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Chapter 7: Free Shear Flows: Jets, Mixing Layers and Wakes (Pope) 

Part 1: Round and 2D Jets 

In contrast to wall flows, remote from solid surfaces and turbulence due to mean-

velocity differences. 

 

Round jet: EFD 

 
 

𝑅𝑒 =
𝑈𝐽𝑑

𝜈
 defines the flow, i.e., only non-dimensional parameter. 

 

𝑈(𝑥, 𝑟, 𝜃) = 𝑈(𝑥, 𝑟) 

 

Centerline velocity:  

𝑈0(𝑥) = 𝑈(𝑥, 0) 

 

Definition of jet’s half-width: 

𝑈(𝑥, 𝑟1/2(𝑥)) =
1

2
𝑈0(𝑥)    defines 𝑟1/2(𝑥) 

 

IC dependent details nozzle and 𝑈𝐽 :  0 ≤ 𝑥/𝑑 ≤ 25 

Statistically stationary: 

statistics invariant 

under time shift. 

 

Axisymmetric 

𝑈 = 𝑈�̂�𝑥 + 𝑉�̂�𝑟 +𝑊�̂�𝜃 

Statistics (𝑓(𝑥, 𝑟))    

independent of 𝑡 and 𝜃 
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For 𝑥 ↑: 𝑈0(𝑥)  ↓ 

𝑟1/2(𝑥)  ↑ 

i.e., jet decays and 

spreads, but shape 

remains same. 

Self-similarity 

For 𝑥/𝑑 > 30, 𝑈/𝑈0(𝑥) 

vs 𝑟/𝑟1/2(𝑥) collapses on 

a single self-similar curve 

𝑈0(𝑥)

𝑈𝐽
=

𝐵

(𝑥 − 𝑥0)/𝑑
~𝑥−1 

𝑥0 = virtual origin 

𝐵 = experimental constant 

𝑆 ≡
𝑑𝑟1/2(𝑥)

𝑑𝑥
= spread rate = 

constant 

𝑟1/2(𝑥) = 𝑆(𝑥 − 𝑥0)~𝑥 
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𝑈 = 𝑈 + 𝑢   𝑉 = 𝑉 + 𝑣  𝑊 = 𝑤 

 

Momentum equation in 𝑥 −direction × 𝑟: 

 
𝜕

𝜕𝑥
(𝑟𝑈

2
) +

𝜕

𝜕𝑟
(𝑟𝑈𝑉 + 𝑟𝑢𝑣) = 0 

 

Integrating with respect to 𝑟: 

 
𝑑

𝑑𝑥
∫ 𝑟𝑈

2
∞

0

𝑑𝑟 = −[𝑟𝑈𝑉 + 𝑟𝑢𝑣]
0

∞
= 0 

 

Since, for large 𝑟, 𝑈𝑉 and 𝑢𝑣 tend to zero more rapidly than 𝑟−1.  Therefore, 

momentum flux of the mean flow is independent of 𝑥: 

 

�̇� = ∫ 2𝜋𝑟𝜌𝑈
2

∞

0

𝑑𝑟 = constant ≠ 𝑓(𝑥) 

 

= 2𝜋𝜌(𝑟1/2𝑈0)
2
∫ 𝜉𝑓(𝜉)2𝑑𝜉
∞

0

 

 

 

∴ 𝑟1/2(𝑥)𝑈0(𝑥) ≠ 𝑓(𝑥) 

 

i.e., 𝑟1/2(𝑥)~𝑥 and 𝑈0(𝑥)~𝑥
−1 consistent with momentum flux being constant 

and  

𝑅𝑒0(𝑥) =
𝑟1/2(𝑥)𝑈0(𝑥)

𝜈
≠ 𝑓(𝑥) 

 

𝜉 =
𝑟

𝑟1/2(𝑥)
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S and B = constants ≠ f(Re) 

 

 
 

𝑅𝑒 only effects flow via small scale structures. 
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Cross-stream similarity variable can either be:  

 

𝜉 = 𝑟/𝑟1/2  

or: 

 

𝜂 =
𝑟

𝑥−𝑥0
= 𝑆𝜉    (i..e., 𝜉 and 𝜂     

are linearly realted) 

 

𝑆 =  
𝑑𝑟1/2(𝑥)

𝑑𝑥
 = 𝑟1/2/ 𝑥 − 𝑥0 

 

Self-similar mean velocity profile: 

 

𝑓(𝜂) =
𝑈(𝑥, 𝑟)

𝑈0(𝑥)
 

 

The mean lateral velocity 𝑉 can 

be determined from 𝑈 via the 

continuity equation (Pope Ex. 

