flow; solid line,
Prandtl friction law for turbulent flow, Eq. (7.98); symbols, measurements compiled
by Schlichting (1979). (Reproduced with permission of McGraw-Hill.)

is given by
dp.
w(r) = ir o (7.100)
where p,(x) is the mean pressure at the wall (cf: Eq. (7.9) for channel
flow). Hence obtain the relation

dp T
—— =22 7.101
ix R’ (7.101)
where the wall shear stress t,, — a positive quantity — is defined as
7w = —1(R). (7.102)

(Note that, with the coordinate system used here, (uv) is positive,
and the velocity gradient d(U)/dr is negative.)

712 With the friction factor f being defined by Eq. (7.97), and the skin-
friction coefficient C; by Eq. (7.15), obtain the relations

f=4c;, (7.103)
ue _ |f
z=yL (7.104)

where u, = \/7,,/p is the friction velocity.
7.13  For laminar flow, solve Eq. (7.99) to show that the velocity profile
is parabolic, and that the centerline velocity U, is twice the bulk
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7.14

7.15

7.16

velocity. Obtain the Hagen—Poiseuille friction law for fully developed
laminar pipe flow,

f= 3‘3 (7.105)

By approximating the mean velocity profile by the logarithmic defect
law (Eq. (7.50)) with B; =0, i.e,

Uy — <U> 1 y
_— = = 7.10
Uy K 1n(R) ’ ( 6)
obtain the estimate
Uo—U _ 3 _ 36 (7.107)
U, 2K

(cf. Eq. (7.52) for channel flow). (According to Schlichting (1979), the
value 4.07 is in better agreement with experimental data.)
With y = R —r being the distance from the wall, the log law Eq.
(7.43) is :

=0 1 1n(y“’) +B. (7.108)

U, K v

By assuming that this holds on the axis, and by using Egs. (7.104),
obtain the friction law

1 (3+51n2 — 2«B)
7 \/_ In(Re+/f) — e (7.109)
or
%, ~ 1.99 log,o(Re~/f) — 0.95, (7.110)

for k =0.41 and B =5.2.

Let y denote the y location at which the mean velocity gradient
d(U)/dy is equal to U/5. Assuming that y lies in the log-law region,
show that

y 1\/7
= =—1/35 ~0. 7111
5=k Vs =086V, (7.111)
—+_ Y _Ref
yt = 5= Tox ~ 0.15Ref. (7.112)

Estimate 3/8 and y* for Re = 10* and 10°.
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Fig. 7.23. The friction factor f against the Reynolds number for fully developed flow
in pipes of various roughnesses. Dashed line, friction law for laminar flow; solid
line, Prandtl friction law for turbulent flow in smooth pipes, Eq. (7.98); symbols,
measurements of Nikuradse. (Adapted from Schlichting (1979) with permission of
McGraw-Hill.)

7.2.2 Wall roughness

Up to this point we have assumed that the walls of channels and pipes are
completely smooth. Of course, in practice every surface departs from the ideal
to some extent, and to a first approximation this departure is characterized
by a lengthscale of protrusions or indentations, s. For a given flow (i.e., given
R,U, and v), the primary questions to address are the following: Is there a
value of s, (s*, say), below which the flow is independent of s, so that the wall
is effectively smooth? For s > s*, how does the roughness affect the flow?

Nikuradse performed experiments on pipes with sand glued to the wall
as densely as possible, with grain sizes s varying from s/R = 1/15 to s/R =
1/500. The measurements of the friction factor f are shown in Fig. 7.23.
It may be seen that the roughness has little effect in the laminar regime,
and apparently little effect on transition. Then the curves for each roughness
follow the same line — namely the Prandtl law for smooth pipes — up to
some Reynolds number before turning upward, and reaching an asymptote.
At the highest Reynolds numbers, the friction factor is independent of Re,
with an asymptotic value that increases with s/R.

The observed behavior is explained by the extension of the law of the
wall to incorporate roughness. For a given geometry of the surface (so that
the roughness is fully characterized by s) the mean velocity gradient can be
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written

4(U) _®<L_y_
3,6’

& ) (7.113)

Q’"M

where @ is a universal non-dimensional function (cf. Eq. (7.31)). Just as
before, it is postulated that there is no dependence of ® on y/§ in the inner
layer (y/6 < 0.1).

At high Reynolds number, two extreme cases can be considered. If s/9,
is very small, there is every reason to suppose that the flow is unaffected by
the roughness, and then the standard law of the wall is recovered:

KU) _ g (L), for s< 6, and y <9, (7.114)
dy y o,
where
YV tm a2y 2
R (T
5/06y >0

For large y/d,, the supposition that the dependence on viscosity vanishes
implies that ®; tends asymptotically to a constant, ®; ~ 1/k, and then
Eq. (7.114) integrates to the log law, ie.,

1
— _—1(5>+B for s<d, €<y <9, (7.116)

v +
B = lim {/ Dy(y™) d% _1 lny+}, (7.117)
Yo 0 y K

is a universal constant. ,

In the second extreme case, the roughness scale s is large compared with
the viscous scale §,. Then the local Reynolds number of the flow over the
roughness elements is large (u.s/v = s/8, > 1). The transfer of momentum
from the fluid to the wall is accomplished by the drag on the roughness
elements, which at high Reynolds number is predominantly by pressure
forces, rather than by viscous stresses. It can be supposed, then, that v and
hence d, are not relevant parameters, so that Eq. (7.113) can be rewritten

dU) _ u
dy  y

where ®p is a universal non-dimensional function (for a given roughness
geometry).
For y > s it can be supposed that the turbulence is determined by local

where

CI)R();), for 8, < s and y <0, (7.118)
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Fig. 7.24. The additive constant in the log law B (Eq. {7.121)) as a function of
the roughness scale s normalized by the viscous length J,. Dashed line, fully rough
B = 8.5; solid line, smooth (Eq. (7.122)); symbols, from Nikuradse’s data. (Adapted
from Schlichting (1979) with permission of McGraw-Hill.)

processes, independent of s — the same processes as those that occur for a
smooth wall — which implies that ®y tends asymptotically to the constant
1/k. Then Eq. (7.118) integrates to the log law

1
ut = p ln(%) + B, for §, K sy <9, (7.119)

where

B, = lim [/Oy cDR(-yS-) % _ -;1; 1n(-ys-)] (7.120)

is a universal constant.

