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Chapter 8: Channel and Pipe Flow (Chap. 7 Bernard) 

Part 2: Pipe Flow 

 

𝑅𝑒~2000 transition turbulence. 

𝑅𝑒 =
𝑈𝑚𝐷

𝜈
     𝑈𝑚 =

𝑄

𝐴
 

 

Fully developed flow: 𝑈 = (𝑈(𝑟), 0,0) → averaged streamwise momentum 

equation: 

0 = −
𝜕𝑝

𝜕𝑥
+

1

𝑟

𝑑

𝑑𝑟
(𝜇𝑟

𝑑𝑈

𝑑𝑟
− 𝜌𝑟𝑢𝑣𝑟)     (1) 

 

Where 𝑟 is the outward radial coordinate, i.e., 𝑟 = 0 at the center of the pipe and 

𝑟 = 𝑅0 at the wall. Introduce wall coordinate: 

 

𝑦 ≡ 𝑅0 − 𝑟 

Such that: 

 

𝑈
∗
(𝑦) = 𝑈(𝑅0 − 𝑦) 

 

However, the ∗ symbol will be dropped. 

 

The wall shear stress: 

𝜏𝑤 = 𝜇
𝑑𝑈

𝑑𝑦
(0) 

Which also defines 𝑅𝜏 =
𝑈𝜏𝐷

𝜈
 where 𝑈𝜏 = √

𝜏𝑤

𝜌
 = friction velocity. 
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Integrating Eq. (1) over the pipe cross-section yields 

 

0 = ∫ ∫ −
𝜕𝑝

𝜕𝑥
+

1

𝑟

𝑑

𝑑𝑟
(𝜇𝑟

𝑑𝑈

𝑑𝑟
− 𝜌𝑟𝑢𝑣𝑟)

2𝜋

0

𝑅0

0

𝑟𝑑𝑟𝑑𝜃 

0 = −𝜋𝑅0
2

𝜕𝑝

𝜕𝑥
− 2𝜋𝑅0𝜏𝑤 

−𝜋𝑅0
2

𝜕𝑝

𝜕𝑥
= 2𝜋𝑅0𝜏𝑤     (2) 

Since  

𝑑𝑈

𝑑𝑟
(𝑅0) = −

𝑑𝑈

𝑑𝑦
(0) 

And 

𝑣𝑟(0) = 𝑢𝑣𝑟(0) = 𝑢𝑣𝑟(𝑅0) = 0 

 

Eq. (2) shows that 
𝜕𝑝

𝜕𝑥
= 𝑓(𝜏𝑤).  

 

The volumetric flow rate: 

 

𝑄 = 2𝜋 ∫ 𝑈(𝑟)𝑑𝑟
𝑅0

0

 

 

can be determined once 𝑈(𝑟) is known, which determines the averaged velocity 

𝑈𝑚 = Q/A where A=𝜋𝑅0
2 and defines the Reynolds number 

𝑅𝑒 =
𝑈𝑚𝐷

𝜈
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Define friction factor for pipe flow 𝑓 as: 

 

𝑓 =
∆𝑝

∆𝑥

2𝐷

𝜌𝑈𝑚
2 = 8

𝑅𝜏
2

𝑅𝑒
2 =

8𝜏𝑤

𝜌𝑈𝑚
2     (3) 

 

The Moody diagram can be used to find values of 𝑓(𝑅𝑒).  

 

Current analysis presumes that the pipe is smooth. For engineering applications, it 

is necessary to consider 𝑓(𝑅𝑒,
𝜀

𝑑
), where 

𝜀

𝑑
 represents the relative pipe roughness 

(see Appendix). 

 

Alternatively explicit formulas are available for smooth and rough pipes, e.g.: 

For 𝑅𝑒 < 105, the Blasius smooth pipe friction law 

 

𝑓 = 0.266𝑅𝑒
−1/4

 

 

And substituting this into Eq. (3) gives a relationship between 𝑅𝜏 and 𝑅𝑒 

 

𝑅𝜏 = 0.182𝑅𝑒
7/8
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Previous channel flow analysis neglected outer layer, which should be included 

for pipe and especially BL flows. 

In viscous sublayer (𝑦+ < 5): 

𝑈
+

= 𝑦+ 

 

And log law valid for intermediate layer of pipe flow. 

