Chapter 7: Free Shear Flows: Jets, Mixing Layers and Wakes (Pope)

Part 2: Plane Mixing Layer and Plain Wake
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——r
i
(b) >
_
—— 1ot
Flane mixing layer
=

The flow depends on two characteristic velocities Uy, and U;: U;/Uj,.
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UCEE

U, = U, — U; = velocity difference

(U, + U;) = convection velocity

Uy, U, U, and U are constant, independent of x.

Mean velocity profile:

(Ulx, ) # f(2)

x = direction flow, y = crossflow direction, and z = spanwise direction.

& (x) = characteristic width

For 0 < a < 1, define cross-stream location y, (x) such that:
(Ux,y,(x),0)) = U, + a(U, + Up)
And take &(x) to be:
6(x) = ¥0.0(x) — ¥0.1(x)
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In addition, reference lateral position y(x):

1
y(x) = 5 [¥0.9(x) + ¥0.1(x)]

Scaled cross-stream coordinate:

£ = ly —y(x)]
 5(x)
Scaled velocity:
U)—-U,
pio =1

Where f(+o) = +1/2and f(£1/2) = +0.4
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Fig. 5.21. A sketch of the mean velocity {U) against y, and of the scaled mean velocity
profile f(£), showing the definitions of ypy, ypo, and .
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For U, /Uy = 0, i.e., U; = 0: EFD confirms self-similarity (U) and (u;u;) and the
mixing layers spreads linearly.
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Fig. 5.23. Axial variations of yqy, vos, and ypos in the plane mixing layer, showing the

linear spreading, Experimental data of Champagne et al. (1976). Fig. 5.22. Scaled velocity profiles in a plane mixing layer, Symbols, experimental data
of Champagne et al (1976) (¢, x = 39.5 cm; O,x = 49.5 cm; o, x = 59.5 cm); line,
error-functjon profile (Eq. (5.224)) shown for reference.

Flow not symmetric about y or £ = 0.
High speed spreads into low-speed stream.

Linear spreading as with round and plane jet, consequence of self-similarity.

Self-similarity form of BL equation (Pope Ex. 5.29-5.34, including temporal mixing
layer):
U.ds U (¢ S
(%) (5+U—C J f(f)d€>f =g
S = constant # f(x) as required and already noted 6 = Sx.



To an observer travelling in the x direction at U, the fractional growth rate of the
mixing layeris U, dln § /dx. Normalized by the local timescale § /U, resulting non-
dimensional parameter is:

6, diné _U.ds _
U, ¢ dx  Ugdx

ds U,
S# fWUSUp) =&
c

0.06 <5<0.11

In the limit case: U, /U, = 0,i.e., U; /U, = 1

1
U, = 3 (U, + U,) = convection velocity
U, = U, — U; = velocity difference
U u,—-U U
U_Szl(h—l)_)() :)thUl—)U—lzl
¢ 5WUp+UD) h

BL equation becomes:

Uy  ouv)
ox  dy

An observer travelling at speed U, sees the two streams (y - o andy —
—o0) moving to the right and left, with velocities 0.5U and —0.5U;, respectively.

5(t)~SU,
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As U; /U, — 0, the flow becomes statistically 1D, f(t), and symmetric abouty =0
— temporal mixing layer.
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Fig. 5.24. The scaled mean velocity profile in self-similar plane mixing layers. Symbols,
agreement, exceptouter o ent of Bell and Mehta (1990) (Uy/Us = 0.6); solid line, DNS data for the
flow merging with free temporal mixing layer (Rogers and Moser 1994); dashed line, error-function profile

. with width chosen to match data in the center of the layer.
stream velocities.
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For mixing layer, since U; = Uy, — U; = fixed and §(t) < x, Reo(x)=Usd/v and vt
also o« x.

K(x) =J (U)kdy

Represents TKE flux and scales as U, U236, i.e., x x.
In jets and wakes, K (x) decreases with x.

Because K (x) « x, averaged across flow P > ¢, e.g., in the center of the layer
P/e~1.4.
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Fig. 5.25. Scaled Reynolds-stress profiles in self-similar plane mixing layers. Symbols,

experiment of Bell and Mehta (1990) (U,/Uy, = 0.6); solid line, DNS data for the
temporal mixing layer (Rogers and Moser 1994),

Shows some differences temporal vs spatial mixing layer.



Plane Wake

el Y
S| L
L = | —/5 .
W - — T L Statistically stationary
e o Plane wake
— \ (steady), 2D and symmetric
—_ about the plane y = 0.

Characteristic velocities:

U, = free stream velocity

U, = velocity difference = Uy(x) = U, — U(x, 0) = centerline velocity deficit.

