
1 
 

Chapter 8: Channel and Pipe Flows (Chapter 7.1-7.2 Pope) 

Part 1: Channel Flow 

Internal flows: pipes, ducts, and turbomachinery 

External flows: ships, aircrafts, road/rail vehicles 

Environmental flows: atmospheric BL, rivers, and oceans 

Canonical flows: fully developed channel and pipe flows and flat plate boundary 

layer.  Former is parallel and latter nearly parallel. 

 

 

 

Focus: mean flow velocity profiles, friction laws, Reynolds stresses, and TKE 

budgets 
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Channel flow (Appendix: Laminar Flow Solution) 

ℎ = 2𝛿, 𝐿/𝛿 ≫ 1 long, 𝑏/𝛿 ≫ 1 wide, and no cross flow 〈𝑊〉 = 0. 

Large x distant from inlet: fully developed flow, statistically stationary and 1D, 

such that flow 𝑓(𝑦) and symmetric about 𝑦 = 𝛿 = mid plane.  Reynolds numbers 

used to characterize the flow are: 

𝑅𝑒 =
𝑈(2𝛿)

𝜈
     𝑅𝑒0 =

𝑈0𝛿

𝜈
 

𝑈0 = 〈𝑈〉𝑦=𝛿     centerline velocity 

𝑈 =
1

𝛿
∫ 〈𝑈〉𝑑𝑦
𝛿

0
    average/bulk velocity 

Flow laminar for 𝑅𝑒 < 1350 and turbulent for 𝑅𝑒 > 1800, but transition effects 

up to 𝑅𝑒 = 3000. 

Continuity: 

〈𝑉〉𝑦 = 0 

 

Since 〈𝑈〉𝑥 + 〈𝑊〉𝑧 = 0 and with BCs 〈𝑉〉 = 0 at 𝑦 = 0 and 𝑦 = 2𝛿, 

 

 〈𝑉〉 = 0. 

 

Streamwise momentum equation: 

0 = −
1

𝜌
〈𝑝〉𝑥 + 𝜈〈𝑈〉𝑦𝑦 − 〈𝑢𝑣〉𝑦     (1) 

 

Lateral momentum equation: 

0 = −
1

𝜌
〈𝑝〉𝑦 − 〈𝑣

2〉𝑦     (2) 

 

Integrating Eq. (2) across dy with limits 0 to y and using 〈𝑣2〉 = 0 at 𝑦 = 0 gives: 

 

〈𝑣2〉 +
〈𝑝〉

𝜌
=
𝑝𝑤(𝑥)

𝜌
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Where 𝑝𝑤(𝑥) = 〈𝑝(𝑥), 0〉 = mean pressure bottom wall.   Differentiating with 

respect to 𝑥: 

𝜕〈𝑝〉

𝜕𝑥
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =

𝑑𝑝𝑤
𝑑𝑥

≠ 𝑓(𝑦) 

Eq. (1) can be rewritten as: 

𝑑𝜏

𝑑𝑦
=
𝑑𝑝𝑤
𝑑𝑥

     (3) 

Where: 

𝜏(𝑦) = 𝜌𝜈
𝑑〈𝑈〉

𝑑𝑦
− 𝜌〈𝑢𝑣〉 

 

represents the total shear stress.  There is no acceleration and balance of forces 

between cross stream shear stress gradient and axial normal stress gradient. 

 
𝑑𝜏

𝑑𝑦
=
𝑑𝑝𝑤
𝑑𝑥

= constant 

 

𝜏(𝑦) anti-symmetric about mid plane (𝑦 = 𝛿): 𝜏𝑤 = 𝜏(0), 𝜏𝑤 = −𝜏(2𝛿), 0 =

𝜏(𝛿).  Therefore, solution of Eq. (3) is given by: 

𝜏(𝑦) =  𝜏𝑤 (1 −
𝑦

𝛿
) 

Such that 

−
𝑑𝑝𝑤
𝑑𝑥

=
𝜏𝑤
𝛿

 

Skin friction coefficients: 