For the general case in which s is comparable to d,, similar arguments
lead to the conclusion that (for y large compared both with J, and with
s) there is a log law with constant x and additive constant B that depends

upon s/4,, ie.,
1 y ~(s
t= = Z — . 7.121
" Kln(s)+B(5v> (7.121)

For the smooth wall (s/5, < 1), Eq. (7.116) corresponds to Eq. (7.121) with

s 1 S :
B<5—V> =B+ - ln(a—"), (7.122)

whereas for a fully rough wall (s/6, > 1) Eq. (7.119) corresponds to
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Eq. (7.121) with

v

B<51> = B,. (7.123)

Experiments indeed confirm the log law (Eq. (7.121)) for rough walls, and
the additive constant B has been determined as a function of s/§, from
Nikuradse’s data, see Fig. 7.24. Evidently, for s/, > 70, say, the wall is fully
rough with B, = B(co) = 8.5. At the other extreme, the measured values
of B agree with Eq. (7.122) up to s/8, = 5, say, giving this as the limit of
admissible roughness — the limit s* below which the wall is effectively smooth.

The log law for the fully rough case leads to an accurate friction law
(Eq. (7.124) of Exercise 7.17), giving the friction factor f as a function of the
roughness s/R (independent of the Reynolds number).

EXERCISE
7.17  Show that the log law for a fully rough wall Eq. (7.119) together with
Eq. (7.107) yields the friction law

-2
f=sbn(®) +m 2]
K S 2K

1
~ (7.124)

" [1.991og,o(R/s) + 1.71]>

Compare this law with the experimental data in Fig. 7.23.

(Schlichting (1979) suggests the slightly modified values of 2.0 and
1.74 in place of 1.99 and 1.71.)

7.3 Boundary layers

The simplest boundary layer to consider is that which is formed when a
uniform-velocity non-turbulent stream flows over a smooth flat plate (see
Fig. 7.1). Compared with fully developed channel flow with a given mean
pressure gradient, the primary differences are:

(i) the boundary layer develops continuously in the flow direction, with
the boundary-layer thickness §(x) increasing with x;
(i) the wall shear stress 7,,(x) is not known a priori; and
(iii) the outer part of the flow consists of intermittent turbulent/non-
turbulent motion (see Section 5.5.2).
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In spite of these differences, the behavior in the inner layer (y/d(x) < 0.1) is
essentially the same as that in channel flow. This is demonstrated, and the
behavior in the buffer layer is examined in more detail. In the defect layer
(y/8(x) > 0.1), the departures from the log law are more significant, which
warrants a closer examination of the velocity-defect law.

7.3.1 A description of the flow

As sketched in Fig. 7.1, the coordinate system is the same as that used for
channel flow. The surface of the plate (i.e., the wall) is at x, = y = 0 for
x; = x > 0, with the leading edge being x = 0, y = 0. The mean flow
is predominantly in the x direction, with the free-stream velocity (outside
the boundary layer) being denoted by Uy(x). Statistics vary primarily in the
y direction, and are independent of z. Unlike channel flow, however, the
boundary layer continually develops, so that statistics depend both upon x
and upon y. The velocity components are U, V, and W, with (W) being zero.

The free-stream pressure py(x) is linked to the velocity Uy(x) by Bernoulli’s
equation (Eq. (2.67)) — po(x) + 3pUp(x)* = constant — so that the pressure
gradient is

—(:1—1: = pUj Eidixo. (7.125)
Accelerating flow (dU,/dx > 0) corresponds to a negative — or favorable
— pressure gradient. Conversely, decelerating flow yields a positive, adverse
pressure gradient, so called because it can lead to separation of the boundary
layer from the surface. In aeronautical applications, it is generally desirable
for boundary layers to be attached. Most of our attention is focused on the
zero-pressure-gradient case, corresponding to Uy(x) being constant.

The boundary-layer thickness d(x) is generally defined as the value of y
at which (U(x,y)) equals 99% of the free-stream velocity Uy(x). This is
a poorly conditioned quantity, since it depends on the measurement of a
small velocity difference. More reliable are integral measures such as the
displacement thickness

0" (x) = /030 (1 — <—((]]—O>> dy, (7.126)
and the momentum thickness
0(x) = /OOO %]_: (1 _ %]_:) dy. (7.127)

Various Reynolds numbers are defined on the basis of these thicknesses and
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also of x:

U, U - Uy
e, = — Re;s; = —vl—, Res = 3 , Rey= (—]‘?—0. (7.128)

In a zero-pressure-gradient boundary.layer, there is laminar flow from
the leading edge (x = 0) until the location at which Re, reaches a critical
value Re.; ~ 10° marking the start of transition. (The value of Re,; varies
considerably, depending on the nature and level of the disturbances in the
free stream, see, e.g., Schlichting (1979).) Transition occurs over some dis-
tance (maybe 30% of the distance from the leading edge), after which the
boundary layer is fully turbulent. In some experiments a wire or other device
is placed across the flow in order to trip the laminar boundary layer, i.e.,
to promote the transition to turbulence. (For more information on the topic
of transition the reader is referred to Arnal and Michel (1990), Kachanov
(1994) and references therein.)

7.3.2 Mean-momentum equations

Naturally, the boundary-layer equations apply — the flow develops slowly
in the x direction, with axial stress gradients being small compared with
cross-stream gradients. The lateral mean momentum equation (Eq. (5.52))
integrates to

(p) + p(v*) = po(x). (7.129)

Notice that, since (v?) is zero at the wall, the wall pressure p,(x) equals the
free-stream pressure, po(x).

In the boundary-layer approximation, the mean-axial-momentum equation
is

o(U) o(U) oX(U)  o(uw) 1 dpo
U = - - =
W=+ gy "o Tay  p dx
1 01 dUQ
= ; é; + Uy P (7.130)
where t(x, y) is the total shear stress,
0
T=pv () — p(uv), (7.131)
dy

(see Eq. (5.55)). At the wall the convective terms are zero, so that the shear
stress and pressure gradients balance. If the pressure gradient is zero, then

%(%)yzo =V (aza;? )y=0 =0 (7.132)

(since (uv) increases from zero as y?).
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Fig. 7.25. Normalized velocity and shear-stress profiles from the Blasius solution for
the zero-pressure-gradient laminar boundary layer on a flat plate: y is normalized by

. = x/Rel/? = (xv/Uy)"/2.

The boundary-layer momentum equation (Eq. (7.130)) can be integrated
to obtain von Kdrmdn’s integral momentum equation (see Exercise 7.18). For
the zero-pressure-gradient case the result is

_d i g2 40O
Tw = a(PUOO) = pU; dx’ (7.133)
or, for the skin-friction coefficient,
d
o= = do (7.134)
4% dx

Equation (7.133) quantifies the decrease in the momentum-flow rate of the
stream — or the increase in the momentum deficit — caused by the wall shear
stress.

