Chapter 8: Channel and Pipe Flows (Chapter 7.1-7.2 Pope)
Part 1: Channel Flow

Internal flows: pipes, ducts, and turbomachinery

External flows: ships, aircrafts, road/rail vehicles
Environmental flows: atmospheric BL, rivers, and oceans

Canonical flows: fully developed channel and pipe flows and flat plate boundary
layer. Former is parallel and latter nearly parallel.

Fig. 7.1. Sketches of {(a) channe! flow, (b) pipe flow, and (c) a flat-plate boundary
layer.

Focus: mean flow velocity profiles, friction laws, Reynolds stresses, and TKE
budgets



Channel flow (Appendix: Laminar Flow Solution)
h=26,L/6 » 1long, b/§ > 1 wide, and no cross flow (W) = 0.

Large x distant from inlet: fully developed flow, statistically stationary and 1D,
such that flow f (y) and symmetric about y = 6 = mid plane. Reynolds numbers
used to characterize the flow are:

U(28) UyS
e = R
v v

Uy = (U)y=s centerline velocity
U= %fo‘s(U)dy average/bulk velocity

Flow laminar for Re < 1350 and turbulent for Re > 1800, but transition effects
up to Re = 3000.

Continuity:
<V>y =0

Since (U),, + (W), = 0and withBCs (V) = 0aty =0andy = 26,
(V)y=0.
Streamwise momentum equation:

1
0= _;<p)x + V<U>yy - (uv>y (1)

Lateral momentum equation:

0= ()~ (0)), (2
=5 Py vy (2

Integrating Eq. (2) across dy with limits 0 to y and using (v?) = 0 at y = 0 gives:

(p) _ Pw ()
P
2

(v?) +



Where p,, (x) = (p(x), 0) = mean pressure bottom wall. Differentiating with
respect to x:

ap) _ dpy
e constant = Ix * f(y)

Eqg. (1) can be rewritten as:

d d
ar _Sbw (3)
dy dx

Where:

AW
(y) = gy T p{uv)

represents the total shear stress. There is no acceleration and balance of forces
between cross stream shear stress gradient and axial normal stress gradient.

dt _dpy _ cant
o~ dx = constan

7(y) anti-symmetric about mid plane (y = §): t,, = 7(0), 7, = —7(26),0 =
7(8). Therefore, solution of Eq. (3) is given by:

y
) = 7 (1-3)
Such that
_Pw _Tw
dx o)
Skin friction coefficients:
TW TW
T r=1T=
prO 7,0U

Flow driven by pressure drop — in fully developed region p,,, < 0 balanced by
7, = —T,, /8. Note that shear stress profile 7(y) is independent flow properties

(p,v) and state of fluid motion (i.e., laminar, or turbulent).
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Near wall shear stress
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Fig. 7.2. Mean velocity profiles in fully developed turbulent channel flow from the
DNS of Kim et al. (1987): dashed line, Re = 5,600; solid line, Re = 13,750.

d{U)
T(y) = Py p{uv)
d(U)
7(0) = pv = Ty
dy o

Since RS at y = 0 are zero.
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Fig. 7.3. Profiles of the viscous shear stress,

and the Reynolds shear stress in turbulent

channel flow: DNS data of Kim et al. (1987): dashed line, Re = 5,600; solid line,

Re = 13,750.

Near wall viscous stress dominates vs. free shear flows where for high Re viscous

stress negligible vs. RS.

Near the wall, the viscosity is influential = (U) = f(Re) in contrast to free shear

flow.




Near wall: T,,, v, and p important and define:

T

u, = |— friction velocity
p
p Vv :
6, =v |[— = — viscous length scale
TW u’T
Friction Reynolds number:
U8 . : .
Re, = =5 ratio channel half height to viscous length scale
%
Local Reynolds number:
y+ = Y _ Wy
o, v .
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Fig. 74. Profiles of the fractional contributions of the viscous and Reynolds stresses
to the total stress. DNS data of Kim et al. (1987): dashed lines, Re = 5,600; solid
lines, Re = 13,750.