𝑐𝑓 =
𝜏𝑤
1
2
𝜌𝑈0

2
     𝐶𝑓 =

𝜏𝑤
1
2
𝜌𝑈

2
 

 

Flow driven by pressure drop → in fully developed region 𝑝𝑤𝑥 < 0 balanced by 

𝜏𝑦 = −𝜏𝑤/𝛿.  Note that shear stress profile 𝜏(𝑦) is independent flow properties 

(𝜌, 𝜈) and state of fluid motion (i.e., laminar, or turbulent). 
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Near wall shear stress 

 

𝜏(𝑦) = 𝜌𝜈
𝑑〈𝑈〉

𝑑𝑦
− 𝜌〈𝑢𝑣〉 

𝜏(0) = 𝜌𝜈
𝑑〈𝑈〉

𝑑𝑦
|
0

= 𝜏𝑤 

Since RS at 𝑦 = 0 are zero. 

 

Near wall viscous stress dominates vs. free shear flows where for high Re viscous 

stress negligible vs. RS. 

Near the wall, the viscosity is influential → 〈𝑈〉 = 𝑓(𝑅𝑒) in contrast to free shear 

flow.  

___ 𝑅𝑒 = 13750 → 𝑅𝑒𝜏 = 390 

−−− 𝑅𝑒 = 5600 → 𝑅𝑒𝜏 = 180 
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Near wall: 𝜏𝑤, 𝜈, and 𝜌 important and define: 

 

𝑢𝜏 = √
𝜏𝑤
𝜌
     friction velocity 

𝛿𝜈 = 𝜈√
𝜌

𝜏𝑤
=
𝜈

𝑢𝜏
    viscous length scale 

 

Friction Reynolds number: 

 

𝑅𝑒𝜏 =
𝑢𝜏𝛿

𝜈
=
𝛿

𝛿𝜈
 ratio channel half height to viscous length scale 

 

Local Reynolds number: 

𝑦+ =
𝑦

𝛿𝜈
=
𝑢𝜏𝑦

𝜈
 

 
(Recall −〈𝑢𝑣〉 nearly constant 𝑦+ ≥  50 assumption used Bernard derive log law) 

 

Note for different Re Fig. 7.4 results almost collapse when represented vs 𝑦+; and 

𝜇〈𝑈〉𝑦
𝜏(𝑦)

= {

100%  𝑦+ = 0

50% 𝑦+ = 12

< 10% 𝑦+ = 50

 

 

𝑦+ = 50 
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𝑦+ is used to define different near wall regions/layers. 

1) 𝑦+ < 50 viscous wall region →  𝜏 = 𝑓(𝜇) 

2) 𝑦+ > 50 outer layer →  𝜏 ≠ 𝑓(𝜇) 

3) 𝑦+ < 5 viscous sublayer 〈𝑢𝑣〉 ≪  𝜇〈𝑈〉𝑦 

 

As Re increases, 𝛿𝜈/𝛿 decreases, since =  𝑅𝑒𝜏
−1. 

 

Mean velocity profiles. 

𝜏𝑤 = −𝛿𝑝𝑤𝑥  

𝑢𝜏 = √
𝜏𝑤
𝜌
= √−

𝛿

𝜌
𝑝𝑤𝑥  

 

Dimensional variables: 𝜌, 𝜈, 𝛿, and 𝑝𝑤𝑥  (𝑜𝑟 𝑢𝜏) can form two non-dimensional 

groups, such that: 

〈𝑈〉

𝑢𝜏
= 𝑓 (

𝑦

𝛿
, 𝑅𝑒𝜏) 

Where 𝑓 = universal non-dimensional function. 

Similarly, for 〈𝑈〉𝑦: 

〈𝑈〉𝑦 =
𝑢𝜏
𝑦
𝑓 (
𝑦

𝛿𝜈
,
𝑦

𝛿
) 

=
𝑢𝜏
𝑦
𝑓 (𝑦+,

𝑦

𝛿
) 

 

Idea is that 𝛿𝜈 appropriate for 𝑦+ < 50, while 𝛿 for 𝑦+ > 50. 