5.4): 

 

𝜕𝑈

𝜕𝑥
+
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑉) = 0 

 

Such that: 

 
𝑉

𝑈0
= ℎ(𝜂)    where:   𝜂(𝑓𝜂)′ = (ℎ𝜂)′ 

 

Reynolds stresses  

 

𝑢𝑖𝑢𝑗 = [
𝑢2 𝑢𝑣 0

𝑢𝑣 𝑣2 0

0 0 𝑤2

] 

 

𝑉

𝑈0(𝑥)
<
1

40
= 0.025 

𝑉 < 0 near the edge→ indicating entrainment of the external flow 



6 
 

Due to circumferential symmetry, 𝑢𝑤 = 𝑣𝑤 = 0 and normal stresses are even 

functions of 𝑟, while 𝑢𝑣 is an odd function. 

 

Consider the rms axial velocity on the centerline 

 

𝑢0
′ (𝑥) = 𝑢2𝑟=0

1/2
 

 

In the self-similar region: 

 

𝑢0
′ (𝑥)

𝑈0(𝑥)
~0.25 = constant 

 

∴ 𝑢0
′ (𝑥)~𝑥−1 ≠ 𝑓(𝑅𝑒) 

 

 

 
𝑢𝑖𝑢𝑗

𝑈0
2  self-similar vs 𝑟/𝑟1/2 or 𝜂. 

 

𝑢𝑣 > 0 where 𝑈𝑟 < 0 → positive 

turbulent viscosity 𝜈𝑡: 

 

𝑢𝑣 = −𝜈𝑡𝑈𝑟 

 

Since the profiles for 𝑢𝑣 and 𝑈𝑟 are self-

similar → the profile of 𝜈𝑡 is also self-

similar: 

 

𝜈𝑡(𝑥, 𝑟) = 𝑈0(𝑥)𝑟1/2(𝑥)�̂�𝑡(𝜂) 

 

 

 

 

 

Significant 

anisotropy 

25% 𝑈 

at 𝑟 = 0 

u’/𝑈 Increases 

w/o bounds 

towards edge of 

the jet. 
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�̂�𝑡(𝜂) fairly uniform over bulk of the jet, within 15% of 0.028 for 0.1 < 𝑟/𝑟1/2 <

1.5, afterwards decreases towards zero at the jet edge.  

 

𝜈𝑡 =
𝑚

𝑠
× 𝑚 → 𝜈𝑡 = 𝑢′𝑙 

Where 𝑢′ = 𝑢2
1/2

. 

 

𝑙 = local length scale 𝑙(𝑥, 𝑟) = self-similar and 𝑙/𝑟1/2 within 15% of 0.12 for most 

of the jet (0.1 < 𝑟/𝑟1/2 < 2.1). 

 

0.27 

𝜌𝑢𝑣 =
𝑢𝑣

𝑢
𝑣 = 𝑢 − 𝑣 correlation 

coefficient 

0.40 
Both curves same 

shape 
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Longitudinal and transverse 2-point velcoity correlation. 

 

𝐿11 and 𝐿22 characterize distance over which the fluctuating velocities are 

correlated. 
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Mean momentum: Boundary-layer equations 

 

Dominant flow direction: 𝑥 

𝑉 ≈ 0.03|𝑈| and the flow spreads gradually (𝑑𝑟1/2/𝑑𝑥 = 𝑆 ≈ 0.1) 

∴  
𝜕

𝜕𝑥
≪
𝜕

𝜕𝑟
 

 

Consider statistically stationary 2D 

flows, with velocity components 𝑈, 𝑉, 

and 𝑊, with 𝑊 = 0. 

 

As 𝑦 → ∞ no flow or uniform stream. It 

is possible to define 𝛿(𝑥) as the 

characteristic flow width, 𝑈𝑐(𝑥) the 

characteristic convective velocity, and 

𝑈𝑠(𝑥) as the characteristic velocity 

difference.  