Half width:

— 1
U(x, £31/2,0) = Ue = 5 Us(x)

As the wake develops, y; /, increases and U /U, — 0

In the mixing layer U; /U, = constant # f(x), whereas in the wake U; /U, = f(x)

=~ flow not exactly self-similar, only asymptotically self-similaras U, /U, = 0, i.e.,
< 0.1.

Using the cross-stream similarity variable { = y/y, s, the self-similar velocity
defect f (&) is:
U, —U(x,y,0)

Us(x)

)=



So that the mean velocity is:

U=U.—-Us(x)f(§) D)
Using these definitions, f(0) = 1 and f(+1) = 1/2.

Momentum deficit flow rate per unit span:

0]

M(x) = j pU(U. - U)dy

[0.0] US
= pUCUS(x)yl(x)f (1 - U—f(€)> f()ds # f(x)

Equal to the body drag / span width.

Us(x)lﬁ/z(x) # f(x)

Derivation: BL momentum equation neglecting viscosity term:

For wakes and jets:



And since U, = constant,

_oU,. _
U—+V—=

dx dy =0 ™

Adding Eq. (2) and (3) and subtracting Eq. (4) gives:

V- T)]+ - [P0~ D) = 1 (5)

U — U, and uv — 0 for |y| — oo. Thus, Eq, (5) can be integrated across the flow:

d [©— —
- _OOU(UC —U)dy =0

Thus, total mean flux of momentum per unit length in spanwise direction is:

M= pf U(U, - U)dy = constant # f(x)

Recall Eq. (1):
U=U,— Us(x) f&)
For the similarity variable:
y
f =
)’1/2(x)
E__Ld%/z__id}ﬁ/z
dx Vi, dx Y12 dx
a 1
dy 3’1/2(x)



Substituting Eq. (1) into Eqg. (2):

(U, - U.00) fC ))aﬁ+vaﬁ_ ow
For the shear stress:
uv = UZg(¢)

w _ ,99(4)08 _ Us 99()
dy ° 0§ Oy oy, 08

The mean velocity gradients can be expressed as:

aU oU/ U, af (&) o AU, d
Je_ 000D gy LK s ey gy pr S Dz

ox  Mx d0x d¢& Ox 0x Y12 dx

aﬁ_ a(%_aUs(x)f(f) U af(f)a_f_ _Usf’
dy Ay _97 S0 Y

v ou 7 ou
—_— oV = ——
ady 0x axy1/2€

Consequently, the term 72—5 in Eq. (6) is equal to:
Vaﬁ B oU oU
- y1/2 g ax ay

And it is negligible, since Uxﬁy is small (BL).
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Consequently, Eq. (6) becomes:

(Ue- U0 FE) L= - 22 7
And in the far wake,
Us(x) f(§) KU,
Such that, the BL equation becomes:
U oU _ ouv o

Rewriting this equation with the aid of the mean velocity gradients expressions
obtained previously gives:

U(

f )’1/2)_ Us dg(é)

* )’1/2 dx Yi/2 ¢
§ Ay Uz ag(f)
Usf ———L = 9)
Y12 dx )’1/2 af
Recall:
Us(x)y1/2(x) # f(x) = constant
Such that:
dUs dy1/2 dUs Us dY1/2
— U,——=0 = — 10
dx Yijz + s dx ~ dx Y12 dx (10)
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Define the spreading parameter:

c dy1/2

SU
U. dx

(11)

And substituting Egs. (10) and (11) into Eq. (9) gives:

§ dyip U3 9g9(9)
YV1i/2 dx YV1i/2 3

_ Us dy1/2>
Uc< San ) [+ UUS

d Uz o
) J’1/2f(§) FULULF § dyip _ Us 99(4)
}’1/2 dx Vi/2 dx YV1i/2 73

(12)

Multiplying Eq. (12) by y, ,, /UZ gives:

U )’1/2 ch1/2 _ dg(&)
SFE)+ESf' () =-g'(§)

SEf) =-g'¢) (13)
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Variation of quantities with x:

Us(x)y1/2(x) = constant, i.e., S = constant

)’1/2(x)~x1/2

d 1
Yi/2 2172
dx 2

du 1
S o — Zx3/2

dx 2

Integrating Eq. (13):
uv
g=-5¢ =1

S

Assuming constant turbulent viscosity:

Ve = Ve Us(0)y12(x) # f(x)

The shear stress is given by:

And isolating g:
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Which gives an equation for f:

S
f'=—1;—s:
af  5¢ o5&
T _ﬁ_tdf_)lnf__Zf)t-l_C

Taking

The solution becomes:

f(&) = Cexp(—ag?)

With BCs f(0) = 1and f(£1) = 1/2:

flo)=Cc=1
f() = exp(—a) =%—> a=1In2

Therefore, the final solution is:

f(§) =exp(—=In2¢&?)
And

14
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Fig. 5.26. The normalized velocity defect profile in the self-similar plane wake. Solid
line, from experimental data of Wygnanski et al (1986); dashed line, constant-
turbulent-viscosity solution, Eq. (5.240).