For the laminar zero-pressure-gradient boundary layer, there is a similarity
solution to Eq. (7.130) due to Blasius (1908), described in detail by Schlichting
(1979). The scaled velocity U(x,y)/U, depends solely on the scaled cross-
stream coordinate y/d,, where the lengthscale 8, is d, = (xv/Uy)"/? =
x/Rel’?. This solution is shown in Fig. 7.25. The various thicknesses obtained
from the solution are

° o 4.9Re; ", O~ 035, Z~o0.14 (7.135)
X 0 0

The skin-friction coefficient is

cr ~ 0.664 Re; 72, (7.136)
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Fig. 7.26. Profiles of the mean velocity, shear stress and intermittency factor in a
zero-pressure-gradient turbulent boundary layer, Rey = 8,000. {From the experimental
data of Klebanoff (1954).)

7.18

EXERCISE
From the mean continuity (Eq. (5.49)) and momentum (Eq. (5.55))
equations, obtain the result

2 2 dUpy 1 ér
55 (VN Wo— (UM + S [V) W= (U + o= (U] 2 = = .
(7.137)
Integrate from y = 0 to y = ¢o to obtain
d 2 * dUO _ TW
d_)Z(UOO) + 5 UO —dT —_ ‘;,

and hence obtain von Kdrman’s integral momentum equation

_ o _,d40 (40426 dU;
T lpUZ2 Tdx Uy dx

o (7.138)

(Recall that 6* and 0 are the displacement and momentum thick-
nesses, Egs. (7.126) and (7.127).)

7.3.3 Mean velocity profiles .

Figure 7.26 shows the profiles of the mean velocity, shear stress and inter-
mittency factor y (defined in Section 5.5.2) measured by Klebanoff (1954) in
a zero-pressure-gradient turbulent boundary layer of momentum-thickness
Reynolds number Re, = 8,000. Notice that the mean velocity profile rises
much more steeply from the wall than does the Blasius profile (Fig. 7.25),
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Fig. 7.27. Mean velocity profiles in wall units. Circles, boundary-layer experiments of
Klebanoff (1954), Rey = 8,000; dashed line, boundary-layer DNS of Spalart (1988),
Rep = 1,410; dot-dashed line, channel flow DNS of Kim et al. (1987), Re = 13,750;
solid line, van Driest’s law of the wall, Egs. (7.144)—(7.145).

and then it is flatter away from the wall. This ‘flatness’ of the mean veloc-
ity profile is quantified by the shape factor H, defined as the ratio of the
displacement and momentum thicknesses:

H=26/0. (7.139)

For the Blasius profile the flatness factor 1s H =~ 2.6: for the Klebanoff
boundary layer it is H ~ 1.3. The mean velocity profile appears very similar
to that in channel flow (Fig. 7.2); and, just as with channel flow, with
increasing Reynolds number, the profiles of (U)/U, plotted against y/d
steepen at the wall and become flatter away from the wall. Correspondingly,
the shape factor H decreases with Re.

The shear-stress profile is similar to the corresponding laminar profile
(Fig. 7.25), even though the origin of the shear stress is entirely different.
The velocity profiles in the various layers are now examined in more detail.

The law of the wall

Velocity profiles, normalized by the viscous scales u, and J,, are shown
m Fig. 7.27 for three flows: Klebanoff’s boundary layer (Re; = 8,000);
a boundary-layer DNS (Rey = 1,410) performed by Spalart (1988); and
channel flow (Re = 13,750). The agreement between the profiles illustrates
the universality of the law of the wall, not only in the log-law region, but
also in the buffer layer. In the viscous sublayer (y* < 5) the law of the wall
1s fu(y") = y*, while the log law holds for y* greater than 30 or 50 (and
y/6 < 1). What form does the law of the wall take in the buffer layer (5 <
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y+ < 50)? A purely empirical answer — but an inspired one nonetheless — is
provided by van Driest (1956), in the context of the mixing-length hypothesis.

For a boundary layer (with 6(U)/dy > 0), according to the mixing-length
hypothesis, the total shear stress is

_ o) o(U)
T(y)/p =V ay + vr ay
U U\
= oU) + A vy . (7.140)
oy oy
With the definition
0t =1n/0,, (7.141)
when it is normalized by viscous scales, Eq. (7.140) becomes
T dut L out 2
— = _— — ] . 142
. ay++(€m 6y+> (7.142)
This is a quadratic equation for dut/dy*, which has the solution
out 2t /1y

— = . 7.143
oyt " TF 1+ Ge/ra) GG 7T (7:143)
In the inner layer, the ratio t/z,, is essentially unity, so that the law of the
wall is obtained in terms of the mixing length as the integral of Eq. (7.143):

v 2dy’
o (vh) = 4

In the log-law region, the appropriate specification of the mixing length is
{n = Ky or equivalently ¢ = ky* (Eq. (7.90)). If the same specification were
used in the viscous sublayer, the implied turbulent stress vy 6{U)/dy would
increase as y?, whereas —(uv)-increases more slowly, as y>. Evidently, then,
the specification /,, = xy needs to be reduced, or damped, near the wall.
Accordingly, van Driest (1956) proposed the specification

0 =kyT[l —exp(—y*t/4™M)], (7.145)

(7.144)

where A" is a constant ascribed the value A* = 26. The term in square
brackets ([ ]) is referred to as the van Driest damping function.

The law of the wall given by Egs. (7.144) and (7.1483) is shown in Fig. 7.27.
Clearly, it provides an excellent representation of the data.

For large y*, the damping function tends to unity and the log law is
recovered. Notice that (for given x) there is a one-to-one correspondence
between the van Driest constant A* and the additive constant B in the log
law. With k = 0.41, the specification A™ = 26 corresponds to B = 5.3.
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Fig. 7.28. The mean velocity profile in a turbulent boundary layer showing the law
of the wake. Symbols, experimental data of Klebanoff (1954); dashed line, log law
(x = 0.41,B = 5.2); dot—dashed line, wake contribution Iw{y/6)/x (IT = 0.5); solid
line, sum of log law and wake contribution (Eq. (7.148)).

The universality of the law of the wall has been considered extensively
in the literature (see, e.g., Bradshaw and Huang (1995)). In boundary layers
and duct flows with various pressure gradients dp,/dx (and hence shear
stress gradients (0t/dy),—) the log law is observed with « close to k =
0.41. However, A" increases significantly when the wall shear-stress gradient
(—0t/8y),= exceeds 2 x 107%1,,/, (Huffman and Bradshaw 1972).

EXERCISE
7.19  Show that, according to the mixing-length hypothesis, very close to
the wall (y+ < 1) the Reynolds shear stress is

(uv)
_F ~ (IHY (7.146)
Show that the van Driest specification (Eq. (7.145)) yields
(uv) K\ L4
— ~([— . 147
u? (A+) y (7.147)

Contrast this result to the correct dependence of (uv) on y (for very
small y), Eq. (7.63).