 

Mean flow continuity and momentum equations: 

 

𝜕𝑈

𝜕𝑥
+
𝜕𝑉

𝜕𝑦
= 0 

𝑈
𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

𝜕2𝑈

𝜕𝑥2
+ 𝜈

𝜕2𝑈

𝜕𝑦2
−
𝜕𝑢2

𝜕𝑥
−
𝜕𝑢𝑣

𝜕𝑦
 

𝑈
𝜕𝑉

𝜕𝑥
+ 𝑉

𝜕𝑉

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈

𝜕2𝑉

𝜕𝑥2
+ 𝜈

𝜕2𝑉

𝜕𝑦2
−
𝜕𝑢𝑣

𝜕𝑥
−
𝜕𝑣2

𝜕𝑦
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Turbulent y-momentum BL equation neglects convection and viscosity terms, and 

axial derivatives of RS: 

 

1

𝜌

𝜕𝑝

𝜕𝑦
+
𝜕𝑣2

𝜕𝑦
= 0 

 

Integrating between 0 and 𝑦, with 𝑦 → ∞, such that 𝑝(∞) = 𝑝0 and 𝑣2(∞) = 0: 

 

𝑝

𝜌
=
𝑝0
𝜌
− 𝑣2 

 

And the axial pressure gradient is: 

 

1

𝜌

𝜕𝑝

𝜕𝑥
=
1

𝜌

𝑑𝑝0
𝑑𝑥

−
𝜕𝑣2

𝜕𝑥
 

 

For flows with quiescent or uniform free streams, 𝑑𝑝0/𝑑𝑥 is zero. In general, it can 

be obtained in terms of the free-stream velocity by Bernoulli’s equation. 

 

The axial momentum equation becomes: 

 

𝑈
𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
= 𝜈

𝜕2𝑈

𝜕𝑦2
−
1

𝜌

𝑑𝑝0
𝑑𝑥

−
𝜕𝑢𝑣

𝜕𝑦
−
𝜕

𝜕𝑥
(𝑢2 − 𝑣2) 

 

In turbulent free shear flows, 𝜈
𝜕2𝑈

𝜕𝑦2
~𝜈𝑈𝑠

2/𝛿2~𝑅𝑒−1 and is negligible, which is not 

the case for BL flows. 

 

In laminar BL, 𝜈
𝜕2𝑈

𝜕𝑥2
~𝑅𝑒−1 and negligible. Comparable term in turbulent BL flows 

is 
𝜕

𝜕𝑥
(𝑢2 − 𝑣2) → it can be neglected, but is ~10% dominant terms, i.e., not 

insignificant approximation.  
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Therefore, axial momentum equation becomes: 

 

𝑈
𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
= 𝜈

𝜕2𝑈

𝜕𝑦2
−
𝜕𝑢𝑣

𝜕𝑦
 

 

For statistically axisymmetric, stationary non-swirling flows, the corresponding BL 

equations are: 

 

𝜕𝑈

𝜕𝑥
+
1

𝑟

𝜕(𝑟𝑉)

𝜕𝑟
= 0 

 

𝑈
𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑟
=
𝜈

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑈

𝜕𝑟
) −

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑣)     (1) 

 

The mean pressure distribution is 

 

𝑝

𝜌
=
𝑝0
𝜌
− 𝑣2 + ∫

𝑣2 −𝑤2

𝑟′

∞

𝑟

𝑑𝑟′ 

 

Axisymmetric 𝑊 = 0 equations. 

 

Mass, momentum and energy fluxes 

 

Neglecting viscous term and multiplying by 𝑟, Eq. (1) becomes: 

 
𝜕

𝜕𝑥
(𝑟𝑈

2
) +

𝜕

𝜕𝑟
(𝑟𝑈 𝑉 + 𝑟𝑢𝑣) = 0 

 

Integrating with respect to 𝑟: 

 
𝑑

𝑑𝑥
∫ 𝑟𝑈

2
𝑑𝑟

∞

0

= −[ 𝑟𝑈 𝑉 + 𝑟𝑢𝑣]
0

∞
= 0 

 

Since, for large 𝑟, 𝑈𝑉 and 𝑢𝑣 tend to zero more rapidly than 𝑟−1. 
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The momentum flow rate of the mean flow is: 

 

�̇� = ∫ 2𝜋𝑟𝜌
∞

0

𝑈
2
𝑑𝑟 ≠ 𝑓(𝑥)    (2) 

 

And is conserved. 

 

The mean velocity profile can be written as: 

 

𝑈(𝑥, 𝑟, 0) = 𝑈0(𝑥)𝑓(𝜉) 

 

Where  

𝜉 =
𝑟

𝑟1/2(𝑥)
 

 

Eq. (2) can be rewritten as: 

 

�̇�(𝑥) = 2𝜋𝜌(𝑟1/2𝑈0)
2
∫ 𝜉𝑓(𝜉)2𝑑𝜉
∞

0

 

 

Where the integral is a non-dimensional constant determined by the shape of the 

profile, but independet of 𝑥. 

