Chapter 8: Channel and Pipe Flow (Chap. 7 Bernard)

Part 2: Pipe Flow

R,~2000 transition turbulence.

Q
R, = Un =~

Fully developed flow: Q=(ﬁ(r),0,0)—> averaged streamwise momentum

equation:
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Where 7 is the outward radial coordinate, i.e., r = 0 at the center of the pipe and
r = R, at the wall. Introduce wall coordinate:

yERO—T

Such that:
U () =U(Ry—y)

However, the * symbol will be dropped.

The wall shear stress:

Which also defines R, = % where U, = ’%‘” = friction velocity.



Integrating Eq. (1) over the pipe cross-section yields
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And

17_7«(0) = uvr(o) = uvr(RO) =0

Eq. (2) shows that Z—Z = f(t,).

The volumetric flow rate:

Ry
Q = an U(r)dr
0

can be determined once U(r) is known, which determines the averaged velocity
= Q/A where A=rtR3 and defines the Reynolds number
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Define friction factor for pipe flow f as:
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The Moody diagram can be used to find values of f (Re).
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Current analysis presumes that the pipe is smooth. For engineering applications, it
is necessary to consider f(Re,z), where 2 represents the relative pipe roughness

(see Appendix).

Alternatively explicit formulas are available for smooth and rough pipes, e.g.:

For R, < 10>, the Blasius smooth pipe friction law
f =0.266R,"*

And substituting this into Eq. (3) gives a relationship between R, and R,

R, = 0.182R)/®
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Previous channel flow analysis neglected outer layer, which should be included
for pipe and especially BL flows.

In viscous sublayer (y* < 5):

=Y

And log law valid for intermediate layer of pipe flow.

For high Re pipe flow, central core mean velocity cannot be scaled using viscosity,
so similarity is achieved using the velocity defect law:

Ucl - U()’)

U, =g(&)

Where ﬁcl = mean centerline velocity and ¢ = y/R, is a similarity variable. In
practice, this equation is found to work also in most of the intermediate region.

If velocity defect law applies in overlap region, then:
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Differentiating Eq. (4) with respect to y gives
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And multiplying both sides of the equation by y gives:

df
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LHS only f(y™) and RHS only f(¢); thus both sides must equal and constant. Setting
the constant to be 1/k:

df ., 1
dy+(y)—k

y+
Integration gives the log law:
7t -1 +
U =k "logy™ +B
i.e., using velocity defect law in intermediate layer recovers log-law.

New high Re data shows k = 0.42, B = 5.6 for 600 < y* < 0.12R{ vs. historical
41 ad 5.2.

The details of the velocity defect law for outer flow will be analyzed for BL flow.



In the region beyond the viscous layer, up to y*~300, a power law gives:
—+
U = 8.48(y+)0'142

For5 < y* < 300.

This should be compared with previously defined composite sub-layer, blending
layer, and logarithmic-overlap formulas:
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Figure 7.18 Mean velocity profiles in pipe flow [6] showing the collective approach to a log law. The
curves are for Reynolds numbers between R, = 31 x 10° and R, = 18 x 10°. Reprinted with permission
of Cambridge University Press.



Power Law

Early studies showed that power laws can represent flow behavior over the entire

plpe cross-section:
Ucl RO

Where n increases with Re, shows good fit with data, but cannot provide 7,,,.
Taking a derivative of the power law gives:
— 1
au Uy ( y )ﬁ‘l
dy n \R,

Where experimental fits show that n~6 — 10, such that% — 1~ —(0.85—-0.9).

Therefore, e.g., for n = 10:

Showing that the shear stress approaches co as y — 0.

Linear-log plots of power law show good fit to the data for range of n:
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Figure 7.19 Plots of (U/Umax)”” in pipe flow for empirically fitted exponents, n. From left to right
n L =6.0,6.6.7.0.8.8.10.0, and 10.0, and the Reynolds numbers are
4x10%23x10% 1.1 x10°,1.1 X 10°,2 x 10°, and 3.2 x 10°. From [25], p. 563.
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Subsequently, power laws were generalized to include not only inner law variables

(y, T, v, p) but also outer law variable Ry, i.e., dU /dy = f(y, ., V, p, Ry) for the
intermediate layer to include dependence on v and Ry, i.e., generalization of the
log law approach, but in this case not independent of Re (partial similarity).

Dimensional analysis gives:

U _Yerorry (6
dy y !V

But since R, is related to R,, Eq. (6) can be rewritten as:

U _Uvry )
dy y Y T

If f = constant, log law is implied, alternatively if f obeys a power law:

O Re) = B (RI(y*®R (8)

For large y* and R,.
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Both U and f will follow power laws after integration of Eq. (7) using (8).
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Applying BC at the wall gives:

7heo+ _'B_* +a
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Where [ is defined from a and " after the integration, i.e., f="/ a.

To determine a form of a(R,), consider behavior of Eq. (9) as v— 0. If % is

constant, 7,, remains constant as v— 0, and so does U.

Since U is bounded, ﬁ+ is bounded, so LHS of Eq. (9) is bounded as v— 0.

Consequently, RHS must be bounded as y* — o0 and R, — .

Noting the identity

(y*)*Re) = ga(Re)logy™



Using this reasoning a(R,) is assumed of the form:

(04
a(R,) = —log;
e

where a4 = constant reaches a non-zero limit for high Re:

+
a(R.)logy* = a, log (?;_e> — —a, for Re —» o
and gives good agreement with experiments. It is assumed that B(R,) shows the
same dependence on R, as a:

b1
logR,

.B(Re) = Bo +

Where B, and [8; are constants.
It is then derived that:

B1
logR,

U () = (ﬁo + )(yﬂlog_lRe (10)

Where the appearance of R, in the form of its logarithm means that if R, is
replaced by yR, = logyR, = logy + log R, which converges to logR, as R, —

00,

a4 and B; should have universal form and together with 5, are determined by
empirical fit, comparing with EFD data.

For4 x 103 < R, < 3.24 X 10%: a; = 1.5, B, = 0.578, and 8, = 2.5.
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e Figure 7.20 y vs.logy* where y = y* in this
i figure. Data are taken from 16 different

i E Reynolds numbers from 4 x 10% to 3.24 x 10°
gl measured in [29]. From [31]. Reprinted with
permission from ASME International.
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From Eqg. (10):
—+
ay
= (y*)o8Re = g
BRD
a logR
loga = log;e logy* > logy™ = il “loga =y

i.e., Eq. (10) is equivalent to y = logy ™.

Since the power law is meant to cover larger region of the pipe than the log law, it
can be used to explain large y* departure from log law.
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Streamwise normal RS uZ for high Re data shows 2" peak in addition to peak at
y* = 15, but reason for this is still under discussion.
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Figure 7.21 Streamwise velocity variance at high Reynolds numbers in pipe flow [32]. Reprinted with
permission of Cambridge University Press.
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