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Chapter 7: Free Shear Flows: Jets, Mixing Layers and Wakes (Pope) 

Part 2: Plane Mixing Layer and Plain Wake 

Plane Mixing layer 

 

The flow depends on two characteristic velocities 𝑈ℎ and 𝑈𝑙: 𝑈𝑙/𝑈ℎ. 

𝑈𝑐 ≡
1

2
(𝑈ℎ + 𝑈𝑙) = convection velocity 

𝑈𝑠 ≡ 𝑈ℎ − 𝑈𝑙 = velocity difference 

𝑈ℎ, 𝑈𝑙, 𝑈𝑐, and 𝑈𝑠 are constant, independent of 𝑥. 

Mean velocity profile: 

〈𝑈(𝑥, 𝑦)〉 ≠ 𝑓(𝑧) 

 

𝑥 = direction flow, 𝑦 = crossflow direction, and 𝑧 = spanwise direction. 

𝛿(𝑥) = characteristic width 

 

For 0 < 𝛼 < 1, define cross-stream location 𝑦𝑎(𝑥) such that: 

〈𝑈(𝑥, 𝑦𝑎(𝑥), 0)〉 = 𝑈𝑙 + 𝛼(𝑈ℎ + 𝑈𝑙) 

And take 𝛿(𝑥) to be: 

𝛿(𝑥) = 𝑦0.9(𝑥) − 𝑦0.1(𝑥) 
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In addition, reference lateral position 𝑦(𝑥): 

 

𝑦(𝑥) =
1

2
[𝑦0.9(𝑥) + 𝑦0.1(𝑥)] 

 

Scaled cross-stream coordinate: 

 

𝜉 =
[𝑦 − 𝑦(𝑥)]

𝛿(𝑥)
 

 

Scaled velocity: 

 

𝑓(𝜉) =
(〈𝑈〉 − 𝑈𝑐)

𝑈𝑠
 

 

Where 𝑓(±∞) = ±1/2 and 𝑓(±1/2) = ±0.4 
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𝑓(+∞) = 𝑈ℎ −
1

2
𝑈ℎ −

1

2
𝑈𝑙 →

1

2

(𝑈ℎ − 𝑈𝑙)

𝑈𝑠
=
1

2
 

𝑓(−∞) = 𝑈𝑙 −
1

2
𝑈ℎ −

1

2
𝑈𝑙 → −

1

2

(𝑈ℎ − 𝑈𝑙)

𝑈𝑠
= −

1

2
 

 

For 𝑈𝑙/𝑈ℎ = 0, i.e., 𝑈𝑙 = 0: EFD confirms self-similarity 〈𝑈〉 and 〈𝑢𝑖𝑢𝑗〉 and the 

mixing layers spreads linearly. 

 

 

 

Flow not symmetric about 𝑦 or 𝜉 = 0.  

High speed spreads into low-speed stream. 

Linear spreading as with round and plane jet, consequence of self-similarity. 

 

Self-similarity form of BL equation (Pope Ex. 5.29-5.34, including temporal mixing 

layer): 

(
𝑈𝑐
𝑈𝑠

𝑑𝛿

𝑑𝑥
)

⏟    
𝑆

(𝜉 +
𝑈𝑠
𝑈𝑐
∫ 𝑓(𝜉)𝑑𝜉
𝜉

0

)𝑓′ = 𝑔′ 

𝑆 = constant ≠ 𝑓(𝑥) as required and already noted 𝛿 = 𝑆𝑥. 
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To an observer travelling in the 𝑥 direction at 𝑈𝑐, the fractional growth rate of the 

mixing layer is 𝑈𝑐 𝑑ln 𝛿 /𝑑𝑥. Normalized by the local timescale 𝛿/𝑈𝑠, resulting non-

dimensional parameter is: 

 

𝛿

𝑈𝑠
𝑈𝑐
𝑑ln𝛿

𝑑𝑥
=
𝑈𝑐
𝑈𝑠

𝑑𝛿

𝑑𝑥
= 𝑆 

𝑆 ≠ 𝑓(𝑈𝑙/𝑈ℎ) ∴
𝑑𝛿

𝑑𝑥
∝
𝑈𝑠
𝑈𝑐

 

0.06 ≤ 𝑆 ≤ 0.11 

 

