Chapter 8: Channel and Pipe Flow (Chap. 7 Bernard)

Channel, pipe, and BL similar flows due wall boundary, especially near wall,
however some differences due differences in their outer flows.

Pipe curvature effects not discernable.

Channel flow experiments difficult due requirement large span with 2D mean flow
vs. DNS which can use periodic boundary conditions. Whereas pipe flow
amendable both.

BL amendable both experiments and DNS and better for experimental study of
coherent structures and transition to fully turbulent flow.

Pat 1: Channel flow
Flow between two parallel plates, with constant P,: Poiseuille flow.

y A Figure 7.1 Geometry of channel
flow.
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For fully developed laminar flow:

Uo) = ——22 5 2h - y)
Y) = Z,u(')xy y

This solution holds for R, = hU,,,/v < 1000, where:

1 2h

U, = o U(y)dy = mean bulk velocity
0



For turbulent flow U = (U(y),0,0) and u = (w, v, w).

Periodic BCs in x, z assuming large enough domain such that, e.g., f(r) — 0 for

large r.

Channel flow simulations characterized using:

R = Uh  h
v (/U
Based on the friction velocity
T
U, = 7””
Where:
- o)
Ty, = U &

Is the wall shear stress.

For large R; clear separation inner and outer flow.

h = length scale channel

v . .
7. = Viscous length scale = size flow

T

features near wall viscous region
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Reynolds Stress and Force Balance

For fully developed mean flow, momentum equations become:

0=

aF+d v _\ aﬁ+ dt ) —
ox T dy ‘udy puv | = — = & (1) | x —direction

auv -
T = u— — puv = total mean shear stress
dy

0 oP  dv? , p——
=% p & (2) y —direction
0=0 z —direction

Note that U, u?, v2,uv = f).
Taking an x derivative of Egs. (1) and (2) shows that

oP - -

=7 f(x,y) = constant (i.e., Py, = Py, = Py, = 0)
Integration of Eq. (2) across the channel from O toy:

P(x,y) = P(x,0) — pv2(y)

Since ﬁ(O) = 0, showing that P(x, y) is minimum where ﬁ(y) is maximum,
which differs from laminar flow where the pressure is constant across the flow.

oP
— = constant,

Also, since 5

P(x,y) —P(x+L,y) # f(y)



Integration of Eq. (1) over thearea 0 < x < L,0 < y < 2h yields force balance:

L r2h L r2h aﬁ d dU
0dxd =f j [——+—(u—— W)]dxd
—];) -[0 Y 0o Jo dx dy\" dy P Y

AP2h—1,2L =0 (3)
Where:
_ oP _ _
AP = —La =P(x,0) —P(x+L,0)

Is the pressure drop between x locations. Note that in deriving Eq. (3) the channel
centerline asymmetry condition was used:

dUO _du o
ay O =g, @R

Eq. (3) shows that pressure force is balanced by t,, force. For turbulent flow,
channel center high momentum fluid is better able to penetrate wall region vs.
laminar flow resulting in steeper velocity gradient near the wall.
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Figure 7.2 Average velocity in channel flow of width 2h scaled by mean centerline velocity, U,: —,
turbulent flow; ——, laminar flow.



Differentiating the velocity profile of fully developed laminar flow [U(y) =

1 0P

———y(2h — y)] and substituting 7,,

2u 0x

au 16P(2h ) = 16P(h )
dy  2udx y)= U ox y
y
——__h _E)
d_U()____2h=T_W_>_a_P=TW
dy 21 0x U dx h
dP
d0x

du .
ey (0) gives:

_ auv . ..
i.e., the shear stress 74,= Ho s linear across the channel: momentum flux (shear

stress) across channel from the centerline towards walls due to —P.,.

(¢) Plane Couette flow

Figure 9.4 Various cases of parallel flow in a channel.