The velocity-defect law

In the defect layer (y/6 > 0.2, say), the mean velocity deviates from the log
law. This may be seen in Fig. 7.27, and more clearly in Fig. 7.28.

From an extensive examination of boundary-layer data, Coles (1956)
showed that the mean velocity profile (over the whole boundary layer) is
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well represented by the sum of two functions. The first function is the law
of the wall f,(y*), which depends on y/d,: the second function, called the
law of the wake, depends on y/d. This representation is written

(U) =fw(1> +%W(§) (7.148)

u, Oy

The wake function w(y/d) is assumed to be universal (the same for all
boundary layers) and is defined to satisfy the normalization conditions
w(0) = 0 and w(1) = 2. Coles (1956) tabulated w(y/d) (based on experimental
data), but a more convenient approximation is

w(%) = 2sin’ (%) (7.149)
The non-dimensional quantity IT is called the wake strength parameter, and
its value is flow dependent.

For Klebanoff’s boundary layer, Fig. 7.28 illustrates the representation of
(U)/u, as the sum of these two ‘laws.” The dashed line is the log law (i.e., an
excellent approximation to f,, for y* > 350, y/é < 0.2), while the dot-dashed
line is the law of the wake. Their sum, the solid line, agrees well with the
experimental data. As the name implies, the shape of the function w(y/d)
is similar to the velocity profile in a plane wake, with a symmetry plane at
y = 0. However, there is no implication of a detailed similarity between these
two flows.

Equation (7.148) can also be written in the form of a velocity-defect law.
Approximating f,, by the log law, and imposing the condition (U),_; = U,
we obtain

Yo—{U) uT<U> ~ i—{—ln(—g) +12—-w(3)]}- (7.150)
This law is compared with Klebanoff’s data in Fig. 7.29.

With the same approximations, Eq. (7.148) evaluated at y = 6 leads to a
friction law:

Uo 1. [du, 2
_°=—ln( “>+B+—H (7.151)
u, K v K
1 u 211
= - In[Re;2= ) + B+ = .
- n< & U0>+ += (7.152)

3

For given Re; this equation can be solved for u./U,, hence determining
the skin-friction coefficient ¢; = 2(u./U,)>. More convenient explicit forms
of the friction law can be found in Schlichting (1979). Among these is the
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Fig. 7.29. The velocity-defect law. Symbols, experimental data of Klebanoff (1954);
dashed line, log law; solid line, sum of log law and wake contribution IIw(y/d)/x.
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Fig. 7.30. Turbulent viscosity and mixing length deduced from direct numerical sim-
ulations of a turbulent boundary layer (Spalart 1988). Solid line, vy from DNS;
dot-dashed line, ¢, from DNS; dashed line ¢, and vr according to van Driest’s
specification (Eq. (7.145)).

Schultz-Grunow formula,

¢ = 0.370(log, Re,) 2%, (7.153)

In the defect layer, the shear stress t(y) is less than t,, and the velocity
gradient d(U)/dy is greater than the value u,/(xy) given by the log law.
Clearly, then, the value of the turbulent viscosity vy = t/(8(U)/dy) is less
than that given by the log-law formula vr = w.xy; and, consequently, the
mixing length is less than xy. This is confirmed by Fig. 7.30, which shows

vr(y) and /,(y) deduced from the DNS boundary-layer data of Spal
(1988).

art

In applying the mixing-length model to boundary layers, it is necessary
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therefore to modify the formula /,, = xy in the defect layer. A simple
modification, proposed by Escudier (1966), is to set /,, to the minimum of
xy and 0.096. Other variants of the mixing-length model (e.g., Smith and
Cebeci (1967) and Baldwin and Lomax (1978)) achieve a similar effect by
different means (see Wilcox (1993)).

7.3.4 The overlap region reconsidered

Given the complexity of near-wall turbulent motions and the processes
involved, it is remarkable how the mean velocity profiles in pipe flow,
channel flow and boundary layers are well represented by simple formulae
— especially the universal log law. However, the empirical success of a
theory does not necessarily imply the validity of the assumptions on which
it is based: different assumptions may lead to predictions of comparable
accuracy.

Over the years, arguments against the log law have been advanced by
Barenblatt and Monin (1979), Long and Chen (1981), and George, Castillo,
and Knecht (1996), among others. A central issue is the influence of the
Reynolds number in the overlap region. The strong assumption made in
the argument leading to the log law (see Eq. (7.41)), is that (for Re > 1,
yt > 1,and y/d < 1) yout/dy is independent of U,, d, and v, and hence
of the Reynolds number. It is clear from experiments (see, e.g., Fig. 7.19 and
Gad-el-Hak and Bandyopadhyay (1994)) that the Reynolds-stress profiles in
the overlap region depend on the Reynolds number, and hence the turbulent
processes involved are not completely independent of Re.

We now consider weaker alternative assumptions in the context of fully
developed turbulent pipe flow at high Reynolds number. The velocity profile
in the inner layer is expressed'as

wt = fiy"), (7.154)

(cf. Eq. (7.37)), where the function f; may depend on the Reynolds number.
In the outer layer, the defect law is rewritten
Upg— (U
Yo—(U) =F,(n), (7.155)
with n = y/8 (cf. Eq. (7.46)), where u, is a velocity scale for the outer layer,
which may be different than u., and the function F, may depend on the
Reynolds number.
In the overlap region (6, < y < J), the asymptotic fortns of f;(y*) (for
large y*) and Fo(n) (for small #) must match. There are two forms of velocity
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Fig. 7.31. A log-log plot of mean velocity profiles in turbulent pipe flow at six
Reynolds number (from left to right: Re & 32 x 10%, 99 x 10°, 409 x 10%, 1.79 x 108,
7.71 x 105, and 29.9 x 10%), The scale for «t pertains to the lowest Reynolds number:
subsequent profiles are shifted down successively by a factor of 1.1. The range shown
is the overlap region, 50J, < y < 0.1 R. Symbols, experimental data of Zagarola and
Smits (1997); dashed lines, log law with k = 0.436 and B = 6.13; solid lines, power
law (Eq. (7.157)) with the power « determined by the best fit to the data.

profile that are consistent with this matching requirement: the log law
1
ut=—~Iny* + B, (7.156)
K

and the power law

wt = C(y*), (7.157)

(see Exercise 7.20 and Barenblatt (1993)). The assumptions made in this
development allow the positive coefficients «, B, a, and C to depend on the
Reynolds number. If, to the contrary, the coefficients are independent of the
Reynolds number, then the laws are said to be universal.