(Recall —(uv) nearly constant y* > 50 assumption used Bernard derive log law)

Note for different Re Fig. 7.4 results almost collapse when represented vs y*; and

100% y* =0

U
M( >)y= 50% y* =12
4 <10% y* = 50




y* is used to define different near wall regions/layers.

1) y* < 50 viscous wall region - 7 = f(u)
2) y* > 50 outer layer » 7 # f(u)
3) y* < 5viscous sublayer (uv) < u(U),

As Re increases, 6, /8 decreases, since = Re_l.

Mean velocity profiles.

w = _6pwx
_tw 6
P P Pw,

Dimensional variables: p,v,6, and p,,_(oru;) can form two non-dimensional
groups, such that:

2= (G orer)

Where f = universal non-dimensional function.

Similarly, for (U),:

o =21(22)
L;Tf (yﬂi;)

Idea is that &, appropriate for y* < 50, while § for y* > 50.

Note that:

(6%) / (%) = Re; which shows that § and §,, share same information as % and Re;



Law of the wall (inner layer)

Prandtl postulated that at high Re, close to the wall (y/§ < 1), mean velocity
profile depends on viscous scales:

W)y =50 (5 =7") # GV @

Define

. ()
U
Uz

Such that Eq. (4) becomes:

dut 1 .
=0 ©)

Integrating Eq. (5) gives the law of the wall:

ut = f,")
Where:

y+

1
m@ﬂ=L iy )dy*

Is a universal function for channel flow, pipe, and BL flows, i.e., wall flows.

The viscous sublayer

U
ut = u = fw(™)

Uz

No-slip condition:

ut(0) = f(0) =0



Shear stress:

= (42)
w=Pp dy o

Or equivalently, normalizing using viscous scales:

du”* 0 _dutdy (U)yv
dy+( )= dy dy*t  u, u,
wV
== fa(0) =1

p

Hence, Taylor-series expansion for f,,(y™*) for small y™* is:

) =yt +0(y*?) =u*
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Fig. 7.5. Near-wall profiles of mean velocity from the DNS dat'a of Kim et al. (1987):
dashed line, Re = 5, 600; solid line, Re = 13,750; dot—dashed line, u* = y*.

Small departure from u™ = y* for y* < 5, whereas significant (25%) for y* >
12.



The Log Law

Inner layer usually defined as % < 0.1. At high Re, outer part of the inner layer

corresponds to large y*~0.16/6, = 0.1Re; > 1.

In this region, viscosity has little effect - (U) + f(v)

Therefore, &, (al) in Eq. (4) becomes independent of §,, = constant:

1
‘1’1()’+) = E

Fory/§ « landy* > 1.

Thus, in this region, the mean velocity gradient is:

dut
dyt

Which integrates to:

ut =

1
Iny*+B

With k = 0.41 and B = 5.2, “universal constants.”

Valid for y* > 30 except near § (mid channel).

The region between viscous sublayer and log law region (5 < y* < 30) is called
the buffer layer: transition region between viscous and turbulence dominated

regions where RS peaks.
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Fig. 7.6. Near-wall profiles of mean velocity: solid line. DNS data of Kim et al. (1987):
Re = 13,750; dot-dashed line, u™ = y*; dashed line, the log law, Egs. (7.43)—(7.44).

oF
>
v
20 ‘f{’ﬁ/
+ ;573
u w/ﬁ
151 o
&
/ 4
%
10f F2
1l
4
Sr @
=]
0 ‘ - :
10° 10! 10% 10°

Fig. 7.7. Mean velocity profiles in fully developed turbulent channel flow measured
by Wei and Willmarth (1989): O, Rey = 2,970; O, Rey = 14,914; A, Reg = 22,776;
V, Rey = 39, 582; line, the log law, Eqs. (7.43)(7.44).