For the self-similar round jet, the mass flow rate is: 

 

�̇�(𝑥) = ∫ 2𝜋𝑟𝜌𝑈𝑑𝑟 =
∞

0

2𝜋𝑟1/2𝜌(𝑟1/2𝑈0) ∫ 𝜉𝑓(𝜉)𝑑𝜉
∞

0

 

 

The kinetic energy flow rate is: 

 

�̇�(𝑥) = ∫ 𝜋𝑟𝜌𝑈
3
𝑑𝑟 =

∞

0

𝜋𝜌

𝑟1/2
 (𝑟1/2𝑈0)

3
∫ 𝜉𝑓(𝜉)3𝑑𝜉
∞

0

 

 

The integrals and 𝑟1/2𝑈0 ≠ 𝑓(𝑥), �̇�(𝑥) ∝ 𝑥 ∝ 𝑟1/2 and �̇�(𝑥) ∝ 𝑥−1 ∝ 𝑟1/2
−1 . 
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Self-similarity 

𝑈(𝑥, 𝑟) = 𝑈0(𝑥)𝑓(𝜉) 

 

𝑢𝑣(𝑥, 𝑟) = 𝑈0(𝑥)
2𝑔(𝜉) 

 

𝑈0(𝑥)~𝑥
−1 

 

Assuming self-similar flow, and neglecting viscous term, Eq. (1) can be rewritten 

as (Pope Ex. 5.12): 

 

[𝜉𝑓2] {
𝑟1/2

𝑈0

𝑑𝑈0
𝑑𝑥
} − [

𝑑𝑓

𝑑𝜉
∫ 𝜉𝑓(𝜉)𝑑𝜉
∞

0

] {
𝑟1/2

𝑈0

𝑑𝑈0
𝑑𝑥

+ 2
𝑑𝑟1/2

𝑑𝑥
} = − [

𝑑

𝑑𝜉
(𝜉𝑔)] 

 

The terms in [ ] depend only on ξ, while those in { } depend only on 𝑥. 

 

RHS = 𝑓(𝜉) ∴ LHS ≠ 𝑓(𝑥), i.e,  

 
𝑟1/2

𝑈0

𝑑𝑈0
𝑑𝑥

= 𝐶    (3) 

 
𝑟1/2

𝑈0

𝑑𝑈0
𝑑𝑥

+ 2
𝑑𝑟1/2

𝑑𝑥
= 𝐶 + 2𝑆 

 

Assuming { } ≠ 0.  Eliminating 𝐶 from the above two equations: 

 
𝑑𝑟1/2

𝑑𝑥
= 𝑆    𝑟1/2(𝑥) = 𝑆(𝑥 − 𝑥0) 

 

Showing that the linear spreading of the jet is a consequence of self-similarity. Eq. 

(3) implies that 𝑈0(𝑥)~𝑥
𝑛, where 𝑛 = −1, i.e., 

𝑑𝑈0

𝑑𝑥
 ~𝑥−2.  Thus,  

 

𝐶 =
𝑟1/2

𝑈0

𝑑𝑈0
𝑑𝑥

= −𝑆 

 

 

𝜉 =
𝑟

𝑟1/2(𝑥)
 

𝑑𝑟1/2

𝑑𝑥
= 𝑆 → 𝑟1/2 ∝ 𝑥 

𝑈0(𝑥) ∝ 𝑥
−1 
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Uniform turbulent viscosity 

 

Closure problem → 𝜈𝑡 is defined using eddy viscosity concept: 

 

𝑢𝑣 = −𝜈𝑡𝑈𝑟 

 

Where for the self-similar round jet: 

 

𝜈𝑡(𝑥, 𝑟) = 𝑟1/2(𝑥)𝑈0(𝑥)�̂�𝑡(𝜂) 

 

And �̂�𝑡(𝜂) is within 15% of 0.028 for 0.1 < 𝑟/𝑟1/2 < 1.5 → assume �̂�𝑡 is constant, 

i.e.,  ≠ 𝑓(𝜂) such that BL momentum equation becomes: 

 

𝑈
𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑟
=
𝜈𝑡
𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑈

𝜕𝑟
)     (4) 

 

Where the viscous term has been neglected, although it could be retained by 

replacing 𝜈𝑡 with 𝜈eff. 