Figure 7.31 shows measured mean velocity profiles in the overlap region
of turbulent pipe flow at various Reynolds numbers. The data are compared
with the universal log law (with :: = 0.436 and B = 6.13), and the power law
(Eq. (7.157)) with the exponent « determined from the data at each Reynolds
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Fig. 7.32. The exponent o = 1/n (Eq. (7.158)) in the power-law relationship u* =
C(y™)* = C(y™)!/ for pipe flow as a function of the Reynolds number.

number. It is clear that a decreases significantly with Re: Zagarola, Perry,
and Smits (1997) showed that the empirically determined values are well
approximated by the formula

v 1.085 n 6.535
" InRe ' (InRe)?’

(7.158)

which is shown in Fig 7.32.

It may be observed from Fig. 7.31 that both the log law and the power
law provide quite accurate representations of the measured velocity profiles.
Although the data have been carefully scrutinized (e.g, Zagarola et al.
(1997)), because of the small differences between the log-law and power-law
predictions, the conclusions drawn are likely to remain controversial (see,
e.g., Barenblatt and Chorin (1998)). Whatever the merits of the underlying
assumptions, the log law has the practical advantage of being universal.

Another issue that arises is the appropriate choice of the velocity scale
U, in the outer layer. A universal log law implies that u, = u,; whereas a
universal power law (which, as Fig. 7.31 shows, does not exist) would imply
that u, = U, (see Exercise 7.20). Various suggestions have been made: for
example u, = Uy — U for pipe flow (Zagarola and Smits 1997), and u, = U,
for boundary layers (George et al. 1996).
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EXERCISES

720  Consider fully developed turbulent pipe flow at high Reynolds num-
ber. In the inner and outer layers, the mean velocity profile is given
by Egs. (7.154) and (7.155), respectively.

(a) Show that the matching of (U) and d(U)/dy given by
Egs. (7.154) and (7.155) yields

nlo_
Hy") = " uTFo(n), (7.159)

L dA0Y) _ue dF(n)
dy+ ur’7 dy

. (7.160)

In the overlap region (6, < y < 9), different asymptotic forms of f;
(for large y*) and F, (for small n) are obtained from the alternative

assumptions
dfi(y*) 1
+ — _
y e " (7.161)
and
dfi(y™)
+ — +ya
y T aC(y™)*, (7.162)

where k, C, and « are positive constants (i.e., independent of y, but
not necessarily of Re).

(b) Show that general solutions to Egs. (7.160) and (7.161) are
fiyh) = L Iny* + B (7.163)
K

(cf. Eq. (7.43)) and

. 1
Fol) = (—; Iny +Bl), (7.164)

(s}

(cf. Eq. (7.50)) where B and B, are constants of integration.
Show that Eq. (7.159) then yields the friction law Eq. (7.55).
(c) Show that general solutions to Egs. (7.160) and (7.162) are

iy ) =Cl )y +b, (7.165)
Fo(n) = by — Cen’, (7.166)

where
Cr=ck <£> , (1.167)
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7.21

7.22

and b and b; are constants of integration. Show that Eq. (7.159)

then determines

Uy — bu,
u,

b, = (7.168)

(d) Show that Egs. (7.163) and (7.164) are universal log laws (i.e.,
the coefficients are independent of Re) if, a/nd only if, x, B, and
B, are indépendent of Re, u, scalgs with u,, and the friction
law Eq. (7.55) 1s satisfied.

(e) Show that Eqgs. (7.165) and (7.166) are universal power laws
if, and only if, C and « are independent of Re, b 1s zero, u,
scales with Uy, and the friction law

u, U05 —a/(14+a)

o= b, (—v—> , (7.169)
is satisfied, for some constant b,. (Note: experimental data
clearly show to the contrary that o depends on Re, see
Fig. 7.32))

(f) Take « = 1 and neglect the variation of U,/U with Re. Show
then that Eq. (7.169) yields for the friction factor

f=hbRe ", (7.170)

where b; is a constant.

(Note: with by = 0.3164, Eq. (7.170) is the empirical Blasius resistance
Jormula, which agrees with the Prandtl formula (Eq. (7.98)) to within
3% for 10* < Re < 10°, but is in error by 30% at Re = 107. It
is stressed that this derivation incorrectly assumes the existence of
universal power laws.)

Consider the power law

(U) _ (yy*
= (E) (7.171)
as an approximation to the velocity profile (for 0 < y < R) in fully
developed turbulent pipe flow. Show that the area-averaged velocity
18

U 2

Uy (+0)Q2+a) . 7.172)

As an approximation to the mean velocity profile in a boundary
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Fig. 7.33. Profiles of Reynolds stresses and kinetic energy normalized by the friction
velocity in a turbulent boundary layer at Rey = 1,410: (a) across the boundary layer
and (b) in the viscous near-wall region. From the DNS data of Spalart (1988).

layer, consider the power-law profile

(X)l/n, for y <1,

U o
) = (7.173)
vo 1, for L >1
’ or 5 = 4
where n is positive. For this profile show that
0" 1
_—=— 7.17
Fmint (7.174)
0 n
e 7.175
0 (m+1Hn+2) ( )
and hence that the shape factor is
H=1+ E (7.176)
n

7.3.5 Reynolds-stress balances

Both for free shear flows and for channel flow we have examined the

balance of the turbulent kinetic energy. Here, using the boundary-layer
DNS data of Spalart (1988), we go further to examine the balance of the
individual Reynolds stresses. First, the Reynolds-stress profiles and kinetic-
energy balance are briefly described.

In the inner layer, the Reynolds-stress profiles (shown in Fig. 7.33) are
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Fig. 7.34. The turbulent-kinetic-energy budget in a turbulent boundary layer at Rey =
1,410: terms in Eq. (7.177) (a) normalized as a function of y so that the sum of the
squares of the terms is unity and (b) normalized by the viscous scales. From the DNS
data of Spalart (1988).

little different than those in channel flow (cf. Figs. 7.14 and 7.17). As the
edge of the boundary layer is approached, all the Reynolds stresses tend
smoothly to zero (corresponding to the non-turbulent free stream). Just as in
channel flow, the Reynolds-stress profiles exhibit a weak Reynolds-number
dependence (see, e.g., Marusic, Uddin, and Perry (1997)).