(d) Plane Poiseuille flow




For turbulent flow:

0P
—L——2h—21,L =0

aﬁ_rw_ fant (4
3~ T, - constan (4)

Substituting Eq. (4) into Eq. (1) and integrating from 0 to y, gives:

0 Jy [rw+ d < au _)
= —+—|U—5——puv
o LR dy\ dy P

y

dy

0=%y+ — — puv

T dU
u dy

0
T dU

O=7Wy—rw+ ud—y—pﬁ

#%-PW=TW(1—%) (5)

i.e., same as laminar flow, with the addition of —puv. i.e., sum of viscous and
turbulent stress varies linearly across the channel.



Eg. (5) can be scaled using the friction velocity, such that:

du y
 _am=p2(1-2
4 &y uv = U7 (1 h)
dU° w
uv
&0
dy U, h
dU U‘r uv y
———=U|1—-7
dytv U, T( h)
- y y*tvu, Uik
—uw =1—-==1—-—— R, =
dy* h U, VR, v
—+ 1
Z;; —up =1- J;T= T" = total scaled mean shear stress (of course also linear)
Where:
—+ U —t uv . U,y
= UT uv = UTZ yr = "
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Figure 7.3 Decomposition of the total stress as given by Eq. (7.14) in turbulent channel flow: — - -,
dU /dy*; ——,—av";—1 —y* /R,. Data taken from [13].
The mean viscous (molecular) momentum transport/flux is confined to a thin layer
near the wall. The drop in molecular momentum transport/flux is compensated by
the turbulent momentum transport/flux, which is asymmetric across the channel.
The peak in —uv is at y* ~ 53 after which it has a nearly linear variation to zero at
the channel centerline where the mean shear is zero.



Eq. (1) scaling:

0_rw+d du
A e
o Pz d dU _ Ve= |
~Th Tay\Fay TP
G Vi, dU( dUU y+ =2
T h yt v ytv w v
v, d [ dU __ d _d U
0= mt o Urdy+—uv dy dyt v
vU, d (dU ww p = Ul
0=—+U,— t=7,
h dyt\dyt U;
% d (1dU uv —+ U
0=—-+ ——— Uu =-—
hU, dy*t\U,dy* U? U,

1 d [(dU _,
0=—+
R, dy*\dy*

0 =(1) pressure force + (2) viscous force — (3) turbulence force
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Fgu 7.4 Dec omp osition of the mean momentum equation (7.16) in turbulent channel flow: — - —
viscous force; —, turbulent transport; - - -, pressure force. Data taken from [13].

Pressure force (1) Is constant across channel and balanced by (3) for y* >
approximately 70.

Near wall y* < approximately 70, complex physics wherein (3) transports

momentum from outer channel towards wall (gain), which is counterbalanced by
viscous diffusion (2) again towards the wall (loss).



Mean Flow Similarity: flow field regions.

1) Viscous sublayer: f(u)

2) Channel center = outer/core region = f(u)

3) Overlap layer = intermediate region, requires high Re for separation of 1)
and 2).

Between 1) and 3) = buffer layer where turbulence is maximum: 5 < y* < 30, as
per later discussion.

Viscous sublayer (see Appendix for RS for u; and (uiuj))

Viscosity essential for flow near solid boundaries. Evaluating Eq. (1) at y = 0 and
using Eq. (4) gives:

0=t dZUO duy _udU(O)_I_ d?U
=p e O - =0 Hay?

d?U o) — 1dU(0) .
Where the fact that
duv(0
©_,
dy

Follows from the identity:
Juv Jdu dv

oy oy oy

Differentiating Eq. (1) with respect to y:

dBEO—O 7
=0 O



Since

GZW(O)—O

dy? N
OZW d (ou i ov 26u6v+ 02v +62
9y? 9y ayv ay dydy — 0dy* 0y?

Jdu ou 02v 0%u

=2 Gt Uu—F—vp = _
3y ox uay +ayv OQaty =0

Using continuity v, = —u, andw, = 0.