 

Similarity solution round jet for uniform turbulent viscosity: 

 

𝑈 =
1

𝑟

𝜕𝜓

𝜕𝑟
    𝑉 = −

1

𝑟

𝜕𝜓

𝜕𝑥
 

 

This choice automatically satisfies the continuity equation. With 𝑥 measured from 

the virtual origin (𝑥0) based UJ/U0(x) vs. x/d so that 𝜂 = 𝑟/𝑥: 

 

𝜓 = 𝜈𝑡𝑥𝐹(𝜂) 

 

Where 𝐹 is non-dimensional. Consequently,  

 

𝑈 =
𝜈𝑡
𝑥

𝐹′

𝜂
 

𝑉 =
𝜈𝑡
𝑥
(𝐹′ −

𝐹

𝜂
) 

𝐹′ =
𝑑𝐹

𝑑𝜂
 

𝑇 = 20°𝐶 

𝜈𝑤𝑎𝑡𝑒𝑟 = 10
−6 𝑚2/𝑠 

𝜈𝑎𝑖𝑟 = 1.5 ∙ 10
−5 𝑚2/𝑠 
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To satisfy the condition that 𝑉 = 0 on the axis → 𝐹(0) = 𝐹′(0) = 0. 

 

All the terms in Eq. (4) can be expresed as a function of 𝐹 and its derivatives: 

 

𝐹𝐹′

𝜂2
−
𝐹′
2

𝜂
−
𝐹𝐹′′

𝜂
=
𝑑

𝑑𝜂
(𝐹′′ −

𝐹′

𝜂
) 

 

The LHS is (−𝐹𝐹′/𝜂)′, so that the equation can be integrated to yield 

 

𝐹𝐹′ = 𝐹′ − 𝜂𝐹′′    (5) 

 

And the constant of integration is zero due to BCs. Eq. (5) can be rewritte as: 

 

(
1

2
𝐹2)

′

= 2𝐹′ − (𝜂𝐹′)′ 

 

And integrated a second time, with integration constant equal to zero: 

 
1

2
𝐹2 = 2𝐹 −  𝜂𝐹′ 

or 
1

2𝐹 −
1
2
𝐹2

𝑑𝐹

𝑑𝜂
=
1

𝜂
 

Integrating a third time: 

 
1

2
ln (

𝐹

4 − 𝐹
) = ln 𝜂 + 𝑐 

 

Setting 𝑎 = 𝑒2𝑐 , the solution is: 

 

𝐹(𝜂) =
4𝑎𝜂2

1 + 𝑎𝜂2
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By differentiating the solution, the mean velocity profile is obtained: 

 

𝑈 =
8𝑎𝜈𝑡
𝑥

1

(1 + 𝑎𝜂2)2
 

 

And the centerline velocity is: 

 

𝑈0(𝑥) =
8𝑎𝜈𝑡
𝑥
     (6)  

 

And the self-similar profile: 

 

𝑓(𝜂) =
1

(1 + 𝑎𝜂2)2
 

 

The constant 𝑎 and 𝜈𝑡 can be related to 𝑆 = 𝑟1/2/𝑥 (see Pope Ex. 5.3). Noting that 

𝑟 = 𝑟1/2 corresponds to 𝜂 = 𝑆: 

 

�̂�𝑡 =
𝜈𝑡

𝑟1/2𝑈0
     𝑆 =

𝑟1/2

𝑥
=
𝑑𝑟1/2

𝑑𝑥
= constant 

𝜂 =
𝑥

𝑟
→ 𝑥 =

𝑟

𝜂
→ 𝑆 =

𝑟1/2𝜂

𝑟
 

If 𝑟1/2 = 𝑟 → 𝑆 = 𝜂 

 

from the definition of 𝑟1/2 → 𝑈 (𝑥, 𝑟1/2(𝑥)) =
1

2
𝑈0(𝑥), it is required that 

 

𝑓(𝑆) = 1/2 

 

This leads to  

𝑓(𝑆) =
1

2
=

1

(1 + 𝑎𝑆2)2
→ 1 + 𝑎𝑆2 = √2 

 

𝑎 =
√2 − 1

𝑆2
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And from Eq. (6), 

 

𝑈0(𝑥) =
8𝑎𝜈𝑡
𝑥

→ 𝜈𝑡 =
𝑈0𝑥𝑆

2

8(√2 − 1)
→ �̂�𝑡 =

𝜈𝑡
𝑟1/2𝑈0

=
𝑈0𝑥𝑆

2

8(√2 − 1)𝑟1/2𝑈0
 

�̂�𝑡 =
𝑆2

8(√2 − 1)𝑆
=

𝑆

8(√2 − 1)
 

 

Using the constant value �̂�𝑡 = 0.028, the corresponding 𝑆 is given by: 

 

𝑆 = 8(√2 − 1)�̂�𝑡 = 0.094 

 

Which agrees with the profile shown in Fig. 5.15. 

