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Chapter 9: Boundary Layer (Pope 7.3) 

Part 1 

 

 

Differences channel/pipe flows:  

1) 𝛿(𝑥) 

2) 𝜏𝑤(𝑥) not known a priori 

3) Intermittency 

Nonetheless, inner layer 𝑦/𝛿(𝑥) < 0.1 is the same as channel/pipe flows. Some 

differences in the log law and especially defect layer as departure from log law is 

more significant.  

For boundary layer flow: 

𝑈 = (𝑈, 𝑉,𝑊)    〈𝑊〉 = 0 

 

Outside BL 𝑝0(𝑥) and 𝑈0(𝑥) are linked by Bernoulli’s equation for inviscid flow: 

−𝑝0(𝑥) +
1

2
𝜌𝑈0(𝑥)

2 = constant 

Such that the pressure gradient is given by: 

−
𝑑𝑝0
𝑑𝑥

= 𝜌𝑈0
𝑑𝑈0
𝑑𝑥
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𝑈0𝑥 > 0 accelerating flow, i.e., favorable 𝑝0𝑥 < 0 

𝑈0𝑥 < 0 decelerating flow, i.e., adverse 𝑝0𝑥 > 0 → leads to BL separation. 

 

Boundary layer thickness 𝛿(𝑥) defined as the value of 𝑦 at which: 

 

〈𝑈(𝑥, 𝑦)〉 = 0.99𝑈0(𝑥) 

Displacement thickness: 

𝛿∗(𝑥) ≡ ∫ (1 −
〈𝑈〉

𝑈0
)𝑑𝑦

∞

0

 

𝑄∫ (inviscid flow) =
𝛿

𝛿∗
𝑄∫ (viscous flow)

𝛿

0

 

i.e., 

∫ 𝑈0𝑑𝑦 =
𝛿

𝛿∗
∫ 〈𝑈〉𝑑𝑦
𝛿

0

 

Displacement thickness used in viscous/inviscid intersection approaches: measure 

of amount inviscid flow displaced due to BL. 

 

Momentum thickness: 

𝜃(𝑥) ≡  ∫
〈𝑈〉

𝑈0
(1 −

〈𝑈〉

𝑈0
)𝑑𝑦

∞

0

 

 

Measure of loss of momentum due to BL. 

Various Reynolds numbers: 

𝑅𝑒𝑥 =
𝑈0𝑥

𝜈
  𝑅𝑒𝛿 =

𝑈0𝛿

𝜈
   𝑅𝑒𝛿∗ =

𝑈0𝛿
∗

𝜈
    𝑅𝑒𝜃 =

𝑈0𝜃

𝜈
 

𝑅𝑒𝑥~10
6 represents 𝑅𝑒𝑐𝑟𝑖𝑡 for transition. 
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Continuity Equation: 

𝜕𝑈

𝜕𝑥
+
𝜕𝑉

𝜕𝑦
= 0 

 

Mean momentum equations: 

Mean axial momentum equation for BL flow: 

 

〈𝑈〉
𝜕〈𝑈〉

𝜕𝑥
+ 〈𝑉〉

𝜕〈𝑈〉

𝜕𝑦
= −

1

𝜌

𝑑〈𝑝〉

𝑑𝑥
+ 𝜈 [

𝜕2〈𝑈〉

𝜕𝑥2
+
𝜕2〈𝑈〉

𝜕𝑦2
] −

𝜕〈𝑢2〉

𝜕𝑥
−
𝜕〈𝑢𝑣〉

𝜕𝑦
 

 

Mean lateral momentum equation: 

〈𝑈〉
𝜕〈𝑉〉

𝜕𝑥
+ 〈𝑉〉

𝜕〈𝑉〉

𝜕𝑦
= −

1

𝜌

𝑑〈𝑝〉

𝑑𝑦
+ 𝜈 [

𝜕2〈𝑉〉

𝜕𝑥2
+
𝜕2〈𝑉〉

𝜕𝑦2
] −

𝜕〈𝑣2〉

𝜕𝑦
−
𝜕〈𝑢𝑣〉

𝜕𝑥
 

 

1

𝜌

𝑑〈𝑝〉

𝑑𝑦
+
𝜕〈𝑣2〉

𝜕𝑦
= 0 

 

Integrating between 0 and ∞, and using the conditions 𝑝 = 𝑝0(𝑥), 〈𝑣
2〉 = 0 for 

𝑦 → 0 𝑎𝑛𝑑 ∞, since at the wall p(x) = pw(x)= p0(x) as it does at ∞ 

 
〈𝑝〉

𝜌
=
𝑝0
𝜌
− 〈𝑣2〉     (1) 