Taylor series expansion for U(y) neary = 0:

_ C oy dU
U0 =) i@ ®
n=0

Substituting Egs. (6) and (7) into (8) gives

. du 'y v
U(y)—hE(O)E+h (O)Ww(h)

2

U) ~h—<0>——h—<0) th

— . _au y y?
U(y)~h5<0)(ﬁ—m> ©)

Scaling Eq. (9) with U, yields

U (y*) =y* - o)
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+ [T +
Forsmally™ - U =y™,EFDand DNSy™ < 5.

Using dimensional analysis:

U=fO,tmpv) >0 =f@*)

Represents the law of the wall.

U = y* # f(R,) -~ Complete similarity

Intermediate layer

—+

Near y* = 50, v

.. —t . .
e minimum and uv can be assumed nearly constant in this

—+
. . au — +

region, as per Fig. 7.3 and o w =1- J;T, such that:

T

—+

uv =~ —1
Or equivalently
T
uw = —=  (9)
p

If Eq. (9) is legitimate, then dimensional analysis suggests that:

W ) <= (10)
W e 3ol
y Y p y

Introducing a dimensionless constant of proportionality k, known as the Von
Karman constant, Eq. (10) becomes
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w_bt% (11)
~ ky

Expressing Eq. (11) in wall units and integrating gives

1dU 1
U.dy  ky
—+
v’ U, U,
dyt v kytv
—+
av- 1
dyt B ky*

—+
dUu 1
+— | gt
| @ = | me e

. 1
U+(y+) = Elogy+ +B (12)

Where B is a constant.
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Figure 7.5 Semi-log plot of U showing an approximate log-law behavior.
R, =1000; —, R, = 5186. Data from [10, 13].
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k=0.41
B=52

o R =541;——,



More precise determination of whether a log law is present can be obtained by
examination of

1/0.41=2.44
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Figure 7.6 f as defined in Eq. (7.32) for the mean velocities in Figure 7.5. — - — R_ = 541; ——,
R, = 1000; —, R, = 5186. Data from [10, 13].

p constant only for R, = 5186 — intermediate layer developed only for R, >
2200.
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Buffer layer: Merges smoothly the viscosity-dominated sub-layer and turbulence-
dominated log-layer in the region 5< y* < 30.

Unified Inner layer: There are several ways to obtain composite of sub-/buffer
and log-layers.

Evaluating the RANS equation near the wall using p; turbulence model shows
that:

pe~y> y—-0

Several expressions which satisfy this requirement have been derived and are
commonly used in turbulent-flow analysis. That is:

o= pxe | e —1-xU” we)

Assuming the total shear is constant very near to the wall a composite formula
which is valid in the sub-layer, blending layer, and logarithmic-overlap regions is
obtained:

14



Fig. 6-11 shows a comparison of this equation with experimental data obtained
very close to the wall. The agreement is excellent. It should be recognized that
obtaining data this close to the wall is very difficult.
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Comparison of Spalding's inner-low expression with the pipe-flow data of Lindgren (159651
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Velocity moments

Effect of Re negligible in core region of the channel.

Near wall, for larger R, more rapid
changes in correlations and shifted
closer to the wall.

v?2 damped near wall.

v2 and w? somewhat isotropic in core

region, but not uz.

U0 @ y*t~15.5
Buffer layer: steep U_y and max w;y;

For y* < 2.5 results seem independent
of R,. However, for R, = 5186:

+

urms
0) =0.5
e —(0) =
d?ut
—22(0) = —0.038
dy+?
R, = 1000:
du;rms
—(0) = 0.47
o (0)
d

2
u

—2(0) = —0.032
dy+?

i.e., persistent Reynolds number effect.
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Figure 7.7 Normal Reynolds stresses in channel flow. — R_ = 5186; — - —, R_ = 1000. Top curves are
u?, middle curves are w?, lower curves are v2. Data taken from [10, 13].