Note that: 

(
𝑦

𝛿𝜈
) / (

𝑦

𝛿
) = 𝑅𝑒𝜏 which shows that 𝛿 and 𝛿𝜈 share same information as 

𝑦

𝛿
 and 𝑅𝑒𝜏 
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Law of the wall (inner layer) 

Prandtl postulated that at high Re, close to the wall (𝑦/𝛿 ≪ 1), mean velocity 

profile depends on viscous scales: 

(𝑈)𝑦 =
𝑢𝜏
𝑦
𝛷𝐼 (

𝑦

𝛿𝜈
= 𝑦+) ≠ 𝑓(𝛿, 𝑈0)     (4) 

Define 

𝑢+ =
〈𝑈〉

𝑢𝜏
 

Such that Eq. (4) becomes: 

𝑑𝑢+

𝑑𝑦+
=
1

𝑦+
𝛷𝐼(𝑦

+)     (5) 

 

Integrating Eq. (5) gives the law of the wall: 

 

𝑢+ = 𝑓𝑤(𝑦
+) 

Where: 

𝑓𝑤(𝑦
+) = ∫

1

𝑦+

𝑦+

0

𝛷𝐼(𝑦
+)𝑑𝑦+ 

Is a universal function for channel flow, pipe, and BL flows, i.e., wall flows. 

 

The viscous sublayer 

𝑢+ =
〈𝑈〉

𝑢𝜏
= 𝑓𝑤(𝑦

+) 

No-slip condition: 

 

𝑢+(0) = 𝑓𝑤(0) = 0 
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Shear stress: 

𝜏𝑤 = 𝜌𝜈 (
𝑑〈𝑈〉

𝑑𝑦
)
𝑦=0

 

 

Or equivalently, normalizing using viscous scales: 

 

𝑑𝑢+

𝑑𝑦+
(0) =

𝑑𝑢+

𝑑𝑦

𝑑𝑦

𝑑𝑦+
=
〈𝑈〉𝑦
𝑢𝜏

𝜈

𝑢𝜏
 

=

𝜏𝑤𝜈
𝜇
𝜏𝑤
𝜌

= 𝑓𝑤
′ (0) = 1 

Hence, Taylor-series expansion for 𝑓𝑤(𝑦
+) for small 𝑦+ is: 

 

𝑓𝑤(𝑦
+) = 𝑦+ + 𝑂(𝑦+

2
) = 𝑢+ 

 

 

 

Small departure from 𝑢+ = 𝑦+ for 𝑦+ < 5, whereas significant (25%) for 𝑦+ >

12. 
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The Log Law 

Inner layer usually defined as 
𝑦

𝛿
< 0.1. At high Re, outer part of the inner layer 

corresponds to large 𝑦+~0.1𝛿/𝛿𝜈 = 0.1𝑅𝑒𝜏 ≫ 1. 

In this region, viscosity has little effect → 〈𝑈〉 ≠ 𝑓(𝜈) 

Therefore, 𝛷𝐼 (
𝑦

𝛿𝜈
) in Eq. (4) becomes independent of 𝛿𝜈 → constant: 

𝛷𝐼(𝑦
+) =

1

𝑘
 

For 𝑦/𝛿 ≪ 1 and 𝑦+ ≫ 1. 

Thus, in this region, the mean velocity gradient is: 

𝑑𝑢+

𝑑𝑦+
=

1

𝑘𝑦+
 

 

Which integrates to: 

𝑢+ =
1

𝑘
ln 𝑦+ + 𝐵 

With 𝑘 = 0.41 and 𝐵 = 5.2, “universal constants.” 

Valid for 𝑦+ > 30 except near 𝛿 (mid channel). 