 

Differentiating Eq. (1) with respect to 𝑥 yields: 

 

1

𝜌

𝜕〈𝑝〉

𝜕𝑥
=
1

𝜌

𝜕𝑝0
𝜕𝑥

−
𝜕〈𝑣2〉

𝜕𝑥
 

 

𝑝0𝑥 = 0 flat plate or 𝑝0𝑥 = 𝜌𝑈0𝑈0𝑥 for BL with pressure gradient. 
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Mean axial momentum equation not specialized to BL: 

 

〈𝑈〉
𝜕〈𝑈〉

𝜕𝑥
+ 〈𝑉〉

𝜕〈𝑈〉

𝜕𝑦
= −

1

𝜌

𝑑𝑝0
𝑑𝑥

+ 𝜈
𝜕2〈𝑈〉

𝜕𝑦2⏟    
1

−
𝜕〈𝑢𝑣〉

𝜕𝑦
−
𝜕

𝜕𝑥
(〈𝑢2〉 − 〈𝑣2〉)

⏟          
2

 

 

Term 1: is proportional to 𝑅𝑒−1, and is therefore negligible, except very near wall.  

Term 2: usually neglected but can be appreciable for free shear flows. 

 

 

For BL: 

〈𝑈〉
𝜕〈𝑈〉

𝜕𝑥
+ 〈𝑉〉

𝜕〈𝑈〉

𝜕𝑦
= −

1

𝜌

𝑑〈𝑝〉

𝑑𝑥
+ 𝜈

𝜕2〈𝑈〉

𝜕𝑦2
−
𝜕〈𝑢𝑣〉

𝜕𝑦
     (2) 

=
1

𝜌

𝜕𝜏

𝜕𝑦
+ 𝑈0

𝑑𝑈0
𝑑𝑥

 

 

Where 𝜏(𝑥, 𝑦) is the total shear stress 

𝜏 = 𝜌𝜈
𝜕〈𝑈〉

𝜕𝑦
− 𝜌〈𝑢𝑣〉 

 

At the wall, LHS of Eq. (2) is zero, i.e., pressure gradient and shear stress balance. 

If pressure gradient is zero, then: 

 

1

𝜌

𝜕𝜏

𝜕𝑦
=  𝜈

𝜕2〈𝑈〉

𝜕𝑦2
|
𝑦=0

= 0 

 

Since 〈𝑢𝑣〉~𝑦3. 

 

Eq. (2) can be integrated to obtain von Karman’s integral momentum equation. 

For zero pressure gradient: 

 

𝜏𝑤 =
𝑑

𝑑𝑥
(𝜌𝑈0

2𝜃) = 𝜌𝑈0
2
𝑑𝜃

𝑑𝑥
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Or, for the skin friction coefficient, 

𝑐𝑓 ≡
𝜏𝑤
1
2
𝜌𝑈0

2
= 2

𝑑𝜃

𝑑𝑥
 

 

For laminar zero pressure gradient boundary layer, Blasius similarity solution: 

 
𝛿

𝑥
≈ 4.9𝑅𝑒𝑥

−1/2
,    
𝛿∗

𝛿
≈ 0.35,   

𝜃

𝛿
≈ 0.14    𝑐𝑓 ≡ 0.664𝑅𝑒𝑥

−1/2
 

 

 

 

 

 

 

 

 

 

 

Mean velocity profiles. 

 

𝑅𝑒𝜃 = 8000 

𝐻 =
𝛿∗

𝜃
= shape factor 

Blasius 𝐻 ≈ 2.6 

Turbulent flat plate BL 𝐻 ≈ 1.3 

𝐻 measures flatness 〈𝑈〉 away 

from wall: increased flatness 𝐻 ↓ 

〈𝑈〉 similar channel flow 

𝜏/𝜏𝑤 like laminar profile.  
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Law of the wall  

𝑢+ =
〈𝑈〉

𝑈𝜏
     𝑦+ =

𝑦

𝛿𝜈
=
𝑦𝑈𝜏
𝜈

 

 

 

1) 𝑦+ < 5 → 𝑢+ = 𝑓𝑤(𝑦
+) ≈ 𝑦+ 

2) 5 < 𝑦+ < 30 buffer layer 

3) 𝑦+ > 30 and 𝑦/𝛿 < 0.3 log law, while  𝑦/𝛿 > 0.3 velocity deficit law 

EFD and DNS follow 1,2,3. 
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What is the form of 𝑢+ = 𝑓𝑤(𝑦
+) in buffer layer? 

