Chapter 9: Boundary Layer (Pope 7.3)
Part 1

Time-Averaged
Velocity Profiles

—d

Turulent

| aina

Differences channel/pipe flows:

1) §(x)
2) 1,,(x) not known a priori
3) Intermittency

Nonetheless, inner layer y/§(x) < 0.1 is the same as channel/pipe flows. Some
differences in the log law and especially defect layer as departure from log law is
more significant.

For boundary layer flow:

u=U,v,w) (Wy=20

Outside BL py(x) and U, (x) are linked by Bernoulli’s equation for inviscid flow:
1
—po(x) + EPUo(x)Z = constant

Such that the pressure gradient is given by:

dpo dU,
dx P70 ax

1



Uy, > 0 accelerating flow, i.e., favorable p,, <0

on < 0 decelerating flow, i.e., adverse Po, > 0 — leads to BL separation.

Boundary layer thickness 6 (x) defined as the value of y at which:

(U(x,v)) = 0.99U,(x)

Displacement thickness:

5
Q | (inviscid flow) =Q J (viscous flow)
5* 0

| Updy = jo Wiy

*

Displacement thickness used in viscous/inviscid intersection approaches: measure
of amount inviscid flow displaced due to BL.

Momentum thickness:
°°(U)< (U)>
0(x E] —|1—-——|d
2 o Uo Uy Y

Measure of loss of momentum due to BL.

Various Reynolds numbers:

Uyx Uy Uy5* U,0
Rex = — R85 = — Re(g* = R =
v v v v

Re,~10° represents Re_,;; for transition.



Continuity Equation:

ou L v
ax ay

Mean momentum equations:

Mean axial momentum equation for BL flow:

(U>— (V)—y= _;W

o)\ OU) __1dlp) 0P a<U> 00 ouw)
ﬁ/xz - Ox

Mean lateral momentum equation:

ay

0 (uy

0 0 ld(p) 29/5 OM 6(172)
O s Tl v e o

1d(p) | ov?)

=0
pdy Oy

/0x

Integrating between 0 and o, and using the conditions p = p,(x), (v?) = 0 for

y = 0 and oo, since at the wall p(x) = pw(X)= po(x) as it does at oo

) _Po

p -@? @

Differentiating Eq. (1) with respect to x yields:

19(p) 1dp, 9(v?)
p 0x p Ox d0x

Po, = O flat plate or py . = pUyU,, for BL with pressure gradient.



Mean axial momentum equation not specialized to BL:

oU) . AUY  1dp, OXUY uv) 9
(U>W+(V>W__de +v 3?2 oy —a((uz)—(vz))

Term 1: is proportional to Re ™1, and is therefore negligible, except very near wall.
Term 2: usually neglected but can be appreciable for free shear flows.

For BL:
a(U) a(U) 1 d(p) 0%(U) 0(uv)
— - __ — 2
() dx g oy p dx v dy? dy @
1ot e dU,
~ pay O dx

Where t(x, y) is the total shear stress

W
TEPVS — p{uv)

At the wall, LHS of Eq. (2) is zero, i.e., pressure gradient and shear stress balance.
If pressure gradient is zero, then:

10t 0%(U)
—_ Yy —
pay ay* |,

Since (uv)~y3.

Eqg. (2) can be integrated to obtain von Karman’s integral momentum equation.
For zero pressure gradient:

d do

Z (pU%0) = pU2 —
dx(onf?) 'DUde

Ty =



Or, for the skin friction coefficient,
Ty do

ijg X

For laminar zero pressure gradient boundary layer, Blasius similarity solution:

o) -1/2 o 0 -1/2
— =~ 49Re , —=0.35 —==0.14 ¢, = 0.664Re
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Fig. 7.25. Normalized velocity and shear-stress profiles from the Blasius solutjon for
the zero-pressure-gradient laminar boundary layer on a flat plate: y is normalized by

3. = x/Rel’* = (xv/Uy)"/%

Mean velocity profiles.

Rey = 8000

H = 7= shape factor

Blasius H = 2.6

Turbulent flat plate BLH =~ 1.3 i 1 VIS

Fig. 7.26. Profiles of the mean velocity, shear stress and intermittency factor in a
H measures flatness <U> away zero-pressure-gradient turbulent boundary layer, Rey = 8,000. (From the experimental

from wall: increased flatness H | data of Klebanoff (1954).)
(U) similar channel flow

t/t,, like laminar profile.