 
Turbulent Reynolds number: 

𝑅𝑇 =
𝑈0(𝑥)𝑟1/2(𝑥)

𝜈𝑡
=
1

�̂�𝑡
≈ 35 

i.e., mean velocity in the turbulent round jet is the same as the velocity field in a 

laminar jet with 𝑅𝑒 = 35. 

 

Disagreement near the edge 

due to using 𝜈𝑡  constant vs. 

empirical curve → 0 at the 

edge. 
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Kinetic Energy 

𝐸(𝑥, 𝑡) =
1

2
𝑈(𝑥, 𝑡) ∙ 𝑈(𝑥, 𝑡) 

 

The ensemble averaged mean of 𝐸 can be decomposed into two parts: 

 

〈𝐸(𝑥, 𝑡)〉 = 𝐸(𝑥, 𝑡) + 𝑘(𝑥, 𝑡) 

 

Where 𝐸(𝑥, 𝑡) is the kinetic energy of the mean flow 

 

𝐸(𝑥, 𝑡) =
1

2
𝑈(𝑥, 𝑡) ∙ 𝑈(𝑥, 𝑡) 

 

And 𝑘(𝑥, 𝑡) is the TKE: 

 

𝑘(𝑥, 𝑡) =
1

2
𝑢𝑖𝑢𝑗 

 

The anisotropic tensor is: 

𝑎𝑖𝑗 = 𝑢𝑖𝑢𝑗 −
2

3
𝑘𝛿𝑖𝑗 

 

And scales with 𝑘. 

 

For turbulent jet the anisotropic part also scales with 𝑘: 𝑢𝑣 ≈ 0.27𝑘 and bounded 

by 𝑢𝑣 < 𝑘. 

 

The equation for the evolution of the instantaneous kinetic energy is: 

 
𝐷𝐸

𝐷𝑡
+ ∇ ∙ 𝑇 = −2𝜈𝑆𝑖𝑗𝑆𝑖𝑗     (7) 

 

Where 

𝑆𝑖𝑗 =
1

2
(
𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
) 
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And  

𝑇𝑖𝑗 =
𝑈𝑖𝑝

𝜌
− 2𝜈𝑈𝑗𝑆𝑖𝑗 

Is the flux of energy. 

 

Integrating Eq. (7) over a fixed control volume gives: 

 
𝑑

𝑑𝑡
∭𝐸𝑑𝑉

𝑉⏟      
1

+∬(𝑈𝐸 + 𝑇) ∙ 𝑛𝑑𝐴
𝐴⏟            

2

= −∭2𝜈𝑆𝑖𝑗𝑆𝑖𝑗𝑑𝑉
𝑉⏟          

3

 

 

2) accounts for inflow, outflow, and work done on the control surface, i.;e., 

energy transfer. 

 

3) ≥ 0, i.e., energy sink due to viscous dissipation: conversion of mechanical 

energy into heat. 

 

Conclusion: no source energy in the flow.  

 

The equation for the mean kinetic energy 〈𝐸(𝑥, 𝑡)〉 is obtained by taking the 

mean of Eq. (7): 

𝐷〈𝐸〉

𝐷𝑡
+ ∇ ∙ (〈𝑢𝐸〉 + 〈𝑇〉) = −휀 − 휀 

 

Where 

 

휀 = 2𝜈𝑆𝑖𝑗𝑆𝑖𝑗       휀 = 2𝜈𝑠𝑖𝑗𝑠𝑖𝑗 

And  

𝑆𝑖𝑗 = 〈𝑆𝑖𝑗〉 =
1

2
(
𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
) 

𝑠𝑖𝑗 = 𝑆𝑖𝑗 − 𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

 

휀~𝑅𝑒−1 and ≪ 휀 → negligible. 
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The equations for 𝐸 and 𝑘 can be written as: 

 

𝐷 𝐸

𝐷𝑡
+ ∇ ∙ 𝑇 = −𝑃 − 휀 

 

𝐷𝑘

𝐷𝑡
+ ∇ ∙ 𝑇′ = −𝑃 − 휀 

 