The kinetic-energy balance

In the boundary-layer approximation, the equation for the turbulent kinetic
energy (Eq. (5.164)) is

ok ok 0%k
0=— — V) — —F -
((U)ax+( ) y>+7> £+v8y2

o, 18,

In order, the terms in this balance equation are mean-flow convection,
production, pseudo-dissipation, viscous diffusion, turbulent convection, and
pressure transport. This equation is essentially the same as that for channel
flow (Eq. (7.64)), but with the addition of the mean-flow-convection term.
The profiles of the various contributions to Eq. (7.177) are shown in
Fig. 7.34. In the near-wall region (y* < 50, Fig, 7.34(b)), the profiles are
normalized by the viscous scales, and are again very similar to those in
channel flow (Fig. 7.18). In this region, mean-flow convection is negligible.
With increasing y /8, the magnitudes of the terms in Eq. (7.177) decrease.
For example, in the log-law region both P and ¢ decrease inversely with y.
In order to show the relative importance of the terms as functions of y, in
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Fig. 7.34(a) the contributions have been nor\malized locally, so that the sum
of their squares is unity. From y* ~ 40 to y/é ~ 0.4 the dominant balance
is between production and* dissipation. Further out in the boundary layer,
production becomes small, and the balance is between dissipation and the
various transport terms. . - -

The Reynolds-str;zss\e‘quqtion
The transport equation for the Reynolds stresses deduced from the Navier—
Stokes equations (see Exercise 7.23) is
D 5 X
0= —E(uiuj) o (i) +v V=uuy) + Py + I — ey, (7.178)

where P;; is the production tensor

Py = —(uiy) aéi]:') — (ujth) x (7.179)

I1;; is the velocity-pressure-gradient tensor
1 op op'
;= ——{( u, — =), 7.180
J ,0<u axj +u] axi> ( )

and ¢g; is the dissipation tensor

gy = 2v<-aﬁ ?ﬁ> (7.181)

To relate these symmetric second-order tensors to more familiar quantities,
we observe that half the trace of the Reynolds-stress equation is the kinetic
energy equation, and, in particular, we have

'Pi=P, la=% (7.182)

0
%Hii = ———(u,»p'/p). (7183)
0x,~

Figures 7.35-7.38 show the profiles of the terms in Eq. (7.178) for each of
the non-zero Reynolds stresses. In order, the terms are referred to as mean
convection, turbulent convection, viscous diffusion, production, pressure, and
dissipation. The normal stresses (u?), (v?), and (w?) are examined first.

Normal-stress balances

In simple shear flows, in which ¢(U)/dy is the only significant mean velocity
gradient, the normal-stress productions are

a(U)

Pn =2P = —2(uv) 0y

: (7.184)
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Fig. 7.35. The budget of (4?) in a turbulent boundary layer: conditions and normal-
ization are the same as those in Fig. 7.34.
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Fig. 7.36. The budget of (v} in a turbulent boundary layer: conditions and normal-
ization are the same as those in Fig. 7.34.

Pry = Py = 0, (7.185)

ie, all the kinetic-energy production is in (#?). As expected, therefore, over
most of the boundary layer, P;; is the dominant source of (u?) (see Fig. 7.35).

In the turbulent kinetic energy balance, p’ appears only as a transport
term (ie., 1I1; = —V - (up'/p)), which is relatively small over most of the
boundary layer (see Fig. 7.34). In contrast, in the Reynolds-stress equations
the pressure term IT; plays a central role. Over most of the boundary layer
I1;; is the dominant sink in the (4?) balance, while Ty, and Ils; are the
dominant sources in the (v?) and (w?) balances. Thus the primary effect of
the fluctuating pressure is to redistribute the energy among the components
— to extract energy from (u?) and to transfer it to (v*) and (w?).

The redistributive effect of the fluctuating pressure is revealed by the
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Fig. 7.37. The budget of (w?) in a turbulent boundary layer: conditions and normal-
ization are the same as those in Fig. 7.34.
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Fig. 7.38. The budget of —(uv) in a turbulent boundary layer: conditions and normal-
ization are the same as those in Fig. 7.34.

decomposition

0
I, =Ry — o T2, (7.186)

where the pressure~rate-of-strain tensor R;; is

p ([ ou Ou;
=~ —+ == 7.187
w5l s o

and T,ff}) is the pressure transport (see Exercise 7.24). In view of the continuity
equation V-u = 0, the pressure-rate-of-strain tensor contracts to zero, and so
vanishes from the turbulent-kinetic-energy equation. In the boundary layer,
there is a transfer of energy, at the rate —R,; = Ry, + R, from (u?) to (v?)
and (w?).



318 7 Wall flows

o
<

W | 9
™

o

Fig. 7.39. Normalized dissipation components in a turbulent boundary layer at Rey =
1,410: from the DNS data of Spalart (1988), for which é = 6504,.

The shear-stress balance

Figure 7.38 shows the budget for —(uv). Since (uv) is negative, a ‘gain’ in
—(uv) corresponds to an increase in the magnitude of the shear stress. It may
be seen that, over the bulk of the boundary layer (y* ~ 40 to y/ =~ 0.5), there
is an approximate balance between production (ie., —P;; = (v?) d(U)/0dy)
and the pressure term —I1;,. In contrast to the normal-stress balances, except
near the wall, the dissipation ¢, is relatively small.

In locally isotropic turbulence the dissipation tensor is isotropic, i.e.,

& = 580y (7.188)

Figure 7.39 shows the profiles of ¢; normalized by %5 Close to the wall,
the anisotropy in ¢; is clearly large; but, for y/é > 0.2 (y* > 130), there is
approximate isotropy (i.e., the diagonal components of ¢; /(%E) are close to
unity, and the off-diagonal component is close to zero). The small but distinct
level of anisotropy in ¢; (for y/6 > 0.1) is attributable to the relatively low
Reynolds number of the simulations: the boundary-layer experiments of
Saddoughi and Veeravalli (1994) clearly show that there is local isotropy at
high Reynolds number.

It is clear from the Reynolds-stress budgets that the velocity—pressure-
gradient correlation II;; is an important quantity, as of course are the
production P; and dissipation ¢;. The Reynolds-stress equations and IT;; ; are
discussed at length in Chapter 11.
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7.23

7.24

7.25

EXERCISES
From the Reynolds decomposition U = (U) + u and from the def-
initions D/Dt = ¢/t + U -V and D/Dt = 6/0t + (U) - V show
that

uDuf+u% —D<uiuj>+ a(uuu) 7.189
‘Dt " "Dt/  Dr Ox, \ A (7.189)

Hence, from the transport equation for the fluctuating velocity u(x, t)
(Eg. (5.138)), obtain the Reynolds-stress equation

D{u;u; 0
M + o (uu) = Py + i + v{w, Vuy; + u; V), (7.190)
Dt axk

where P;; and II;; are defined by Egs. (7.179) and (7.180). Show that
the viscous term in Eq. (7.190) can be re-expressed as

v{u; Vzuj + u; Vi) = —&j+v Vz(u,-uj), (7.191)

where ¢; is defined by Eq. (7.181). Hence verify Eq. (7.178).
Show that IT;; (Eq. (7.180)) can be decomposed as
aTY

IM; = Ri; — o (7.192)

where R;; is the pressure—rate-of-strain tensor defined by Eq. (7.187),
and

1 1
Tlg’j) = ;(uip’)éjk + ;(ujp/>5ik- (7.193)

Show that R;; is deviatoric, and that IT; and R;; are equal in
homogeneous turbulence.