Law of the wall
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Fig. 7.27. Mean velocity profiles in wall units. Circles, boundary-layer experiments of
Klebanoff (1954), Rey = 8,000; dashed line, boundary-layer DNS of Spalart (1988),
Rey = 1,410; dot—dashed line, channel flow DNS of Kim et al. {1987), Re = 13,750,
solid line, van Driest’s law of the wall, Egs. (7.144)—(7.145).
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Fig. 7.28. The mean velocity profile in a turbulent boundary layer showing the law
of the wake. Symbols, experimental data of Klebanoff (1954): dashed line, log law
(v = 041,B = 5.2); dot—dashed line, wake contribution [lw{y/d)/x (IT = 0.5); solid
line, sum of log law and wake contribution (Eq. (7.148)).

1) y*<5-ut =f£,0") =y*
2) 5 < y* < 30 buffer layer
3) yt >30andy/§ < 0.3 log law, while y/& > 0.3 velocity deficit law

EFD and DNS follow 1,2,3.



What is the form of u* = f,,(y*) in buffer layer?

"2 alyH*
2R, 4

Note f,,(y*) =yt — (Pope Ex. 7.9)

Using mixing-length hypothesis, total shear stress is

o(U
') =v W) — (uv) a(U)
p oy —(uv) =v—
_, oo o) , o(U)
- ay t ay Ve = lm_a
_ 6<U> 2 6<U) i w> for BL
= VW + lm (W) (3) ay
Define
l;-n = lm/5v

And normalize Eq. (3) using y* and u* to obtain:

t out dut\’
— = + (I}
Tw Oy~ ay*

ou* 27/, A
oyt T+ [+ Gz

In the inner layer, t/t,, = 1 and the law of the wall can be expressed in terms of
the mixing length as the integral of Eq. (4):

+

y 2dy*

14 [1+4L(y+)?]

u+:fw(y+):j; 1/2 =l =fO")



1) Log law region: I, = ky* - 1, = ky

2) If I, = ky* in sublayer » —(uv)* ~ l;lz = (ky*)?, whereas —(uv)* «
+3

y
3) ~ I} requires damping:

lm = ky*[1—exp(=y*/A")]

Where AT = 26. Numerical integration shown in Fig 7.27 shows excellent
agreement.

4) Large y*, log law recovered [}, = ky™.
5) Fork = 0.41and At = 26, B = 5.3.
6) Using Van Driest in sublayer gives:

k 2
2
= () v

i.e., better estimate than using I}, = ky™*.

The velocity-defect law

In the defect layer (y/6 > 0.2), the mean velocity deviates from log law, as per
Fig. 7.27-7.28.

Mean velocity profile can be represented as the sum of two functions:

(U) Il y

+ _ + _ -
wt=o= L0+ w(z)  ©

law of the wall —

law of the wake

Wake function: w(y /&) Coles (1956), w(0) = 0,w(1) = 2.

w(y/8) = 2sin (;Ti;)

Based on EFD with IT = wake strength parameter and flow dependent.

Fig. 7.28 u™ = f,,(y*) + - W( ) with £, (y™) = log law.



The shape of the function w(y/§) is like the velocity profile in a plane wake with
symmetry planeaty = 0.

Alternatively, Eq. (5) can be written as a velocity-defect law:

Uy—(U) 1
Lo em )+ ()

Uz

yid

Fig. 7.29. The velocity-defect law. Symbols, experimental data of Klebanoff (1954);
dashed line, log law; solid line, sum of log law and wake contribution TIw(y /6)/x.
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Fig. 7.30. Turbulent viscosity and mixing length deduced from direct numerical sim-
ulations of a turbulent boundary layer (Spalart 1988). Solid line, vr from DNS;
dot-dashed line, ¢, from DNS; dashed line ¢, and v; according to van Driest’s
specification (Eq. (7.145)).

Evaluation of Eq. (5) at y = 6 leads to a friction law:

Uy, 1 /6u, 211

u_T:Ehl(v>+B+7 Rea_ULg
1 U, 211 v

=Eln(Re‘SU_O>+B+T

Solve for u, /Uy = ¢ = 2(u;/Uy)?
Power law fit:
¢s = 0.370(logy Re,) ™58
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In the defect layer T < 7, (see Fig. 7.26) and (U), > u,/ky as per log law.

Therefore, v, = 7/(U), < u./ky as per log law.

Mixing length models: modify [, = ky in

min (ky, 0.096).