Data from circular cylinder, symmetric foil, and thin rectangular plate: § =
0.093,0.103, and 0.075, respectively.

_uv S
2\1/2
u
Hﬂ = 0.32 plate
Us

= 0.41 airfoil

Conclusion: self-similarity achieved, albeit retaining effects from IC.
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5.4 Other self-similar flows 151

Show that « = In 2, and hence that
1 2In2
9 S

(5.252)

5.4.4 The axisymmetric wake

The analysis of the axisymmetric wake parallels closely that of the plane
wake. However, the experimental data reveal striking differences.

An axisymmetric wake forms behind a round object — a sphere, spheroid,
or disk, for example — held in a uniform stream, flowing with velocity
U, in the x direction. The flow is statistically axisymmetric, with statistics
depending on x and r, but being independent of 0. The centerline velocity
deficit Uy(x) and flow half-width r/>(x) are defined in the obvious manner.

Just as with the plane wake, self-similarity is possible only as U,/ U, tends
to zero, and then the spreading parameter S = (U,/Us) dry;;/dx is constant.
For this flow, however, the momentum deficit flow rate — which equals the
drag on the body — is proportional to pUcUsr}/z. As a consequence U,
varies as x~%* and ry;, as x'/3, so that the Reynolds number decreases as
x~1/3, The assumption that the turbulent viscosity is uniform across the flow
leads to the same mean velocity-deficit profile as that for the plane wake
(Egs. (5.239)—(5.241)).

Uberoi and Freymuth (1970) reported measurements made in the wake
of a sphere (of diameter d), with Reynolds number Re; = Ucd/v = 8,600,
After a development distance (x/d < 50), self-similarity in the mean velocity
and Reynolds stresses is observed over the range of x/d examined (50 <
x/d < 150). The measured mean velocity-deficit profile is compared with the
constant-turbulent-viscosity solution in Fig. 5.27, and the profiles of r.m.s.
velocities are shown in Fig. 5.28. It should be observed that the peak value
of (u?)!/2/Uy is about 0.9, much higher than those in the other flows we have
examined. Correspondingly, the spreading parameter is S &~ 0.51 — at least
five times larger than that observed in plane wakes.

The balance of the turbulent kinetic energy (Fig. 5.29) is also substantially
different than those of other flows. The dominant term is convection from
upstream (i.e,, —(U) 0k/0x), with dissipation ¢ and lateral transport each
being about half as large. In contrast, at its peak, the production P is just
20% of ¢ and 15% of convection. The dominance of convection, and the
relatively small amount of production, suggest that the turbulence is strongly
influenced by conditions upstream.

This hypothesis is strengthened by the observation that the measured
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Fig. 5.27. Mean velocity-deficit profiles in a self-similar axisymmetric wake. Symbols,
experimental data of Uberoi and Freymuth (1970); line, constant-turbulent-viscosity
solution f(¢) = exp(—¢21n2).
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Fig. 5.28. R.m.s. velocity profiles in a self-similar axisymmetric wake. Experimental
data of Uberoi and Freymuth (1970): x, (u2)2/Uy; e, (v2)!/2/Us; 0, (W2)2/ U

spreading parameter and turbulence level depend very significantly on the
geometry of the body that generates the wake (see Table 5.3). On going
from streamlined bodies to bluff bodies, S increases by a factor of ten, and
the relative turbulence intensity by a factor of three. These observations are
discussed further in Section 5.5.4.

Of the free shear flows examined in this chapter, only in the axisymmetric
wake does the Reynolds number decrease with x (as x~'/3). Consequently,
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5.4 Other self-similar flows
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Fig. 5.29. The turbulent kinetic energy budget in a self-similar axisymmetric wake.
Experimental data of Uberoi and Freymuth (1970).

Table 5.3. The spreading parameter and turbulence intensity for axisymmetric
wakes behind various bodies

Turbulence
intensity
Spreading  on centerline
Body parameter S W, Investigation
49% blockage-screen 0.064 0.3 Cannon and Champagne (1991)
6:1 spheroid 0.11 0.3 Chevray (1968)
84% blockage-screen 0.34 0.75 Cannon and Champagne (1991)
Sphere 0.51 0.84 Uberoi and Freymuth (1970)
Disk 0.71 1.1 Cannon and Champagne (1991)
Disk 0.8 0.94 Carmody (1964)

only over a limited range of x can self-similarity (independent of Re) be
expected; for, at sufficiently large x, the flow can be assumed to relaminarizes.
The laminar wake admits the same self-similar velocity profile, but with U
and ry;; varying as x~! and x"/2, respectively. Some experimental data (e.g.
Cannon and Champagne (1991)) suggest that modest departures from self-
similarity (based on high-Reynolds-number scaling) occur.
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