The velocity defect law

Outer layer y* > 50: ®(y/6,,v/8) = f(v)

*(5,5) > %

Therefore, Eq. (4) becomes:

(U)y = %CDO (%)

And integrating between y and § yields the velocity defect law due to von
Karman:

Uy — (U)
Ou—T=FD(§)

where U, — (U) = difference between centerline and mean velocities and,
1
(1 N g
Fp (5) = f% 7‘130()’ )dy

And Fp is different in different flows, i.e., not universal function like f,, (y ™).

At sufficiently high Re (>20,000) there is an overlap region between inner layer
y/8 < 0.1) and outer layer (y/6, > 50) where both

(U)y = %4’1 (5%)

And
(U)y = %CDO (X)

are valid, such that:

u%w)y = o, (51) =2, (3)

Ford, Ky K 6.
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This equation can be satisfied in the overlap region only by @; and &, being
constant, i.e.,

Y )y == (logl
2y, =7 (loglaw

This shows an alternative derivation of the log law and established the form of
the velocity defect law for small y/é:

Uy — (U) 1
°T= Fp (%) ~ —Eln(%)+B1

Where B; is a flow dependent constant.

Let Uy ;o4 be the value of (U) on the centerline extrapolated by the log law, then:

Uy—U
B1 — 0 0,log — FD
uT
DNS: B, = 0.2
Other measurements: B;~0.7.
Larger for BL than channel and pipe flows.
10~ 103 0.01 0.1 0.3 1
| | I | | |
/o
OUTER LAYER
overlap region
log-law region
INNER LAYER
viscous wall region
buffer layer
viscous sublayer %
: A
l | | (. l l J
| 5 10 30 50 100 1,000 10,000

Fig. 7.8. A sketch showing the various wall regions and layers defined in terms of
y* =/, and y/é, for turbulent channel flow at high Reynolds number (Re. = 107).
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Fig. 7.9. The mean velocity defect in turbulent channel flow. Solid line, DNS of Kim
et al. (1987), Re = 13,750; dashed line, log law, Eqgs. (7.43)-(7.44).
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Inner log law:
U 1
u =—In(y*)+B (k=041,B=5.1)
u, k
Outer log law:
Uy —(U) 1y vy U, 1. .,y
--fzz;--- = — i; In (;§i) 'F'l?l_'-9 ';z;:' = ;Z;: 'F'}E In (:§:) + l?l

B, = 0.2, Re,; = 180, Re = 13750, Uy/u; = 5log,o Re = 4.14
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The friction law and the Reynolds number

An approximation for the bulk velocity can be obtained using the log law:

b k()= -m()+E

u, 5 ko \s

and assuming B; = 0, i.e., neglecting outer and inner layers, i.e., assume log law

valid over entire channel.

Uy—U 1 (%U,—(U)
=—j- —dy
Ug 5 J, Ug

109 1. ,y 1

DNS: 2.6, data: 2-3.

Log law in the inner layer:

U) 1 vy
u—f—z“’(a—)”

Whereas in the outer layer:
Uy —(U) 1.,y
—_—= —Eln (—) + B,

U, 6

Adding these two together such that f(y) vanishes:

U0_11 (6)+B+B
uT_kn6v 1

Yo_l [Reo (ﬂ)_ll +B+B; (7)

u, k Ur
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For given Re,, this equation can be solved for U, /u., i.e., center line velocity
normalized u,, which provides:

_ TW _ uT 2
Cf_l _Z(U_())

2
> PUs
Using Eq. (6):
UO - U 1 —_ 0 1 .
=—->U=u,(——-—] bulkvelocity
Up k u, k
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Fig. 7.10. The skin-friction coefficient ¢; = .“~/‘(%pU€,) against the Reynolds number

(Re = 2T /v) for channel flow: symbols, experimental data compiled by Dean (1978);
solid line, from Eq. (7.55); dashed line, laminar friction law, ¢; = 16/(3Re).