 

Note 𝑓𝑤(𝑦
+) = 𝑦+ −

(𝑦+)2

2𝑅𝜏
 − 

𝜎(𝑦+)4

4
 (Pope Ex. 7.9) 

 

Using mixing-length hypothesis, total shear stress is 

𝜏(𝑦)

𝜌
= 𝜈

𝜕〈𝑈〉

𝜕𝑦
− 〈𝑢𝑣〉 

= 𝜈
𝜕〈𝑈〉

𝜕𝑦
+ 𝜈𝑡

𝜕〈𝑈〉

𝜕𝑦
 

= 𝜈
𝜕〈𝑈〉

𝜕𝑦
+ 𝑙𝑚

2 (
𝜕〈𝑈〉

𝜕𝑦
)

2

    (3) 

 

Define 

𝑙𝑚
+ = 𝑙𝑚/𝛿𝜈  

And normalize Eq. (3) using 𝑦+ and 𝑢+ to obtain: 

𝜏

𝜏𝑤
=
𝜕𝑢+

𝜕𝑦+
+ (𝑙𝑚

+
𝜕𝑢+

𝜕𝑦+
)

2

 

 

𝜕𝑢+

𝜕𝑦+
=

2𝜏/𝜏𝑤
1 + [1 + (4𝜏/𝜏𝑤)(𝑙𝑚

+ )2]1/2 
     (4) 

 

In the inner layer, 𝜏/𝜏𝑤 ≈ 1 and the law of the wall can be expressed in terms of 

the mixing length as the integral of Eq. (4): 

𝑢+ = 𝑓𝑤(𝑦
+) = ∫

2𝑑𝑦+

1 + [1 + 4𝑙𝑚
+ (𝑦+)2]1/2 

𝑦+

0

→ 𝑙𝑚
+ = 𝑓(𝑦+) 

 

−〈𝑢𝑣〉 = 𝜈𝑡
𝜕〈𝑈〉

𝜕𝑦
 

𝜈𝑡 = 𝑙𝑚
2
𝜕〈𝑈〉

𝜕𝑦
 

𝜕〈𝑈〉

𝜕𝑦
> for BL 
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1) Log law region: 𝑙𝑚
+ = 𝑘𝑦+ → 𝑙𝑚 = 𝑘𝑦 

2) If 𝑙𝑚
+ = 𝑘𝑦+ in sublayer → −〈𝑢𝑣〉+ ≈ 𝑙𝑚

+ 2 = (𝑘𝑦+)2, whereas −〈𝑢𝑣〉+ ∝

𝑦+
3

 

3) ∴ 𝑙𝑚
+  requires damping: 

 

𝑙𝑚
+ = 𝑘𝑦+[1 − exp(−𝑦+/𝐴+)] 

 

Where 𝐴+ = 26. Numerical integration shown in Fig 7.27 shows excellent 

agreement. 

 

4) Large 𝑦+, log law recovered 𝑙𝑚
+ = 𝑘𝑦+. 

5) For 𝑘 = 0.41 and 𝐴+ = 26, 𝐵 = 5.3. 

6) Using Van Driest in sublayer gives: 

𝑙𝑚
+ 2 = (

𝑘

𝐴+
)
2

𝑦+
4

 

i.e., better estimate than using 𝑙𝑚
+ = 𝑘𝑦+. 

 

The velocity-defect law 

In the defect layer (𝑦/𝛿 > 0.2), the mean velocity deviates from log law, as per 

Fig. 7.27-7.28. 

Mean velocity profile can be represented as the sum of two functions: 

𝑢+ =
〈𝑈〉

𝑢𝜏
= 𝑓𝑤(𝑦

+)⏟    
law of the wall

+
𝛱

𝑘
𝑤 (
𝑦

𝛿
)

⏟    
law of the wake

     (5) 

 

Wake function: 𝑤(𝑦/𝛿) Coles (1956), 𝑤(0) = 0,𝑤(1) = 2. 

𝑤(𝑦/𝛿) = 2 sin2 (
𝜋

2

𝑦

𝛿
)  

Based on EFD with 𝛱 = wake strength parameter and flow dependent. 

Fig. 7.28 𝑢+ = 𝑓𝑤(𝑦
+) +

𝛱

𝑘
𝑤 (

𝑦

𝛿
) with 𝑓𝑤(𝑦

+) = log law. 



9 
 

The shape of the function 𝑤(𝑦/𝛿) is like the velocity profile in a plane wake with 

symmetry plane at 𝑦 = 0. 