The region between viscous sublayer and log law region (5 < 𝑦+ < 30) is called 

the buffer layer: transition region between viscous and turbulence dominated 

regions where RS peaks. 
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The velocity defect law 

Outer layer 𝑦+ > 50: Φ(𝑦/𝛿𝜈 , 𝑦/𝛿) ≠ 𝑓(𝜈) 

 Φ (
y

δν
,
y

δ
) → Φo (

y

δ
) 

Therefore, Eq. (4) becomes: 

(𝑈)𝑦 =
𝑢𝜏
𝑦
Φo (

𝑦

𝛿
) 

And integrating between 𝑦 and 𝛿 yields the velocity defect law due to von 

Karman: 

𝑈0 − 〈𝑈〉

𝑢𝜏
= 𝐹𝐷 (

𝑦

𝛿
) 

where 𝑈0 − 〈𝑈〉 = difference between centerline and mean velocities and, 

𝐹𝐷 (
𝑦

𝛿
) = ∫

1

𝑦′

1

𝑦
𝛿

Φo(𝑦′)𝑑𝑦′ 

And 𝐹𝐷 is different in different flows, i.e., not universal function like 𝑓𝑤(𝑦
+). 

At sufficiently high Re (>20,000) there is an overlap region between inner layer 

𝑦/𝛿 < 0.1) and outer layer (𝑦/𝛿𝜈 > 50) where both  

(𝑈)𝑦 =
𝑢𝜏
𝑦
𝛷𝐼 (

𝑦

𝛿𝜈
) 

And  

(𝑈)𝑦 =
𝑢𝜏
𝑦
Φo (

𝑦

𝛿
) 

are valid, such that: 

𝑦

𝑢𝜏
(𝑈)𝑦 = 𝛷𝐼 (

𝑦

𝛿𝜈
) = Φo (

𝑦

𝛿
) 

For 𝛿𝜈 ≪ 𝑦 ≪ 𝛿. 
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This equation can be satisfied in the overlap region only by 𝛷𝐼 and 𝛷𝑜 being 

constant, i.e., 

𝑦

𝑢𝜏
(𝑈)𝑦 =

1

𝑘
    ( log law) 

This shows an alternative derivation of the log law and established the form of 

the velocity defect law for small 𝑦/𝛿: 

𝑈0 − 〈𝑈〉

𝑢𝜏
= 𝐹𝐷 (

𝑦

𝛿
) = −

1

𝑘
ln (

𝑦

𝛿
) + 𝐵1 

Where 𝐵1 is a flow dependent constant.  

Let 𝑈0,𝑙𝑜𝑔 be the value of 〈𝑈〉 on the centerline extrapolated by the log law, then: 

𝐵1 =
𝑈0 − 𝑈0,𝑙𝑜𝑔

𝑢𝜏
= 𝐹𝐷  

DNS: 𝐵1 = 0.2 

Other measurements: 𝐵1~0.7. 

Larger for BL than channel and pipe flows. 
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Inner log law: 

〈𝑈〉

𝑢𝜏
=
1

𝑘
ln(𝑦+) + 𝐵    (𝑘 = 0.41, 𝐵 = 5.1) 

Outer log law: 

𝑈0 − 〈𝑈〉

𝑢𝜏
= −

1

𝑘
ln (

𝑦

𝛿
) + 𝐵1 →

〈𝑈〉

𝑢𝜏
=
𝑈0
𝑢𝜏
+
1

𝑘
ln (

𝑦

𝛿
) + 𝐵1 

𝐵1 = 0.2, 𝑅𝑒𝜏 = 180, 𝑅𝑒 = 13750, 𝑈0/𝑢𝜏 = 5 log10 𝑅𝑒 = 4.14 
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The friction law and the Reynolds number 

An approximation for the bulk velocity can be obtained using the log law: 

𝑈0 − 〈𝑈〉

𝑢𝜏
= 𝐹𝐷 (

𝑦

𝛿
) = −

1

𝑘
ln (

𝑦

𝛿
) + 𝐵1 

and assuming 𝐵1 = 0, i.e., neglecting outer and inner layers, i.e., assume log law 

valid over entire channel. 

𝑈0 − 𝑈

𝑢𝜏
=
1

𝛿
∫
𝑈0 − 〈𝑈〉

𝑢𝜏

𝛿

0

𝑑𝑦 

≈
1

𝛿
∫ −

1

𝑘
ln (

𝑦

𝛿
)

𝛿

0

𝑑𝑦 =
1

𝑘
~2.4     (6) 

DNS: 2.6, data: 2-3. 