Eqg. (7) good fit data Re > 3000. For Re < 3000 log law with universal constants
not valid (Patel and Head, 1969).
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Re; increases almost linearly with Re:

Re,~0.09Re988

In contrast, velocity ratios increase very sIowa with Re:
-2 ~51 R
(0] e
U, 810

Therefore, large fraction increase mean velocity between wall and centerline
occurs in viscous wall region.
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Fig. 7.11. The outer-to-inner lengthscale ratio ¢/d, = Re, for turbulent channel flow
as a function of the Reynolds number (obtained from Eq. (7.55)).
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Fig. 7.12. Outer-to-inner velocity-scale ratios for turbulent channel flow as functions
of the Reynolds number (obtained from Eq. (7.55)): solid line, U/u.: dashed line
Uy/us,.
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Fig. 7.13. Regions and layers in turbulent channel flow as functions of the Reynolds
number.

inner layers y/d regions vs. Re
Reynolds stresses
Useful to divide flow in three regions:

1) Viscous wall region: y* < 50
2) Loglaw region: 50 < y* < 120 (506, < y < 0.36)
3) Core region: y > 0.36

In 2): self-similarity — (u;u;)/k, production to dissipation ratio P/e,
normalized mean shear rate Sk /¢ all nearly constant, as per Table 7.2

(u;u;)/k values close to homogeneous shear flow results.

P/e~1, i.e., viscous, and turbulent transport small.

Table 7.2. Statistics in turbulent channel flow, obtained from the DNS data of
Kim et al. (1987), Re = 13,750

Location

Peak production Log law. - Centerline
y =118 yr=98 yt =395

Wk - 170 102 084
() /k 0.04 0.39 0.57
(w?)/k 0.26 0.59 0.59
{uv) /k —0.116 —0.285 0
Puv —0.44 —0.45 0
Sk 15.6 3.2 0
Ple 1.81 091 0
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. . . Sk
In 3) mean velocity gradient and shear stress vanish — — (uv), P~0.
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Fig. 7.16. Profiles of the ratio of production to dissipation (P/¢), normalized mean
shear rate (Sk/e), and shear stress correlation coefficient (p,,) from DNS of channel
flow at Re = 13,750 (Kim et al. 1987). ‘

RS anisotropic but less than in the log law region.
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Fig. 7.15. Profiles of Reynolds stresses normalized by the turbulent kinetic energy
from DNS of channel flow at Re = 13,750 (Kim et al. 1987).

In 1) strongest turbulence: P, &, k and anisotropy are maximum, with peak values
foryt < 20.

BC U(0) = 0 determines the behavior of RS for small y (power series):
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u=a,+by+cy*+--
v =a,+ by + % + -
W = dg +b3y+C3y2 + -

The coefficients are zero mean random variables and, for fully developed channel
flow, are statistically independent of x, z, and t.

For y = 0, no-slip condition yields u = a; = 0 and w = a3 = 0. Similarly, the
impermeability condition gives v = a, = 0.

At the wall, u and w are zero for all x and z = u,|,-o = w,|,—o. Therefore,
continuity equation becomes:

vy|y=0 = b2 =0

The significance of b, being zero is that close to the wall, there is two-component
flow. RS can be obtained by taking products of the power series:

(u?) = (bi)y? + -
(v?) = (cI)y* + -
(w?) = (b3)y* + -
(uv) = (bycy)y* + -+

Therefore, (u?), (w?), and k increase from zero as y?2, while —(uv) and (v?)
increase more slowly, as y3 and y*, respectively.
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Fig. 7.17. Profiles of Reynolds stresses and kinetic energy norma}lizcd by the friction
velocity in the viscous wall region of turbulent channel flow: DNS data of Kim et al.
(1987). Re = 13,750.
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TKE equation