 

For high Re pipe flow, central core mean velocity cannot be scaled using viscosity, 

so similarity is achieved using the velocity defect law: 

 

𝑈𝑐𝑙 − 𝑈(𝑦)

𝑈𝜏
= 𝑔(𝜉) 

 

Where 𝑈𝑐𝑙 = mean centerline velocity and 𝜉 ≡ 𝑦/𝑅0 is a similarity variable. In 

practice, this equation is found to work also in most of the intermediate region. 

 

If velocity defect law applies in overlap region, then: 

 

𝑓(𝑦+) = 𝑈
+

=
𝑈𝑐𝑙

𝑈𝜏
− 𝑔(𝜉)     (4) 

 

Differentiating Eq. (4) with respect to 𝑦 gives 

 
𝑑𝑓

𝑑𝑦+
(𝑦+)

𝑈𝜏

𝜈
= −

𝑑𝑔

𝑑𝜉
(𝜉)

1

𝑅0
 

 

 

 

𝑦+ =
𝑈𝜏𝑦

𝜈
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And multiplying both sides of the equation by 𝑦 gives: 

 

𝑦+
𝑑𝑓

𝑑𝑦+
(𝑦+) = −𝜉

𝑑𝑔

𝑑𝜉
(𝜉)     (5) 

 

LHS only f(𝑦+) and RHS only f(𝜉); thus both sides must equal and constant.  Setting 

the constant to be 1/𝑘: 

 

𝑦+
𝑑𝑓

𝑑𝑦+
(𝑦+) =

1

𝑘
 

 

Integration gives the log law: 

 

𝑈
+

= 𝑘−1 log 𝑦+ + 𝐵 

 

i.e., using velocity defect law in intermediate layer recovers log-law. 

 

New high Re data shows 𝑘 = 0.42, 𝐵 = 5.6 for 600 ≤ 𝑦+ ≤ 0.12𝑅0
+ vs. historical 

41 ad 5.2. 

 

The details of the velocity defect law for outer flow will be analyzed for BL flow. 

 

 

 

 



6 
 

In the region beyond the viscous layer, up to 𝑦+~300, a power law gives: 

 

𝑈
+

= 8.48(𝑦+)0.142 

 

For 5 < 𝑦+ < 300.  

 

This should be compared with previously defined composite sub-layer, blending 

layer, and logarithmic-overlap formulas: 

( ) ( )
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Power Law 

Early studies showed that power laws can represent flow behavior over the entire 

pipe cross-section: 

𝑈

𝑈𝑐𝑙
= (

𝑦

𝑅0
)

1/𝑛

 

 

Where 𝑛 increases with Re, shows good fit with data, but cannot provide 𝜏𝑤. 

Taking a derivative of the power law gives: 

𝑑𝑈

𝑑𝑦
=

𝑈𝑐𝑙

𝑛
(

𝑦

𝑅0
)

1
𝑛−1

 

Where experimental fits show that 𝑛~6 − 10, such that 
1

𝑛
− 1~ − (0.85 − 0.9). 

Therefore, e.g., for n = 10: 

𝑑𝑈

𝑑𝑦
(0)~

𝑈𝑐𝑙

𝑛
(

𝑅0

𝑦
)

0.9

 

Showing that the shear stress approaches ∞ as 𝑦 → 0. 

Linear-log plots of power law show good fit to the data for range of n: 

 
n 
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Subsequently, power laws were generalized to include not only inner law variables  

(𝑦, 𝜏𝑤, 𝜈, 𝜌) but also outer law variable 𝑅0, i.e., 𝑑𝑈/𝑑𝑦 = 𝑓(𝑦, 𝜏𝑤, 𝜈, 𝜌, 𝑅0) for the 

intermediate layer to include dependence on 𝜈 and 𝑅0, i.e., generalization of the 

log law approach, but in this case not independent of Re (partial similarity). 

 

Dimensional analysis gives: 

 

𝑑𝑈

𝑑𝑦
=

𝑈𝜏

𝑦
𝑓(𝑦+, 𝑅𝜏)     (6) 

 

But since 𝑅𝜏 is related to 𝑅𝑒, Eq. (6) can be rewritten as: 

 

𝑑𝑈

𝑑𝑦
=

𝑈𝜏

𝑦
𝑓(𝑦+, 𝑅𝑒)     (7) 

 

If 𝑓 = constant, log law is implied, alternatively if 𝑓 obeys a power law: 

 

𝑓(𝑦+, 𝑅𝑒) = 𝛽∗(𝑅𝑒)(𝑦+)𝛼(𝑅𝑒)     (8) 

 

For large 𝑦+ and 𝑅𝑒.  
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Both 𝑈
+

 and 𝑓 will follow power laws after integration of Eq. (7) using (8).  