Alternatively, Eq. (5) can be written as a velocity-defect law: 

𝑈0 − 〈𝑈〉

𝑢𝜏
=
1

𝑘
{− ln (

𝑦

𝛿
) + 𝛱 [2 − 𝑤 (

𝑦

𝛿
)]} 

 

 

Evaluation of Eq. (5) at 𝑦 = 𝛿 leads to a friction law: 

𝑈0
𝑢𝜏
=
1

𝑘
ln (

𝛿𝑢𝜏
𝜈
) + 𝐵 +

2𝛱

𝑘
 

=
1

𝑘
ln (𝑅𝑒𝛿

𝑢𝜏
𝑈0
) + 𝐵 +

2𝛱

𝑘
 

Solve for 𝑢𝜏/𝑈0 → 𝑐𝑓 = 2(𝑢𝜏/𝑈0)
2  

Power law fit: 

𝑐𝑓 = 0.370(log10 𝑅𝑒𝑥)
−2.584 

𝑅𝑒𝛿 =
𝑈0𝛿

𝜈
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In the defect layer 𝜏 < 𝜏𝑤 (see Fig. 7.26) and 〈𝑈〉𝑦 > 𝑢𝜏/𝑘𝑦 as per log law. 

Therefore, 𝜈𝑡 =  𝜏/〈𝑈〉𝑦 < 𝑢𝜏/𝑘𝑦 as per log law. 

Mixing length models: modify 𝑙𝑚 = 𝑘𝑦 in the defect layer, e.g., 𝑙𝑚 =

min (𝑘𝑦, 0.09𝛿). 

 

 

Overlap region reconsidered. 

〈𝑈〉𝑦 =
𝑢𝜏
𝑦
𝛷𝑖 (

𝑦

𝛿𝜈
) 

i.e.,  

𝑦
𝜕𝑢+

𝜕𝑦
≠ 𝑓(𝑈0, 𝛿, 𝜈)~𝑓(𝑅𝑒) 

However,  

√〈𝑢2〉, √〈𝑣2〉 = 𝑓(𝑅𝑒) 

In overlap region. 

 

Consider weaker alternative assumptions. Velocity profile in inner layer: 

𝑢+ = 𝑓𝐼(𝑦
+) 

𝛿𝜈 = 𝜈/𝑢𝜏 

𝑦

𝛿𝜈
= 𝑦+ 

Large 𝑦+ → 𝛷𝑖 ≠ 𝑓(𝜈) →

𝛷𝑖(𝑦
+) = constant = 1/𝑘 
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Where 𝑓𝐼 may depend on Re. 

In the outer layer: 

𝑈0 − 〈𝑈〉

𝑢0
= 𝐹0(𝜂) 

Where 𝜂 = 𝑦/𝛿 and 𝑢0 ≠ 𝑢𝜏 and 𝐹0 may depend on Re. 

For overlap region (𝛿𝜈 ≪ 𝑦 ≪ 𝛿) → 𝑓𝐼(large 𝑦
+) = 𝐹0(small 𝜂) 

 

Two possibilities: 

1) 𝑢+ =
1

𝑘
ln 𝑦+ + 𝐵 

2) 𝑢+ = 𝐶(𝑦+)𝛼 

With 𝛼, 𝐵, 𝑘, 𝐶 > 0, but may be 𝑓(𝑅𝑒). If not 𝑓(𝑅𝑒) → universal laws. 
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BL Reynolds Stresses, TKE budgets 

 

 

Same trends as channel flow, but in this case merge with non-turbulent outer flow. 
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TKE budget same channel flow, except the addition of the mean-flow-convection 

term: 

 〈𝑈〉
𝜕𝑘

𝜕𝑥
+ 〈𝑉〉

𝜕𝑘

𝜕𝑦
= 𝑃 − 𝜀̃ + 𝜈

𝜕2𝑘

𝜕𝑦2
−
𝜕

𝜕𝑦
〈
1

2
𝑣𝑢 ∙ 𝑢〉 −

1

𝜌

𝜕

𝜕𝑦
〈𝑣𝑝′〉     (6) 

𝑦+ ≤ 50 convection is negligible ∴ same trend channel flow. 

For larger 𝑦/𝛿 magnitude of terms in Eq. (6) decreases. The figure shows 

normalized values such that the sum of their squares is unity. From 𝑦+ ≈ 40 to 

𝑦/𝛿 ≈0.4, 𝑃~𝜀̃. 

For 𝑦/𝛿 > 0.4, 𝑃 small and balance is between dissipation and transport terms.  