0P”+d2kd1 )1d(>
=P—-—E&+v———(=zvuUu-u)——(
ST dy? dy 2 — — pdyp
1) Production
2) Pseudo dissipation
3) Viscous diffusion
4) Turbulent convection
5) Pressure transport
Viscous
diffusio
0.209
Gain Production
0.10
Pressure transport
0.00
010 Dissipation
Loss
0204 Turbulent convection
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+
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Fig. 7.18. The turbulent-kinetic-energy budget in the viscous wall region of channel
flow: terms in Eq. (7.64) normalized by viscous scales. From the DNS data of Kim er

al. (1987). Re = 13,750,
1) P:y3 near wall, peak at y*~12 (occurs where u(U), = p{uv)) and where

P /e~1.8 and excess energy transported away.
5) Small, whereas 4) transport excess P both towards the wall and towards the
log law region.
3) Transports towards the wall

2) Is max at wall, where k = 0and e = & = vk, |, =

19



av
. T
251 Opa v
-
u v Qo ob& v
T Q v
U U on Yo
2.0 o JDAILA VV
(o] A A
0o
o o A
. =] v
1.5 o o v
(o]
a
a T YT ety v
tof B R A
.l v
P Y -
.-‘.. . . o
«",® . -
0.5F o -e®
- I..
. -
0.0 . -
3
10° 10! w10
y

Fig. 7.19. Profiles of r.m.s. velocity measured in channel flow at various Reynolds
numbers by Wei and Willmarth (1989). Open symbols: o' /u, = (u?)'/?/u.; O, Rey =
2,970; O,Rep = 14914; A, Rey = 22,776; V,Rey = 39,582. Solid symbols: v'/u, =
(®)1/2/u, at the same Reynolds numbers.

Weak f(Re) fory/6 < 0.1, i.e., inner layer

rms = /{u?) =u’

u' peak # f(Re), butat y* = 50 there is an increase in u’ at higher Re.
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Appendix: Channel flow laminar solution

U+, + W, =0
Momentum equations:

1
0=—;py—>p=p(x)

dp _dpy
ax - ax @

0= _‘wa +vU,, or — (r) = pw, With 1= p—(U) f(y)

( )_ pr

Integrating twice:

1
Uy = ;pwxy + (3
1 2
U= 2 Py + Gy + G
Apply BCs:
Uu0)=0-C¢,=0

1
U(26)=0- C, = —;pWXS

1 1

U®) == Pu,y* =~ bu,d
y 2u Pw,y 0 Pw,0Y
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Shear stress:

TW
pwx - _?
Substituting in the velocity profile:
w1l o, Tl
Uy = 5 217 + 5M5y
_w(, Y
U 20
Twy y
=—(2-=
2U ( 6)
MX(Z_X)
2pv & o
Centerline velocity:
6 1,0
U(8) =U, = ZL = ZW—#
Bulk velocity:
— 1¢ 1 (%7,y8 y
U=-— U)dy = = —=)d
5] Uy 5]0 25pv( 5) y
_1f6TW yzd_lrw 52 6%
_50pvy 26 y_62pv 2 6
T wo
3u

Relation between centerline velocity and bulk velocity:

— 2
U:§U0
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Relation between Reynolds numbers:

U(26 Uy6
. (26) P 0

v G =7
e = EU (26) = f e
3%y 3°°°
Skin friction coefficients:
Cf=1TW szlTviz
5pUs 5>pU

_ 2uby/6 4p 4 16

Cr = = = =
! %pUg pU,5 Rey, 3Re

_ 2uby/6 2uUp/6 9 12

C, = — — —
F=1 =2 "1 4 R R
spU gpqU 0
Friction velocity:
U =/ Tw/P
1 Ung T
EpUgcf=TW—> 5 =?W—u$
u\?> u c 2 8
— 2 (_> Yo _ |5 _ _
T=“\u,) U, N2~ |Re,  .3Re

R 1350 - = 8 0.044
= _ — = —_— .
Cmaz U, |3 x1350
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