𝑑𝑈 =
𝑈𝜏

𝑦
𝛽∗(𝑅𝑒)(𝑦+)𝛼(𝑅𝑒)𝑑𝑦 

𝑑𝑈
+

= 𝛽∗(𝑦+)𝛼−1𝑑𝑦+ 

∫ 𝑑𝑈
+

𝑈
+

(𝑦+)

𝑈
+

(0)

= 𝛽∗ ∫ (𝑦+)𝛼−1𝑑𝑦+
𝑦+

0

 

 

Applying BC at the wall gives: 

𝑈
+

(𝑦+) =
𝛽∗

𝛼
(𝑦+)𝛼 

 

𝑈
+

(𝑦+) = 𝛽(𝑅𝑒)(𝑦+)𝛼(𝑅𝑒)     (9) 

 

 

Where 𝛽 is defined from 𝛼 and 𝛽∗ after the integration, i.e., 𝛽=𝛽∗/ 𝛼. 

 

To determine a form of 𝛼(𝑅𝑒), consider behavior of Eq. (9) as ν→ 0. If 
𝜕𝑝

𝜕𝑥
 is 

constant, 𝜏𝑤 remains constant as ν→ 0, and so does 𝑈𝜏. 

 

Since 𝑈 is bounded, 𝑈
+

 is bounded, so LHS of Eq. (9) is bounded as ν→ 0.  

 

Consequently, RHS must be bounded as 𝑦+ → ∞ and 𝑅𝑒 → ∞.  

 

 

Noting the identity 

 

(𝑦+)𝛼(𝑅𝑒) = 𝑒𝛼(𝑅𝑒) log 𝑦+
 

 

 

 

𝑦+ =
𝑈𝜏𝑦

𝜈
 

𝑑𝑦+ =
𝑈𝜏

𝜈
𝑑𝑦 

𝑈
+

=
𝑈

𝑈𝜏
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Using this reasoning 𝛼(𝑅𝑒) is assumed of the form: 

 

𝛼(𝑅𝑒) =
𝛼1

log 𝑅𝑒
 

 

where 𝛼1 = constant reaches a non-zero limit for high Re: 

 

𝛼(𝑅𝑒) log 𝑦+ = 𝛼1 log (
𝑦+

𝑅𝑒
) → −𝛼1 for 𝑅𝑒 → ∞ 

 

 and gives good agreement with experiments. It is assumed that 𝛽(𝑅𝑒) shows the 

same dependence on 𝑅𝑒 as 𝛼: 

 

𝛽(𝑅𝑒) = 𝛽0 +
𝛽1

log 𝑅𝑒
 

 

Where 𝛽0 and 𝛽1 are constants. 

 

It is then derived that: 

 

𝑈
+

(𝑦+) = (𝛽0 +
𝛽1

log 𝑅𝑒
) (𝑦+)

𝛼1
log 𝑅𝑒      (10) 

 

Where the appearance of 𝑅𝑒 in the form of its logarithm means that if 𝑅𝑒 is 

replaced by 𝛾𝑅𝑒 → log 𝛾𝑅𝑒 = log 𝛾 + log 𝑅𝑒, which converges to log 𝑅𝑒  as 𝑅𝑒 →

∞. 

 

𝛼1 and 𝛽1 should have universal form and together with 𝛽0 are determined by 

empirical fit, comparing with EFD data. 

 

For 4 × 103 ≤ 𝑅𝑒 ≤ 3.24 × 106: 𝛼1 = 1.5, 𝛽0 = 0.578, and 𝛽1 = 2.5. 
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𝜓 ≡
log 𝑅𝑒

𝛼1
log (

𝑈
+

𝛽0 +
𝛽1

log 𝑅𝑒

) 

From Eq. (10): 

𝑈
+

𝛽(𝑅𝑒)
= (𝑦+)

𝛼1
log 𝑅𝑒 = 𝑎 

log 𝑎 =
𝛼1

log 𝑅𝑒
log 𝑦+ → log 𝑦+ =

log 𝑅𝑒

𝛼1
log 𝑎 = 𝜓 

 

i.e., Eq. (10) is equivalent to 𝜓 = log 𝑦+. 

 

Since the power law is meant to cover larger region of the pipe than the log law, it 

can be used to explain large 𝑦+ departure from log law. 

 

 

 

 



12 
 

Streamwise normal RS 𝑢2 for high Re data shows 2nd peak in addition to peak at 

𝑦+ = 15, but reason for this is still under discussion. 
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Appendix 

 