 

Log law in the inner layer: 

〈𝑈〉

𝑢𝜏
=
1

𝑘
ln (

𝑦

𝛿𝜈
) + 𝐵 

 

Whereas in the outer layer: 

𝑈0 − 〈𝑈〉

𝑢𝜏
= −

1

𝑘
ln (

𝑦

𝛿
) + 𝐵1 

 

Adding these two together such that f(y) vanishes: 

 

𝑈0
𝑢𝜏
=
1

𝑘
ln (

𝛿

𝛿𝜈
) + 𝐵 + 𝐵1 

𝑈0
𝑢𝜏
=
1

𝑘
ln [𝑅𝑒0 (

𝑈0
𝑢𝜏
)
−1

] + 𝐵 + 𝐵1     (7) 

𝛿

𝛿𝜈
= 𝑅𝑒𝜏 

𝑅𝑒0 =
𝑈0𝛿

𝜈
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For given 𝑅𝑒0, this equation can be solved for 𝑈0/𝑢𝜏, i.e., center line velocity 

normalized 𝑢𝜏, which provides: 

 

𝑐𝑓 =
𝜏𝑤
1
2
𝜌𝑈0

2
= 2(

𝑢𝜏
𝑈0
)
2

 

 

Using Eq. (6): 

 

𝑈0 − 𝑈

𝑢𝜏
=
1

𝑘
→ 𝑈 = 𝑢𝜏 (

𝑈0
𝑢𝜏
−
1

𝑘
)     bulk velocity 

 

𝑅𝑒 =
2𝑈𝛿

𝜈
        𝐶𝑓 =

𝜏𝑤
1
2
𝜌𝑈

2
 

 

 

Eq. (7) good fit data 𝑅𝑒 > 3000. For 𝑅𝑒 < 3000 log law with universal constants 

not valid (Patel and Head, 1969). 
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𝑅𝑒𝜏 increases almost linearly with 𝑅𝑒: 

 

𝑅𝑒𝜏~0.09𝑅𝑒
0.88 

 

In contrast, velocity ratios increase very slowly with 𝑅𝑒: 

 
𝑈0
𝑢𝜏
~5 log10 𝑅𝑒 

Therefore, large fraction increase mean velocity between wall and centerline 

occurs in viscous wall region. 
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inner layers y/ regions vs. Re 

Reynolds stresses 

Useful to divide flow in three regions: 

1) Viscous wall region: 𝑦+ < 50 

2) Log law region: 50 < 𝑦+ < 120 (50𝛿𝜈 < 𝑦 < 0.3𝛿) 

3) Core region: 𝑦 > 0.3𝛿 

In 2): self-similarity → 〈𝑢𝑖𝑢𝑗〉/𝑘, production to dissipation ratio 𝑃/𝜀, and 

normalized mean shear rate 𝑆𝑘/𝜀 all nearly constant, as per Table 7.2 

〈𝑢𝑖𝑢𝑗〉/𝑘 values close to homogeneous shear flow results.  

𝑃/𝜀~1, i.e., viscous, and turbulent transport small.  
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In 3) mean velocity gradient and shear stress vanish →
𝑆𝑘

𝜀
, 〈𝑢𝑣〉, 𝑃~0. 

 

RS anisotropic but less than in the log law region. 

 

In 1) strongest turbulence: 𝑃, 𝜀, 𝑘 and anisotropy are maximum, with peak values 

for 𝑦+ < 20. 

 

 

BC 𝑈(0) = 0 determines the behavior of RS for small 𝑦 (power series): 
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𝑢 = 𝑎1 + 𝑏1𝑦 + 𝑐1𝑦
2 +⋯ 

𝑣 = 𝑎2 + 𝑏2𝑦 + 𝑐2𝑦
2 +⋯ 

𝑤 = 𝑎3 + 𝑏3𝑦 + 𝑐3𝑦
2 +⋯ 

 

The coefficients are zero mean random variables and, for fully developed channel 

flow, are statistically independent of 𝑥, 𝑧, and t. 