In the limit case: 𝑈𝑠/𝑈𝑐 → 0, i.e., 𝑈𝑙/𝑈ℎ → 1 

𝑈𝑐 ≡
1

2
(𝑈ℎ + 𝑈𝑙) = convection velocity 

𝑈𝑠 ≡ 𝑈ℎ − 𝑈𝑙 = velocity difference 

𝑈𝑠
𝑈𝑐
=
(𝑈ℎ − 𝑈𝑙)

1
2
(𝑈ℎ + 𝑈𝑙)

→ 0 ⇒ 𝑈ℎ = 𝑈𝑙 →
𝑈𝑙
𝑈ℎ
= 1 

BL equation becomes: 

 

𝑈𝑐
𝜕〈𝑈〉

𝜕𝑥
= −

𝜕〈𝑢𝑣〉

𝜕𝑦
 

 

An observer travelling at speed 𝑈𝑐 sees the two streams (𝑦 → ∞ and 𝑦 →

−∞) moving to the right and left, with velocities 0.5𝑈𝑠 and −0.5𝑈𝑠, respectively. 

 
𝜕

𝜕𝑥
~
𝑈𝑠
𝑈𝑐
→ 

𝜕

𝜕𝑦
≫
𝜕

𝜕𝑥
 

 

𝛿(𝑡)~𝑆𝑈𝑠 
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As 𝑈𝑠/𝑈𝑐 → 0, the flow becomes statistically 1D, 𝑓(𝑡), and symmetric about y = 0 

→ temporal mixing layer.  

DNS: self-similar →

 𝛿(𝑡) ∝ 𝑡,  𝑆 ≈ 0.062. 

EFD 𝑈𝑙/𝑈ℎ = 0.6 spatial 

mixing layer, 𝑆 = 0.069. 

EFD, DNS, and 𝜈𝑡 = 

constant BL solution good 

agreement, except outer 

flow merging with free 

stream velocities. 

 

Longo, J., Huang, H.P., and Stern, F., “Solid-Fluid Juncture Boundary Layer and 

Wake,” Experiments in Fluids, Vol. 25, No. 4, September 1998, pp. 283 – 297. 

 

Sreedhar, M. and Stern, F., “Prediction of Solid/Free-Surface Juncture Boundary 
Layer and Wake of a Surface-Piercing Flat Plate at Low Froude Number,” ASME J. 
Fluids Eng., Vol. 120, June 1998, pp. 354 – 362. 
 

Sreedhar, M. and Stern, F., “Large Eddy Simulation of Temporally Developing 

Juncture Flows,” Int. J. Num. Meth. Fluids, Vol. 28, No. 1, 15 July 1998, pp. 47 – 72 

 

For mixing layer, since 𝑈𝑠 ≡ 𝑈ℎ − 𝑈𝑙 = fixed and 𝛿(𝑡) ∝ 𝑥,  Re0(x)=US/ and t 

also ∝ 𝑥. 

𝐾̇(𝑥) = ∫ 〈𝑈〉𝑘𝑑𝑦
∞

−∞

 

 

Represents TKE flux and scales as 𝑈𝑐𝑈𝑠
2𝛿, i.e., ∝ 𝑥. 

In jets and wakes, 𝐾̇(𝑥) decreases with 𝑥.  

Because 𝐾̇(𝑥) ∝ 𝑥, averaged across flow P > , e.g., in the center of the layer 

𝑃/𝜀~1.4. 

Papers/Solid-Fluid%20Juncture%20Boundary%20Layer%20and%20Wake.pdf
Papers/Solid-Fluid%20Juncture%20Boundary%20Layer%20and%20Wake.pdf
Papers/Prediction%20of%20Solid%20Free-Surface%20Juncture%20Boundary.pdf
Papers/Prediction%20of%20Solid%20Free-Surface%20Juncture%20Boundary.pdf
Papers/Prediction%20of%20Solid%20Free-Surface%20Juncture%20Boundary.pdf
Papers/Numerical%20Methods%20in%20Fluids%20-%201998%20-%20Sreedhar%20-%20Large%20eddy%20simulation%20of%20temporally%20developing%20juncture%20flows.pdf
Papers/Numerical%20Methods%20in%20Fluids%20-%201998%20-%20Sreedhar%20-%20Large%20eddy%20simulation%20of%20temporally%20developing%20juncture%20flows.pdf
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Shows some differences temporal vs spatial mixing layer. 
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Plane Wake 

 

 

Statistically stationary 

(steady), 2D and symmetric 

about the plane 𝑦 = 0. 