A Single Formula for the
“Law of the Wall”

D. B. SPALDING*

Summary

1t is shown that expe tal velovity di muy be
wall fitted, in the lamioar sublayer, the transition region, and
the turbnlent coro, by the formula: b

)
yt =t 0.0108[e0" — 1 — Odut — (04u®)y/2! W
— (0.4u1)3/31 — (OAu*)4/4}

Omission of the (0.4u?)? lerm gives an equally good fit, The
corresponding expressions for the ratio of turbulent shear stress
to total shear stress agree with the measnrements of Laufer {8]2

Table 1 Formulas for the "law of the wall"™*

Author

Prandtl [L1]* 0Z y*< 115

Taylor (18] 1.6 € y*
0Z y*<5b

von Karnun [7)] ;5 2 y*< 30
30 <yt

Reichardt [16] 0< yt

0% y*<W
Deissler |2]
20 € y*

0g y*
van Driest [19]

Range of validity

Formulas
ut =yt
wt*=286ly" + 6b
ut g

w' = 5lnyt — 3.06
ut = 25Iny* + 6.5
n* = 251n(1 4+ 04y*)
+ 78f1 — e~'m
= (r/1neraw']
"
ut=
0
dy*
1+ ntuty (1 — e=n'Y')
n = 0.124
ut = 278yt + 38

v
ut =
0

2dy*

14 {1+ 064y" (1 = exp (=y*/20))3}

the defect layer, e.g., [,
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Fig. 1 Experimental data of Laufer [8] for veloclly distribulion noar the
wall In turbulent pipe flow, npared various P

2y 0% y* <275 ut = 14.54 tan k(0.0688y*)
Hanis (19) 2748 <y ut w25yt + 55

quite clasoly.

“ Sco also Hofman [5], Reichordt [14], Rotta [16]), Miles (9],
Elrod [3], and Frank-Kamenetsky (21 ]

& Phose suthors did not, ot the dutes in quastion, state the formulas
attributed to them in the table, However, thoy did introduce the
iden of o sharp division between o Jaminar sublayer nnd & fully turbu-
lent core; when compared with experimental datn, this idea leads
directly to the formulas given,

(i) passes through the point: y* = 0, ut = 0;
(ii) is tangential at this point to: ut =yt
(i#f) in nsymplotic at large y* to*
w* =25yt + 55 2

(iv) fits the experimental points al intermedinte y* values,

Overlap region reconsidered.

Y

u
(U), = =&,
Yooy g,

+

Ju
y 3y

# f(Uy, 6,v)~f(Re)
However,

V{u?),J(v?) = f(Re)

In overlap region.

8, =v/u;

Yy _

8y

Large y™ - @; # f(v) >
®;(y*) = constant = 1/k

y+

Consider weaker alternative assumptions. Velocity profile in inner layer:

ut = fiy")
10



Where f; may depend on Re.

In the outer layer:

Up —(U)

0

= Fo(m)

Wheren = y/é§ and uy # u, and F; may depend on Re.

For overlap region (8, < y « §) - f;(large y*) = F,(small )

Two possibilities:

1) ut

2) ut

%lnyJr + B
cyH”

With a, B, k,C > 0, but may be f(Re). If not f(Re) — universal laws.

20

u
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Fig. 7.31. A log-log plot of mean velocity profiles in turbulent pipe flow at six
Reynolds number (from left to right: Re ~ 32 x 10%, 99 x 107, 409 x 10%, 1.79 x 10°,
7.71 % 10, and 299 x 10°). The scale for «* pertains 1o the lowest Reynolds number:
subsequent profiles are shifted down successively by a factor of 1.1. The range shown
is the overlap region, 503, < y < 0.1 R. Symbols, experimental data of Zagarola and
Smits (1997): dashed lines. log law with x = 0.436 and B = 6.13; solid lines, power
law (Eq. (7.157)) with the power x determined by the best fit to the data
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Re

. The exponent & = 1/n (Eq. (7.158)} in the power-law relationship «* =

= C(y")''" for pipe flow as a function of the Reynolds number.
R T - -~
— Lo i =
( - r—————
O 7
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BL Reynolds Stresses, TKE budgets

(@ s (b) ¢

Fig. 7.33. Profiles of Reynolds stresses and kinetic energy normalized by the friction
velocity in a turbulent boundary layer at Rey = 1,410: (a) across the boundary layer
and (b) in the viscous near-wall region. From the DNS data of Spalart (1988).

Same trends as channel flow, but in this case merge with non-turbulent outer flow.

(a) 1.0 o !
i " turbulent \
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Fig. 7.34. The turbulent-kinetic-energy budget in a turbulent boundary layer at Rey =
1,410: terms in Eq. (7.177) (a) normalized as a function of y so that the sum of the

squares of the terms is unity and (b) normalized by the viscous scales. From the DNS
data of Spalart (1988).
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TKE budget same channel flow, except the addition of the mean-flow-convection
term:

<U>ak(v>kp+aka1 )1()6

d0x B ¢ Vay 2 — — pd P (6)

y* < 50 convection is negligible . same trend channel flow.