 

For 𝑦 = 0, no-slip condition yields 𝑢 = 𝑎1 = 0 and 𝑤 = 𝑎3 = 0. Similarly, the 

impermeability condition gives 𝑣 = 𝑎2 = 0. 

At the wall, 𝑢 and 𝑤 are zero for all 𝑥 and 𝑧 → 𝑢𝑥|𝑦=0 = 𝑤𝑧|𝑦=0. Therefore, 

continuity equation becomes: 

 

𝑣𝑦|𝑦=0 = 𝑏2 = 0 

 

The significance of 𝑏2 being zero is that close to the wall, there is two-component 

flow. RS can be obtained by taking products of the power series: 

 

〈𝑢2〉 = 〈𝑏1
2〉𝑦2 +⋯ 

〈𝑣2〉 = 〈𝑐2
2〉𝑦4 +⋯ 

〈𝑤2〉 = 〈𝑏3
2〉𝑦2 +⋯ 

〈𝑢𝑣〉 = 〈𝑏1𝑐2〉𝑦
3 +⋯ 

 

Therefore, 〈𝑢2〉, 〈𝑤2〉, and 𝑘 increase from zero as 𝑦2, while −〈𝑢𝑣〉 and 〈𝑣2〉 

increase more slowly, as 𝑦3 and 𝑦4, respectively. 
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TKE equation 

0 = 𝑃⏟
1

− 𝜀⏟̃
2

+ 𝜈
𝑑2𝑘

𝑑𝑦2⏟  
3

−
𝑑

𝑑𝑦
〈
1

2
𝑣𝑢 ∙ 𝑢〉

⏟        
4

−
1

𝜌

𝑑

𝑑𝑦
〈𝑣𝑝〉

⏟      
5

 

1) Production 

2) Pseudo dissipation 

3) Viscous diffusion 

4) Turbulent convection 

5) Pressure transport 

 
1) P: 𝑦3 near wall, peak at 𝑦+~12 (occurs where 𝜇〈𝑈〉𝑦 = 𝜌〈𝑢𝑣〉) and where 

𝑃/𝜀~1.8 and excess energy transported away. 

5) Small, whereas 4) transport excess P both towards the wall and towards the 

log law region. 

3) Transports towards the wall 

2) Is max at wall, where 𝑘 = 0 and 𝜀 = 𝜀̃ = 𝜈𝑘𝑦𝑦|𝑦=0 
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Weak 𝑓(𝑅𝑒) for 𝑦/𝛿 < 0.1, i.e., inner layer 

𝑟𝑚𝑠 = √〈𝑢2〉 = 𝑢′ 

 

𝑢′ peak ≠ 𝑓(𝑅𝑒), but at 𝑦+ = 50 there is an increase in 𝑢′ at higher Re. 
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Appendix: Channel flow laminar solution 

 

𝑈𝑥 + 𝑉𝑦 +𝑊𝑧 = 0 

𝑊 = 0,𝑈𝑥 = 0, 𝑉𝑦|0 = 0 ∴ 𝑉 = 0 

 

Momentum equations: 

0 = −
1

𝜌
𝑝𝑥 + 𝜈𝑈𝑦𝑦 

0 = −
1

𝜌
𝑝𝑦 → 𝑝 = 𝑝(𝑥) 

 
𝑑𝑝

𝑑𝑥
=
𝑑𝑝𝑤
𝑑𝑥

= 𝑓(𝑥) 

 

i.e.,  

0 = −
1

𝜌
𝑝𝑤𝑥 + 𝜈𝑈𝑦𝑦  or 

𝜕

𝜕𝑦
(𝜏) = 𝑝𝑤𝑥 with =

𝜕

𝜕𝑦
(𝑈) = f(y) 

 
𝜕

𝜕𝑦
(𝑈𝑦) =

1

𝜇
𝑝𝑤𝑥 

Integrating twice: 