Where  

𝑇𝑖 =
〈𝑈𝑗〉

〈𝑢𝑖𝑢𝑗〉
+
〈𝑈𝑖〉〈𝑝〉

𝜌
− 2𝜈〈𝑈𝑗〉𝑆𝑖𝑗 

𝑇𝑖′ =
1

2
〈𝑢𝑖𝑢𝑗𝑢𝑗〉 +

〈𝑢𝑖𝑝′〉

𝜌
− 2𝜈〈𝑢𝑗𝑠𝑖𝑗〉 

 

𝑝′ = 𝑝 − 〈𝑝〉 

And  

 

𝑃 = −〈𝑢𝑖𝑢𝑗〉
𝜕𝑈𝑖
𝜕𝑥𝑗

 

 

Represents production, i.e., source of energy = action of the mean velocity 

gradient working against RS: removes energy from 𝐸 and transfers it to 𝑘. 
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Production 

 

1) Only the symmetric part of the velocity gradient affects production, i.e., 

 

𝑃 = −〈𝑢𝑖𝑢𝑗〉𝑆𝑖𝑗 

 

Since product of symmetric (RS) and antisymmetric tensor is zero. 

 

2) Only the anisotropic part of RS affects production, i.e., 

 

𝑃 = −𝑎𝑖𝑗𝑆𝑖𝑗  

Where: 𝑎𝑖𝑗 = 〈𝑢𝑖𝑢𝑗〉 −
2

3
𝑘𝛿𝑖𝑗. 

 

−〈𝑢𝑖𝑢𝑗〉𝑆𝑖𝑗 = −(𝑎𝑖𝑗 +
2

3
𝑘𝛿𝑖𝑗) 𝑆𝑖𝑗 

 

2

3
𝑘𝛿𝑖𝑗𝑆𝑖𝑗 =

2

3
𝑘
1

2
(
𝜕𝑈𝑖
𝜕𝑥𝑖

+
𝜕𝑈𝑖
𝜕𝑥𝑖

) = 0 

 

3) According to the turbulent viscosity hypothesis: 𝑎𝑖𝑗 = −2𝜈𝑡𝑆𝑖𝑗 the 

production term is: 

𝑃 = 2𝜈𝑡𝑆𝑖𝑗𝑆𝑖𝑗 = 휀𝜈𝑡/𝜈 

 

4) For BL flow, only mean velocity gradient given by 𝑈𝑦 or 𝑈𝑟: 

 

𝑃 = −𝑢𝑣
𝜕𝑈

𝜕𝑦
 

 

5) Using both BL and turbulent viscosity hypothesis: 

 

𝑃 = 𝜈𝑡 (
𝜕𝑈

𝜕𝑦
)

2
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Dissipation  

휀 = 2𝜈〈𝑠𝑖𝑗𝑠𝑖𝑗〉 

 

Fluctuating velocity gradients work against fluctuating rate of strain, transform KE 

into internal energy. 

 

𝑠𝑖𝑗 = 𝑆𝑖𝑗 − 〈𝑆𝑖𝑗〉 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 

 

For self-similar jet 𝑈/𝑈0 and 𝑢𝑖𝑢𝑗/𝑈0
2 are function of 𝜉 = 𝑟/𝑟1/2 and independent 

of 𝑅𝑒 

 

Consequently,  

�̂� =
𝑃

𝑈0
3/𝑟1/2

≈ −
𝑢𝑣

𝑈0
2

𝑟1/2

𝑈0

𝜕𝑈

𝜕𝑟
 

 

Also self-similar and independent of 𝑅𝑒. 

 

𝐷𝑘/𝐷𝑡 and 𝑃 scale with 𝑈0
3/𝑟1/2 → 휀̂ = 휀/(𝑈0

3/𝑟1/2) also self-similar and 

independent from 𝑅𝑒. 

 

Suppose have two jets with same 𝑈𝐽 and 𝑑, but different 𝜈𝑎 and 𝜈𝑏, e.g., air and 

water. At same 𝑥, 𝑈0(𝑥) and 𝑟1/2(𝑥) same since  

 

𝑈0(𝑥)

𝑈𝐽
=

𝐵

(𝑥 − 𝑥0)/𝑑
 

 

𝑟1/2(𝑥) = 𝑆(𝑥 − 𝑥0) 

 

∴ 휀𝑎(𝑥, 𝑟) = 휀𝑏(𝑥, 𝑟) = 휀̂ (
𝑟

𝑟1/2(𝑥)
)
𝑈0
3

𝑟1/2
 

 

However, 휀 = 2𝜈〈𝑠𝑖𝑗𝑠𝑖𝑗〉 ∝ 𝜈 which is different. Explanation is 𝑠𝑖𝑗 are different: 

higher 𝑅𝑒 finer scale of small structure → steeper gradients → larger 𝑠𝑖𝑗. 
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Kolmogorov: universal equilibrium range small scale motions only depend on 휀 and 

𝜈. 