 

Characteristic velocities: 

𝑈𝑐 = free stream velocity 

𝑈𝑠 = velocity difference → 𝑈𝑠(𝑥) = 𝑈𝑐 − 𝑈(𝑥, 0) = centerline velocity deficit. 

 

Half width: 

𝑈(𝑥,±𝑦1/2, 0) = 𝑈𝑐 −
1

2
𝑈𝑠(𝑥) 

 

As the wake develops, 𝑦1/2 increases and 𝑈𝑠/𝑈𝑐 → 0 

In the mixing layer 𝑈𝑠/𝑈𝑐 = constant ≠ 𝑓(𝑥), whereas in the wake 𝑈𝑠/𝑈𝑐 = 𝑓(𝑥) 

∴ flow not exactly self-similar, only asymptotically self-similar as 𝑈𝑠/𝑈𝑐 → 0, i.e., 

< 0.1. 

 

Using the cross-stream similarity variable 𝜉 = 𝑦/𝑦1/2, the self-similar velocity 

defect 𝑓(𝜉) is: 

𝑓(𝜉) =
𝑈𝑐 − 𝑈(𝑥, 𝑦, 0)

𝑈𝑠(𝑥)
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So that the mean velocity is: 

 

𝑈 = 𝑈𝑐 − 𝑈𝑠(𝑥) 𝑓(𝜉)     (1) 

 

Using these definitions, 𝑓(0) = 1 and 𝑓(±1) = 1/2. 

 

Momentum deficit flow rate per unit span: 

 

𝑀̇(𝑥) = ∫ 𝜌𝑈(𝑈𝑐 − 𝑈)𝑑𝑦
∞

−∞

 

= 𝜌𝑈𝑐𝑈𝑠(𝑥)𝑦1(𝑥)∫ (1 −
𝑈𝑠
𝑈𝑐
𝑓(𝜉))𝑓(𝜉)𝑑𝜉

∞

−∞

≠ 𝑓(𝑥) 

 

Equal to the body drag / span width. 

 

∴ 𝑈𝑠(𝑥)𝑦1/2(𝑥) ≠ 𝑓(𝑥) 

 

Derivation:  BL momentum equation neglecting viscosity term: 

 

𝑈
𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
= −

𝜕𝑢𝑣

𝜕𝑦
     (2) 

For wakes and jets: 

 

(𝑈 − 𝑈𝑐) (
𝜕𝑈

𝜕𝑥
+
𝜕𝑉

𝜕𝑦
)

⏟      
continuity

= 0     (3) 
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And since 𝑈𝑐 = constant,  

 

𝑈
𝜕𝑈𝑐
𝜕𝑥

+ 𝑉
𝜕𝑈𝑐
𝜕𝑦

= 0     (4) 

 

Adding Eq. (2) and (3) and subtracting Eq. (4) gives: 

 
𝜕

𝜕𝑥
[𝑈(𝑈𝑐 − 𝑈)] +

𝜕

𝜕𝑦
[𝑉(𝑈𝑐 − 𝑈)] =

𝜕

𝜕𝑦
𝑢𝑣     (5) 

 

𝑈 − 𝑈𝑐 and 𝑢𝑣 → 0 for |𝑦| → ∞. Thus, Eq, (5) can be integrated across the flow: 

𝑑

𝑑𝑥
∫ 𝑈(𝑈𝑐 − 𝑈)𝑑𝑦
∞

−∞

= 0 

Thus, total mean flux of momentum per unit length in spanwise direction is: 

 

𝑀̇ = 𝜌∫ 𝑈(𝑈𝑐 − 𝑈)𝑑𝑦
∞

−∞

= constant ≠ 𝑓(𝑥) 

 

Recall Eq. (1): 

𝑈 = 𝑈𝑐 − 𝑈𝑠(𝑥) 𝑓(𝜉)⏟      
velocity deficit

 

For the similarity variable: 

𝜉 =
𝑦

𝑦1/2(𝑥)
 

𝑑𝜉

𝑑𝑥
= −

𝑦

𝑦1/2
2

𝑑𝑦1/2

𝑑𝑥
= −

𝜉

𝑦1/2

𝑑𝑦1/2

𝑑𝑥
  

𝑑𝜉

𝑑𝑦
=

1

𝑦1/2(𝑥)
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Substituting Eq. (1) into Eq. (2): 

(𝑈𝑐 − 𝑈𝑠(𝑥) 𝑓(𝜉))
𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
= −

𝜕𝑢𝑣

𝜕𝑦
     (6) 