From the above results, show that the Reynolds-stress equation can
be written

D 0
D—t(uiu» + o Twj = Py + Ry — &), (7.194)

where the Reynolds-stress flux Tj;; is

Ty =TS + T8 + T, (7.195)
with
T = (wuw), T =—v Suy) (7.196)

axk
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7.26  Show that
IPi="P, Loy =% (7.197)

and hence show that half the trace of the Reynolds-stress equation
(Eq. (7.194)) is identical to the kinetic energy equation (Eq. (5.164)).

7.27  For simple shear flow with 0(U;)/0x, being the only non-zero mean
velocity gradient, show that the production tensor P is

—2(uuy) —(u3) 0
—wy 0 0| (7.198)
0 0 0

a(Ui)
P= 0x2
7.28 In terms of the Reynolds-stress anisotropy a;; = (u;u;) — %ké,j, show
that the production tensor is
4, (U o(U;) a(Us)
= —= —ay —a; . 7.199
Py 3k 0x; ik Ok ik Oxk ( )
Give an example of a flow in which the normal-stress prpduction P
is negative.
7.29  Discuss the effect of the pressure-rate-of-strain tensor on the Reynolds
shear stresses

(a) in the principal axes of R;;, and
(b) in the principal axes of (uu;).
7.30  From the definition of ¢; (Eq. (7.181)), show that, at a wall,

0% {(uu;
gy = (u uj>,
0y?

for y=0. (7.200)

Which components are non-zero at the wall?

7.3.6 Additional effects

So far in this section we have considered the zero-pressure-gradient turbulent
boundary layer on a flat plate. Now briefly described are the effects of non-
zero pressure gradients, and of surface curvature.

Mean pressure gradients

The effects of mean pressure gradients on boundary layers are mentioned,
first, because in applications they are present more often than not, and second
because the effects can be large. A favorable pressure gradient (dp,/dx < 0)
corresponds to an accelerating free stream (dU,/dx > 0) and occurs, for
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example, on the forward part of an airfoil. Conversely, an adverse pressure
gradient (dpe/dx > 0) corresponds to a decelerating free steam (dUy/dx < 0)
and occurs in a diffuser or on the aft part of an airfoil.

A favorable mean pressure gradient causes the mean velocity profile to
steepen, so that the shape factor H decreases and the skin-friction coefficient
¢ increases. The width of the intermittent region increases (Fiedler and Head
1966), and non-turbulent fluid can penetrate all the way to the wall. Indeed,
at low Reynolds number, a sufficiently strong favorable pressure gradient
can cause the boundary layer to relaminarize (Narasimha and Sreenivasan
1979).

As might be expected, a mild adverse pressure gradient has the opposite
effect: the mean velocity profile flattens, with the shape factor H increasing
and the skin friction coefficient ¢; decreasing (Bradshaw 1967, Spalart and
Watmuff 1993). However, a strong, prolonged adverse pressure gradient
causes the boundary layer to separate, or break away from the surface
(Simpson 1989). The separation is accompanied by large-scale unsteadiness
of the flow, and reverse flow ((U) < 0) downstream of the separation.

Surface curvature

Boundary layers on curved surfaces are important in many applications,
such as the flow over compressor and turbine blades in turbomachinery. In
these applications, the curvature is in the dominant flow direction. On the
upper (suction) surface of an airfoil the curvature is convex; whereas there
is concave curvature over part of the lower (pressure) surface of a highly
cambered airfoil.

. In the flow over airfoils, the boundary layer is simultaneously subjected
to the effects of curvature and a mean pressure gradient. These effects
can be studied separately in laboratory experiments. Muck, Hoffmann, and
Bradshaw (1985) performed experiments on a boundary layer, of constant
free-stream velocity, that develops on a surface with a plane upstream section
followed by a section of convex curvature (of constant radius of curvature
R;). A similar experiment with a concave surface is described by Hoffmann,
Muck, and Bradshaw (1985).

In these experiments the ratio of the boundary-layer thickness J to the
radius of curvature R, is about 0.01. Experiments with convex curvature as
large as /R, ~ 0.1 are reported by Gillis and Johnston (1983).

Rayleigh’s criterion (Rayleigh 1916) correctly predicts the stabilizing or
destabilizing effect of curvature. For convex curvature, the center of curvature
is beneath the surface, and in the boundary layer the angular momentum
of the fluid increases with radius (measured from the center of curvature).
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According to Rayleigh’s criterion, this increasing angular momentum is
stabilizing, and indeed the experimental data show that there is a reduction
in the Reynolds stresses and skin-friction coefficient compared with the plane
boundary layer.

In the Reynolds-stress equations (written in the appropriate curvilinear
coordinate system) there are additional production terms (due to curvature)
of relative magnitude 6/R.. However, as pointed out by Bradshaw (1973),
the effects of curvature on the turbulence are an order of magnitude larger
than can be explained by this direct mechanism.

For flow over a surface of concave curvature, the center of curvature
is within the fluid above the surface. In the boundary layer, the angular
momentum of the fluid decreases with radius (i.e., it decreases as the surface
is approached). This, according to the Rayleigh criterion, is destabilizing.
The experimental observations are that longitudinal Taylor—Gortler vortices
form, and that the Reynolds stresses and the skin-friction coefficient increase
(compared with the plane boundary layer). Again, the magnitude of the
effect is much larger than simple scaling arguments suggest.

For boundary layers on mildly curved surfaces, the non-zero mean rates

of strain are
= = L/o(Uy (Uy)
= = (2227 _ AT .20
St = S 2( 0% R, (7.201)

(This is in a local Cartesian coordinate system in which the basis vector e,
is normal to the surface, ¢; and e; are tangential to the surface, and the
mean flow is in the e; direction.) It may be seen that the curvature creates
the extra rate of strain —(U,)/R., which is small compared with d(U,)/0x;
— of order §/R.. It is generally found that turbulent shear flows exhibit a

disproportionately large response to such extra rates of strain (Bradshaw
1973). '

7.4 Turbulent structures

As is the case with free shear flows, since 1960 a good fraction of the
experimental effort on wall-bounded flows has been directed at turbulent
Structures or quasi-coherent structures. These structures are identified by
flow visualization, by conditional sampling techniques, or by other eduction
methodologies (described below); but they are difficult to define precisely.
The idea is that they are regions of space and time (significantly larger than
the smallest flow or turbulence scales) within which the flow field has a
characteristic coherent pattern. Different instances of the structure occur at
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different positions and times, and their flow fields certainly differ in detail:
but they possess a common characteristic coherent pattern.