𝑈𝑦 =
1

𝜇
𝑝𝑤𝑥𝑦 + 𝐶1 

𝑈 =
1

2𝜇
𝑝𝑤𝑥𝑦

2 + 𝐶1𝑦 + 𝐶2 

Apply BCs: 

𝑈(0) = 0 → 𝐶2 = 0 

𝑈(2𝛿) = 0 → 𝐶1 = −
1

𝜇
𝑝𝑤𝑥𝛿 

𝑈(𝑦) =
1

2𝜇
𝑝𝑤𝑥𝑦

2 −
1

𝜇
𝑝𝑤𝑥𝛿𝑦 
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Shear stress: 

𝜏𝑤 = 𝜇𝑈𝑦|0 = −𝑝𝑤𝑥𝛿 

𝑝𝑤𝑥 = −
𝜏𝑤
𝛿

 

 

Substituting in the velocity profile: 

 

𝑈(𝑦) = −
𝜏𝑤
𝛿

1

2𝜇
𝑦2 +

𝜏𝑤
𝛿

1

𝜇
𝛿𝑦 

=
𝜏𝑤
𝜇
(𝑦 −

𝑦2

2𝛿
) 

=
𝜏𝑤𝑦

2𝜇
(2 −

𝑦

𝛿
) 

=
𝜏𝑤𝛿

2𝜌𝜈

𝑦

𝛿
(2 −

𝑦

𝛿
) 

Centerline velocity: 

𝑈(𝛿) = 𝑈0 =
𝜏𝑤𝛿

2𝜌𝜈
=
𝜏𝑤𝛿

2𝜇
 

Bulk velocity: 

𝑈 =
1

𝛿
∫ 〈𝑈〉𝑑𝑦
𝛿

0

=
1

𝛿
∫
𝜏𝑤𝑦𝛿

2𝛿𝜌𝜈
(2 −

𝑦

𝛿
)𝑑𝑦

𝛿

0

 

=
1

𝛿
∫
𝜏𝑤
𝜌𝜈
(𝑦 −

𝑦2

2𝛿
)𝑑𝑦

𝛿

0

=
1

𝛿

𝜏𝑤
2𝜌𝜈

(
𝛿2

2
−
𝛿2

6
) 

𝑈 =
𝜏𝑤𝛿

3𝜇
  

 

Relation between centerline velocity and bulk velocity: 

 

𝑈 =
2

3
𝑈0 
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Relation between Reynolds numbers: 

𝑅𝑒 =
𝑈(2𝛿)

𝜈
     𝑅𝑒0 =

𝑈0𝛿

𝜈
 

 𝑅𝑒 =
2

3
𝑈0
(2𝛿)

𝜈
=
4

3
𝑅𝑒0 

Skin friction coefficients: 

𝑐𝑓 =
𝜏𝑤
1
2
𝜌𝑈0

2
     𝐶𝑓 =

𝜏𝑤
1
2
𝜌𝑈

2
 

 

𝑐𝑓 =
2𝜇𝑈0/𝛿

1
2
𝜌𝑈0

2
=

4𝜇

𝜌𝑈0𝛿
=

4

𝑅𝑒0
=
16

3𝑅𝑒
 

𝐶𝑓 =
2𝜇𝑈0/𝛿

1
2
𝜌𝑈

2
=
2𝜇𝑈0/𝛿

1
2
𝜌
4
9
𝑈0
2
=

9

𝑅𝑒0
=
12

𝑅𝑒
 

Friction velocity: 

𝑢𝜏 = √𝜏𝑤/𝜌 

1

2
𝜌𝑈0

2𝑐𝑓 = 𝜏𝑤 →
𝑈0
2𝑐𝑓
2

=
𝜏𝑤
𝜌
= 𝑢𝜏

2 

𝑐𝑓 = 2(
𝑢𝜏
𝑈0
)
2

→
𝑢𝜏
𝑈0
= √

𝑐𝑓
2
= √

2

𝑅𝑒0
= √

8

3𝑅𝑒
 

𝑅𝑒𝑚𝑎𝑥 = 1350 →
𝑢𝜏
𝑈0
= √

8

3 × 1350
= 0.044 

 