 

For the shear stress: 

𝑢𝑣 = 𝑈𝑠
2𝑔(𝜉) 

𝜕𝑢𝑣

𝜕𝑦
= 𝑈𝑠

2
𝜕𝑔(𝜉)

𝜕𝜉

𝜕𝜉

𝜕𝑦
=
𝑈𝑠
2

𝑦1/2

𝜕𝑔(𝜉)

𝜕𝜉
 

 

The mean velocity gradients can be expressed as: 

 

 
𝜕𝑈

𝜕𝑥
=
𝜕𝑈𝑐
𝜕𝑥

−
𝜕𝑈𝑠(𝑥)

𝜕𝑥
 𝑓(𝜉) − 𝑈𝑠

𝜕𝑓(𝜉)

𝜕𝜉

𝜕𝜉

𝜕𝑥
= −

𝜕𝑈𝑠
𝜕𝑥

 𝑓(𝜉) + 𝑈𝑠𝑓′
𝜉

𝑦1/2

𝑑𝑦1/2

𝑑𝑥
 

 
𝜕𝑈

𝜕𝑦
=
𝜕𝑈𝑐
𝜕𝑦

−
𝜕𝑈𝑠(𝑥)

𝜕𝑦
𝑓(𝜉)  − 𝑈𝑠

𝜕𝑓(𝜉)

𝜕𝜉

𝜕𝜉

𝜕𝑦
= −

𝑈𝑠𝑓
′

𝑦1/2
 

𝜕𝑉

𝜕𝑦
= −

𝜕𝑈

𝜕𝑥
→ 𝑉 = −

𝜕𝑈

𝜕𝑥
𝑦1/2 𝜉 

 

Consequently, the term 𝑉
𝜕𝑈

𝜕𝑦
 in Eq. (6) is equal to: 

 

𝑉
𝜕𝑈

𝜕𝑦
= −𝑦1/2 𝜉

𝜕𝑈

𝜕𝑥

𝜕𝑈

𝜕𝑦
 

 

And it is negligible, since 𝑈𝑥𝑈𝑦 is small (BL). 
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Consequently, Eq. (6) becomes: 

(𝑈𝑐 − 𝑈𝑠(𝑥) 𝑓(𝜉))
𝜕𝑈

𝜕𝑥
= −

𝜕𝑢𝑣

𝜕𝑦
     (7) 

And in the far wake,  

𝑈𝑠(𝑥) 𝑓(𝜉) ≪ 𝑈𝑐 

 

Such that, the BL equation becomes: 

𝑈𝑐
𝜕𝑈

𝜕𝑥
= −

𝜕𝑢𝑣

𝜕𝑦
    (8) 

Rewriting this equation with the aid of the mean velocity gradients expressions 

obtained previously gives: 

 

𝑈𝑐 (−
𝜕𝑈𝑠
𝜕𝑥

 𝑓(𝜉) + 𝑈𝑠𝑓′
𝜉

𝑦1/2

𝑑𝑦1/2

𝑑𝑥
) = −

𝑈𝑠
2

𝑦1/2

𝜕𝑔(𝜉)

𝜕𝜉
 

−𝑈𝑐
𝜕𝑈𝑠
𝜕𝑥

 𝑓(𝜉) + 𝑈𝑐𝑈𝑠𝑓′
𝜉

𝑦1/2

𝑑𝑦1/2

𝑑𝑥
= −

𝑈𝑠
2

𝑦1/2

𝜕𝑔(𝜉)

𝜕𝜉
     (9) 

 

Recall: 

𝑈𝑠(𝑥)𝑦1/2(𝑥) ≠ 𝑓(𝑥) = constant 

Such that: 

𝑑𝑈𝑠
𝑑𝑥

𝑦1/2 + 𝑈𝑠
𝑑𝑦1/2

𝑑𝑥
= 0 →

𝑑𝑈𝑠
𝑑𝑥

= −
𝑈𝑠
𝑦1/2

𝑑𝑦1/2

𝑑𝑥
      (10) 
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Define the spreading parameter: 

 

𝑆 ≡
𝑈𝑐
𝑈𝑠

𝑑𝑦1/2

𝑑𝑥
    (11) 

 

And substituting Eqs. (10) and (11) into Eq. (9) gives: 

 