For larger y/& magnitude of terms in Eq. (6) decreases. The figure shows
normalized values such that the sum of their squares is unity. From y* = 40 to
y/6 =0.4, P~E.

For y/&6 > 0.4, P small and balance is between dissipation and transport terms.
RS Budget

Transport equation for RS:

D 0
ﬁ(uiuj) = —a—xk(uiujuk) + sz(uiuj) + Pl] + Hl] — gij

Where P;; is the production tensor:

( i) 6(U )
( u;u k) ( ] k)
IT;; is the velocity-pressure gradient tensor.
1 dp ap

I = —=(u: — + y: ——

g;j is the dissipation tensor:
dou; Ju;

gj = 2v(

——)

axk axk

It is possible to relate these symmetric second-order tensors to other quantities:

1

EPii =P
1 .
5= €



Normal-stress balances

Simple shear flow U = (U(¥), 0,0), i.e., U, is dominant mean velocity gradient.

U
Py, = 2P = =2(u )L

i.e., all kinetic energy production is in {(u)?.

In TKE balance p appears as transport term and is relatively small, i.e.,

1
Enii = =V (up/p)

Whereas II;; plays a central role: I1;; dominant sink in the (u)? balance, I1,, and
I35 dominant source in (v)? and (w)?.

Consequently, the primary effect of the fluctuating pressure is to redistribute

energy from (u)? to (v)? and (w)?.

d 14
Hij = Ri} dx; Tkl]

Where R;; is the pressure rate of strain tensor:
_ < aul au] )
Ry = ax] axi

And TP . is the pressure transport:

kij

1
T;;pu = (uip)5jk + ;(%‘P)&'k

R;i = 0since V-u = 0 . not in TKE equation.
In BL energy transfer at rate
—Ri1 = Ry + Raz

From (u)? to (v)? and (w)?.

14



1Lop

(a)

05F

0.0 g?;‘“‘“"‘""'--‘-':‘“m;.;“"'

loss

Fig. 7.35. The budget of (¥*} in a turbulent boundary layer: conditions and normal-
ization are the same as those in Fig. 7.34.

(a) 1.0¢ ' (b) 004
gain [t turbalent gain o pre e _
0.5 ' 4 002t /
\ viscous /’
\ viscous diffusion ziﬂhsm/ i 7 mmvoal* o
. e _'f p
0.0} o A s 0.00 pom e o £ peoss
L NG ol AT P ASTor ' .‘ . e =
e e,
7 e coav
-0.5 e, —0.02+ o TP v
! TR Wl i SRR o ee di s
loss ; dissipation loss ssipaton
-1 : — : - ~0.04 e ' - .
%.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 + 40 50
ylé y

Fg. 7.36. The budget of (¢v?) in a turbulent boundary layer: conditions and normal-
ization are the same as those in Fig. 7.34.
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Fig. 7.37. The budget of {w?) in a turbulent bounda

ization are the same as those in Fig. 7. 34,
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Shear Stress Balance

Since (uv) < 0, a gain in —(uv) corresponds to an increase in magnitude of shear
stress. From y* ~ 40to y/6~0.5, =P;, = (v*U,)) = —II;;.

Differently from normal-stress balance, except near the wall, dissipation &;,

small.
(a) 10 (b) 012 E
gain gain
production " turbulent b production
0.5 © convection 0.06 F
viscous diffusion
viscous diffusion W%
0.0 == —reTroesEssToiyprTIoorTIs = 0.00 feZ—>
I~ dissipation e s T S
e convae X “ N wurbulent convection
05} /,_f\.\ e “‘_\.‘ dissipation P e
los 4.’ ) GO —-.\_,,.,hvm_\___"\._‘._ "y ’_/'/ g \"\.- ’7____—._._
S pressure P loss pressure
__1.0 1 F i | . Ls 1 ] _0.12 ] L ] =1 i J
0.0 0.2 0.4 0.6 0.8 1.0 10 20 30 40 50
y/ 6 y+

Eig. 7.38. The budget of —(uv) in a turbulent boundary layer: conditions and normal-
ization are the same as those in Fig. 7.34.
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Fig. 7.39. Normalized dissipation components in a turbulent boundary layer at Rey =
1,410: from the DNS data of Spalart (1988), for which § = 6506,.
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From RS budget, it is clear that II;; is important along with P;; and &;;.

Isotropic turbulence:

‘Sij = 55511

Close to wall g;; anisotropy is large, but for y /6 > 0.2 (y* > 130) &;j almost

isotropic, i.e.,
Eij

~

§S

For higher Re, ¢;; for y/§ > 0.1 is isotropic.
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