Figure 7.8 Normal Reynolds stresses in channel flow plotted with respectto y*. — R_=5186; — - —,
R_ = 1000. Top curves are u?, middle curves are w?, lower curves are v?. Data taken from [10, 13].

U is linear up to y* =5, so consider Taylor series expansion of u;, . about y = 0:

urms = /rm/m + rms (0) T+

2,,+

d urms 2
— 0y +0((y"* (13)
2 dy
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The distance from the boundary over which u\,,,c can be modeled as linear can be

—+
analyzed considering the ratio u}t,,. /U .
Recall scaling of U(y) resulted in the equation:
+)2

—+ U
UGt = (Sy) =y —(ZR

U+(y+)zy+< 2yR> (14)

+0(r")")

Dividing Eq. (13) by ﬁ+and combining with Eq. (14) gives:

ut duf +  1d%uf +
U dy 7 2 U U
ut dut + 1d%ut +2
s s () — T (0) — s + 0())
+ dv+ 2 +2 +
v g 3’+(1_2yR> v y+(1_2yR)
T

Define y*' = y* /2R,

2
u;"-ms — du:‘-ms (O) y+ 1 dzurms( y+ + 0((y+)2)
7t Ayt (=) 2y (1= )
and use binomial theorem such that:
1 p
—x = 1+y*
)
Therefore,
u;"-ms du;ms y+ 1 d urms y+
= 0 0)y* o((y*

— = (0) + 0) += 0) |+ 0((yH?
= T dy* y* 2R, dy+ 2 dy+?



It follows that near the wall:

u;, 0.25
= = 0.5+y+( —0.019>+---
R
U T

i.e., linearity maintained until y* = 2.

Similarly, spanwise rms fluctuations are given in the form:

+ _ + dW;ms + 1d2W7j_ms +2 +\3
Wrms_m‘l' dy* (0)y +§ dy+2 O)y™ +0((ry")*)

And computations show that at the wall approximate expression is:
wiho =025yt + .-

Using continuity, it can be shown that:

+
dvrms

dyt -

Such that, near the wall

2.,+
1d°vh,

—_ +2 +
=5yt O 0

vrj_ms
And computations show that near the wall approximate expression is:

Utes = 0.006y*% + 0((y*)?)
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TKE budget

Simplification of TKE equation obtained in Chapter 3 for channel flow yields:

0 __du 1., d*k 1dvu}
=—Uw——¢ ——pv, +V —=
dy = o’ T a2 dy
——— - -
0.25F
0.2}1 Y
1) Production 0.15 -7
2) Dissipation E
0.05F §
3) Pressure work/transport N
4) Viscous diffusion/transport 005f - Nw
01} 4 PP
5) Turbulent transport=%(vg-g)y .15} 4) o
02t/
—025-"’

Fory® >30uptoy/2h=1,P =
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Figure 7.9 Turbulent kinetic energy budget in channel flow R, = 5186 [10] scaled with v and u_: —,
production; ——, dissipation; +, pressure work;

/ €~1.8

70 80 90 100

-+, viscous diffusion; — - —, turbulent transport.

Emax @ ¥yt =0, i.e., at the wall and has local plateau near B,

Turbulent transport (5) is negative for 8 < y* < 30 and positive for y* < 8 -

large P/ € transported towards w

At wall:

all.

_ d%k
& —dez

i.e., dissipation equals molecular diffusion.

Most complex physics is in buffer layer 5 < y* < 30.

Location of P,,,, can be estimated by rewriting the production term as:

—+
dy*

=<1

(15)



P4 is located where d/dy™ of Eq. (15) equals zero:

Where terms O(R;1) are dropped.

o+
Since Zyliz # 0in the region of B4, then
—+
o =5 ="w (16)

Point where Eq. (16) is satisfied is visible in Fig. 7.3 at y* =~ 12.
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€ budget

De
— =P +P*+P}+P*+,+T.+D, -7,

Dt
P, = production 0.025
0.02
Y, = dissipation of dissipation oois

Il + T, + D, = redistribution 0.01

0.005

0

. -0.005 F
Like homogeneous shear flow
+ -0.01
for large y ™ (away from wall)
-0.015
4
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Figure 7.10 ¢ equation budget in channel flow at R, = 590 [20] scaled with vand u_. ——, P!; v, P%;

— = P50 Pho,-Y,;— D, 11 +T..