−𝑈𝑐 (−
𝑈𝑠
𝑦1/2

𝑑𝑦1/2

𝑑𝑥
)  𝑓(𝜉) + 𝑈𝑐𝑈𝑠𝑓′

𝜉

𝑦1/2

𝑑𝑦1/2

𝑑𝑥
= −

𝑈𝑠
2

𝑦1/2

𝜕𝑔(𝜉)

𝜕𝜉
 

 

𝑈𝑐
𝑈𝑠
𝑦1/2

𝑑𝑦1/2

𝑑𝑥
𝑓(𝜉) + 𝑈𝑐𝑈𝑠𝑓′

𝜉

𝑦1/2

𝑑𝑦1/2

𝑑𝑥
= −

𝑈𝑠
2

𝑦1/2

𝜕𝑔(𝜉)

𝜕𝜉
     (12) 

 

Multiplying Eq. (12) by 𝑦1/2/𝑈𝑠
2 gives: 

 

𝑈𝑐
𝑈𝑠

𝑑𝑦1/2

𝑑𝑥⏟    
𝑆

𝑓(𝜉) +
𝑈𝑐
𝑈𝑠

𝑑𝑦1/2

𝑑𝑥⏟    
𝑆

𝑓′𝜉 = −
𝜕𝑔(𝜉)

𝜕𝜉
 

𝑆 𝑓(𝜉) + 𝜉𝑆𝑓′(𝜉)⏟          

𝑆(𝜉𝑓)′

= −𝑔′(𝜉) 

𝑆(𝜉𝑓)′ = −𝑔′(𝜉)    (13) 
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Variation of quantities with 𝑥: 

 

𝑈𝑠(𝑥)𝑦1/2(𝑥) = constant, i.e., S = constant 

𝑦1/2(𝑥)~𝑥
1/2 

𝑑𝑦1/2

𝑑𝑥
~
1

2
𝑥−1/2 

𝑑𝑈𝑠
𝑑𝑥

~ −
1

2
𝑥−3/2 

 

Integrating Eq. (13): 

𝑔 = −𝑆 𝜉𝑓 =
𝑢𝑣

𝑈𝑠
2

 

Assuming constant turbulent viscosity: 

 

𝜈𝑡 = 𝜈̂𝑡𝑈𝑠(𝑥)𝑦1/2(𝑥) ≠ 𝑓(𝑥) 

 

The shear stress is given by: 

𝑢𝑣 = −𝜈𝑡
𝜕𝑈

𝜕𝑦
= 𝜈𝑡

𝑈𝑠𝑓
′

𝑦1/2
= 𝑈𝑠

2𝑔 

And isolating 𝑔: 

𝑔 =
𝜈𝑡𝑓

′

𝑈𝑠𝑦1/2
= 𝜈̂𝑡𝑓

′ = −𝑆 𝜉𝑓 
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Which gives an equation for 𝑓: 

𝑓′ = −
𝑆𝜉

𝜈̂𝑡
𝑓 

𝑑𝑓

𝑓
= −

𝑆𝜉

𝜈̂𝑡
𝑑𝜉 → ln𝑓 = −

𝑆𝜉2

2𝜈̂𝑡
+ 𝐶 

𝑓 = 𝐶 exp(−
𝑆𝜉2

2𝜈̂𝑡
) 

Taking 

𝛼 =
𝑆

2𝜈̂𝑡
 

 

The solution becomes: 

𝑓(𝜉) = 𝐶 exp(−𝛼𝜉2) 

 

With BCs 𝑓(0) = 1 and 𝑓(±1) = 1/2: 

 

𝑓(0) = 𝐶 = 1 

𝑓(1) = exp(−𝛼) =
1

2
→ 𝛼 = ln2 

 

Therefore, the final solution is: 

𝑓(𝜉) = exp(− ln 2 𝜉2) 

And  

ln 2 =
𝑆

2𝜈̂𝑡
→
1

𝜈̂𝑡
=
2 ln 2

𝑆
= 𝑅𝑇 
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Data from circular cylinder, symmetric foil, and thin rectangular plate: 𝑆 =

0.093, 0.103, and 0.075, respectively. 

 

𝑔 =
𝑢𝑣

𝑈𝑠
2
= −𝑆𝜉𝑓 

〈𝑢2〉𝑚𝑎𝑥
1/2

𝑈𝑠
= 0.32 plate 

                    = 0.41 airfoil 

 

Conclusion: self-similarity achieved, albeit retaining effects from IC. 
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