RS Budget 

Transport equation for RS: 

𝐷

𝐷𝑡
〈𝑢𝑖𝑢𝑗〉 = −

𝜕

𝜕𝑥𝑘
〈𝑢𝑖𝑢𝑗𝑢𝑘〉 + 𝜈∇

2〈𝑢𝑖𝑢𝑗〉 + 𝑃𝑖𝑗 +𝛱𝑖𝑗 − 𝜀𝑖𝑗  

Where 𝑃𝑖𝑗  is the production tensor: 

𝑃𝑖𝑗 = −〈𝑢𝑖𝑢𝑘〉
𝜕〈𝑈𝑗〉

𝜕𝑥𝑘
− 〈𝑢𝑗𝑢𝑘〉

𝜕〈𝑈𝑖〉

𝜕𝑥𝑘
 

𝛱𝑖𝑗  is the velocity-pressure gradient tensor: 

𝛱𝑖𝑗 = −
1

𝜌
〈𝑢𝑖

𝜕𝑝

𝜕𝑥𝑗
+ 𝑢𝑗

𝜕𝑝

𝜕𝑥𝑖
〉 

𝜀𝑖𝑗  is the dissipation tensor: 

𝜀𝑖𝑗 = 2𝜈 〈
𝜕𝑢𝑖
𝜕𝑥𝑘

𝜕𝑢𝑗
𝜕𝑥𝑘

〉 

It is possible to relate these symmetric second-order tensors to other quantities: 

1

2
𝑃𝑖𝑖 = 𝑃 

1

2
𝜀𝑖𝑖 = 𝜀̃ 

1

2
𝛱𝑖𝑖 = −

𝜕

𝜕𝑥𝑖
〈𝑢𝑖𝑝/𝜌〉 
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Normal-stress balances 

Simple shear flow 𝑈 = (𝑈(𝑦), 0,0), i.e., 𝑈𝑦 is dominant mean velocity gradient. 

𝑃11 = 2𝑃 = −2〈𝑢𝑣〉
𝜕〈𝑈〉

𝜕𝑦
 

𝑃22 = 𝑃33 = 0 

i.e., all kinetic energy production is in 〈𝑢〉2. 

In TKE balance 𝑝 appears as transport term and is relatively small, i.e., 

1

2
𝛱𝑖𝑖 = −∇ ∙ 〈𝑢𝑝/𝜌〉 

Whereas 𝛱𝑖𝑗  plays a central role: 𝛱11 dominant sink in the 〈𝑢〉2 balance, 𝛱22 and 

𝛱33 dominant source in 〈𝑣〉2 and 〈𝑤〉2. 

Consequently, the primary effect of the fluctuating pressure is to redistribute 

energy from 〈𝑢〉2 to 〈𝑣〉2 and 〈𝑤〉2. 

𝛱𝑖𝑗 = ℛ𝑖𝑗 −
𝜕

𝜕𝑥𝑘
𝑇𝑘𝑖𝑗
𝑝

 

Where ℛ𝑖𝑗  is the pressure rate of strain tensor: 

ℛ𝑖𝑗 ≡ 〈
𝑝

𝜌
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖
)〉 

And 𝑇𝑘𝑖𝑗
𝑝

 is the pressure transport: 

𝑇𝑘𝑖𝑗
𝑝
≡
1

𝜌
〈𝑢𝑖𝑝〉𝛿𝑗𝑘 +

1

𝜌
〈𝑢𝑗𝑝〉𝛿𝑖𝑘 

 

ℛ𝑖𝑖 = 0 since ∇ ∙ 𝑢 = 0 ∴ not in TKE equation.  

In BL energy transfer at rate  

−ℛ11 = ℛ22 +ℛ33 

From 〈𝑢〉2 to 〈𝑣〉2 and 〈𝑤〉2. 
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Shear Stress Balance 

Since 〈𝑢𝑣〉 < 0, a gain in −〈𝑢𝑣〉 corresponds to an increase in magnitude of shear 

stress. From 𝑦+ ≈ 40 to 𝑦/𝛿~0.5, −𝑃12 = 〈𝑣
2〉〈𝑈𝑦〉 = −𝛱12.  

Differently from normal-stress balance, except near the wall, dissipation 𝜀12 

small. 
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From RS budget, it is clear that 𝛱𝑖𝑗  is important along with 𝑃𝑖𝑗  and 𝜀𝑖𝑗. 

Isotropic turbulence: 

𝜀𝑖𝑗 =
2

3
𝜀̃𝛿𝑖𝑗 

Close to wall 𝜀𝑖𝑗  anisotropy is large, but for 𝑦/𝛿 > 0.2 (𝑦+ > 130) 𝜀𝑖𝑗  almost 

isotropic, i.e., 

𝜀𝑖𝑗
2
3
𝜀̃
~1 

For higher Re, 𝜀𝑖𝑗  for 𝑦/𝛿 > 0.1 is isotropic. 