For y* < 25, P! and P2 larger compared to P3 and II,, + T..

Near wall =Y, has minimum and at the wall =Y, = D,.

Reynolds Stress Budget

— __du du?v d?u?
u O=—2uv@—811 dy +H11+V dyz
- dv3 d?v?  2dpv
v 0—_522_E+H22+ dy2 pdy
- dw2v d?w?
w 0 - _833 - dy + H33 + vV dyz
Where: Z;j = turbulent
_5 du; du; o 1 [0y N ou\ 1 55 ralte of strain =
& = Vaxk 0xy b pp ax,- 0x; N pp b E(ui,j +u,)

II;j= pressure strain correlation
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Figure 7.11 72l budget in channel flow for R, = 5186 [10]. —, production; ——, dissipation; o, pressure
strain; - - -, viscous diffusion; — - —, turbulent transport.
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Figure 7.12 V2 budget in channel flow for R, = 5186 [10]. ——, dissipation; o, pressure strain; +,

—_ —_— pressure work; - - -, viscous diffusion; — - —, turbulent transport.
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Figure 7.13 wZ budget in channel flow for R_ = 5186 [10]. —, dissipation; o, pressure strain; - - -,
viscous diffusion; — - —, turbulent transport.

by vw?,,,
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Figure 7.14 Pressure-strain term in normal Reynolds stress equations at R_ = 5186 [10): —, IT,,;- - -,
My == Tl5;.

Viscous and turbulent transport result in spatial redistribution.

Consider now Reynolds uv balance:

0 — I duv? 1dpu  d*uv
=—Vi{—=——¢&, + - - = +v
(6]
1) Production 02
2) Dissipation: small 0.159
0%,
3) Pressure strain ot o oy
o %00, )
4) Turbulent transport 0.06 3 20000 o gt -
5) Pressure WOI"k [y e O e e b b kb o b ot B e
6) Viscous diffusion: small
-0.15§
4) and 5) cancel. *
02 1I0 2'0 36 4.0 S'O éO 7.0 8IO QIO 100
_ Figure 7.15 uv budget in channel flow for R_ = 5186 [10]. —, production; ——, dissipation; o, pressure
urv < 0 Iower Channel produced by 1) strain; +, pressure work; - - -, viscous diffusion; — - —, turbulent transport.

Mostly balance of P and II;, = important to model it correctly.
2) and 6) small » uv # f(v)

3) and 5) nearly cancel near wall = can be combined for modeling.
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Enstrophy budget

— 2 4 (2 4 (2
(= w7 + w; +w;

wZ~wi~w3 away from wall.

w?(0) = w2(0)
@3(0)=0

w3(0) =13(0) » w3 (0)

Also associated .(2_3 = —U_y near wall Fig.

7.3.

Peak in wZ(0) due to spanwise motions
near wall.

Anisotropy 10 < y* < 30: complex
physics buffer layer
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Figure 7.16 Comparison of the enstrophy components in channel flow at R, = 5186 [10]. - - -, @] ;
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Figure 7.17 Evaluation of the terms in Eq. (7.54) in channel flow with R_ = 5186 [10]: - - -, —¢*; —, {*;
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Fig. 7.17. Profiles of Reynolds stresses and kinetic energy normalized by the friction
velocity in the viscous wall region of turbulent channel flow: DNS data of Kim et al.
(1987). Re = 13,750.
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Fig. 7.14. Reynolds stresses and kinetic energy normalized by the friction velocity
against y* from DNS of channel flow at Re = 13,750 (Kim et al. 1987).
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