Among the motivations for experimental studies of turbulent structures
are the desires

(i) to seek order within apparent chaos,
(ii) to ‘explain’ patterns seen in flow visualization,
(iii) to ‘explain’ important ‘mechanisms’ in the flow in terms of elemental
structures, and
(iv) to identify ‘important’ structures with a view to modifying them in
order to achieve engineering goals such as reduction of drag and
augmentation of heat transfer.

Without doubt, these studies have yielded valuable results, and have achieved
some of their objectives. However, other objectives have not been, and will
not be, achieved. The mind imbued with Newtonian mechanics seeks simple
deterministic explanations of phenomena. Only in a very limited sense can
coherent structures simply ‘explain’ the behavior of near-wall turbulent
flows. There are many structures within the random background, and the
deterministic and stochastic interactions among them are far from clear,
and unlikely to be simple. The goal of developing a quantitative theory of
near-wall turbulence based on the dynamical interaction of a small number
of structures has not been attained, and is likely unattainable.

Description of structures in wall flows

Kline and Robinson (1990) and Robinson (1991) provide a useful catego-
rization of quasi-coherent structures in channel flow and boundary layers.
The eight categories identified are the following:

Low-speed streaks in the region 0 < y* < 10.

Ejections of low-speed fluid outward from the wall.

Sweeps of high-speed fluid toward the wall.

Vortical structures of several proposed forms.

Strong internal shear layers in the wall zone (y* < 80).

Near-wall pockets, observed as areas clear of marked fluid in certain

types of flow visualizations.

7. Backs: surfaces (of scale &) across which the streamwise velocity
changes abruptly.

8. Large-scale motions in the outer layers (including, for boundary

layers, bulges, superlayers, and deep valleys of free-stream fluid).

SR W
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Fig. 7.40. A dye streak in a turbulent boundary layer showing the ejection of low-speed
near-wall fluid. (From the experiment of Kline et al. (1967).)

Reviews of experimental work and discussion on these structures are pro-
vided by Kline and Robinson (1990), Robinson (1991), Sreenivasan (1989),
Cantwell (1981), and Gad-el-Hak and Bandyopadhyay (1994), among many
others. Here we mention just some of the principal findings.

Numerous flow-visualization experiments have revealed streaks in the
near-wall region, y* < 40. In one experiment on a boundary layer in a water
channel, Kline et al. (1967) used a fine wire placed across the flow (in the
z direction) as an electrode to generate tiny hydrogen bubbles. With the
wire placed between the wall and yt = 10, clearly visible in the plane of
the wall are long streaks in the streamwise (x) direction, corresponding to
an accumulation of hydrogen bubbles. These and subsequent experiments
(e.g., Kim, Kline, and Reynolds (1971) and Smith and Metzler (1983)) have
determined many of the characteristics of these structures. Near the wall
(y* < 7) the spacing between the streaks is randomly distributed between
about 806, and 1206,, independent of the Reynolds number, and their
length (in the x direction) can exceed 1,0008,. The streaks correspond to
relatively slow-moving fluid — with streamwise velocity about half of the
local mean —~ while the fluid between the streaks (inevitably) is relatively fast
moving.

The streaks have a characteristic behavior, known as bursting. With in-
creasing downstream distance, a streak migrates slowly away from the wall;
but then, at some point (typically around y* =~ 10), it turns and moves
away from the wall more rapidly — a process referred to as streak lifting, or
ejection. As it is lifted, the streak exhibits a rapid oscillation followed by a
breakdown into finer-scale motions. Figure 7.40 shows a dye streak from a
typical ejection.

With fluid moving away from the wall in ejections, continuity demands
a flow toward the wall in some other regions. Corino and Brodkey (1969)
identified regions of high-speed fluid (ie., 4 > 0) moving toward the wall in
events called sweeps.
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Fig. 7.41. The u—v sample space showing the numbering of the four quadrants, and
the quadrants corresponding to ejections and sweeps.

An important issue is the significance of ejections and sweeps in turbulence
production. The u—v sample space of the fluctuating velocities is divided by
the axes into four quadrants, shown in Fig. 7.41. In quadrants 2 and 4, the
product up is negative, and consequently events in these regions correspond
to positive production (recall that P = —(uv) 6(U)/dy). Thus both ejections
(quadrant 2) and sweeps (quadrant 4) produce turbulent energy. Measure-
ments of the contributions to (uv) from the various quadrants (e.g., Wallace,
Eckelmann, and Brodkey (1972) and Willmarth and Lu (1972)) have been
cited as evidence for the importance of ejections and sweeps to production.
It should be recognized, however, that a quadrant-2 event is not necessarily
an ejection; and the simple fact that the u—v correlation coefficient is around
—0.5 suggests that quadrant-2 and -4 events are twice as likely as quadrant-1
and -3 events, irrespective of the turbulence structure (see Exercise 7.31).

In the near-wall region (y* < 100), pairs of counter-rotating streamwise
vortices or rolls — depicted in Fig. 7.42 — have been identified as the dominant
‘vortical structures’ (Bakewell and Lumley 1967, Blackwelder and Haritonidis
1983). Close to the wall, between the rolls, there is a convergence of the flow
in the plane of the wall (0W /dz < 0), which accounts for the observed
streaks. In the simplified picture of Fig. 7.42, the fluid moving away from the
wall between the rolls has a relatively reduced axial velocity, which leads to
the velocity profiles shown in Fig. 7.42. These profiles contain inflexion points
and so are inviscidly unstable, and have been conjectured to be associated
with bursting (Holmes, Lumley, and Berkooz (1996)).

Head and Bandyopadhyay (1981) suggested that the dominant vortical
structures further out from the wall in the boundary layer are horseshoe or
hairpin vortices as sketched in Fig. 7.43. The cross-stream dimensions scale
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Fig. 7.42. A sketch of counter-rotating rolls in the near-wall region. (From Holmes et

al. (1996).)
A y
%
-y

Fig. 7.43. The hairpin vortex suggested by Head and Bandyopadhyay (1981).

with J,, but the overall length can be of order 8, so that they are extremely
elongated at high Reynolds number. As had previously been predicted by
Theodorsen (1952), they are inclined at approximately 45° to the wall.

Head and Bandyopadhyay (1981) suggested that larger structures can be
composed of an ensemble of hairpin vortices; and indeed Perry and co-
workers have demonstrated that a suitable distribution of such elemental
vortical structures can account for measured statistics in boundary layers
(Perry and Chong 1982, Perry, Henbest, and Chong 1986, Perry and Marusic¢
1995).

In the out