𝜂 = (
𝜈3

휀
)

1/4

 𝜏𝜂 = (
𝜈

휀
)
1/2

 𝑢𝜂 = (𝜈휀)
1/4 

 

Kolmogorov scales vary with 𝑅𝑒0 = 𝑈0𝑟1/2/𝜈 = 𝑆𝐵𝑈𝑗𝑑/𝜈 (𝑆~0.1, 𝐵~6), whereas 

𝑈0(𝑥) and 𝑟1/2(𝑥) do not. 

 

𝜂

𝑟1/2
=
(
𝜈3

휀
)
1/4

𝑟1/2
=

𝜈3/4

휀1/4𝑟1/2
=
𝜈3/4𝑟1/2

1/4

휀̂1/4𝑈0
3/4
𝑟1/2

= 𝑅𝑒0
−3/4

휀̂−1/4 

Similarly, 

𝜏𝜂/(𝑟1/2/𝑈0)  = 𝑅𝑒0
−1/2

휀̂−1/2 
𝑢𝜂

𝑈0
=  𝑅𝑒0

−1/4
휀̂1/4 

i.e., smallest motions decrease in size and timescale as 𝑅𝑒 increases. 

Note that  
𝜂𝑢𝜂

𝜈
= 1 

 

i.e., however large 𝑅𝑒0, 𝑅𝑒 of smallest scales is unity and motions at these small 

scales are strongly dependent on 𝜈. 

 

𝜈 (
𝑢𝜂

𝜂
)
2

=
𝜈

𝜏𝜂
2
=

𝜈

𝜈/휀
= 휀, i.e. , (

𝑢𝜂

𝜂
)
2

= 휀/𝜈 

 

i.e., velocity gradients ∝ to the inverse of the turnover time such that 휀 is 

independent of 𝜈. 

 

〈𝑠𝑖𝑗𝑠𝑖𝑗〉 scales as 𝜏𝜂
−2, i.e., inversely proportional to 𝜈, so that  

 

휀𝑎 = 𝜈𝑎 〈𝑠𝑖𝑗𝑠𝑖𝑗〉𝑎⏟    

scales 𝜈𝑎
−1

= 휀𝑏 = 𝜈𝑏 〈𝑠𝑖𝑗𝑠𝑖𝑗〉𝑏⏟    

scales 𝜈𝑏
−1
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TKE Budget 

𝐷𝑘

𝐷𝑡
+ ∇ ∙ 𝑇′ = −𝑃 − 휀    (8) 

 

Fig. 5.16 shows the terms of Eq. (8) divided by 𝑈0
3/𝑟1/2. 

 

 
 

𝑃 and 𝐷𝑘/𝐷𝑡  ±20% EFD accuracy, while other terms have large uncerstainty 

and the results differs by a factor two or more in different experiments.  

At the edge 𝑃/휀 = 0 such that: 

 

∇ ∙ 𝑇′ = −휀 − 〈𝑢〉 ∙ ∇𝑘     

 

Comparison of scales  

𝜏 = time to dissipate 𝑘 at rate 휀. 

𝜏𝑝 = time to produce 𝑘 at rate 𝑃 = flight time from 𝜏𝐽 (virtual origin) of a particle 

moving on the centerline at speed 𝑈0(𝑥) ≈ 3𝜏𝑠 time scale imposed shear 𝑆−1 → 

turbulence is long-lived. 

𝐿11 and 𝐿22 have physical significance, while 𝑙′ = 𝜈𝑡/𝑢′ and 𝐿 = 𝑘3/2/휀 do not. 

𝑃/휀~0.8 

𝑟/𝑟1/2 = 0.6 

On centerline predicted 𝑃 = 0 

since 𝑢𝑣𝑈𝑟 = 0 and (𝑢2 − 𝑣2)𝑈𝑥  

neglected in BL approximation 

Dominant 
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Pseudo-dissipation  

휀̃ = 𝜈 〈
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

〉 = 휀 − 𝜈
𝜕2〈𝑢𝑖𝑢𝑗〉

𝜕𝑥𝑖𝜕𝑥𝑗⏟      
usually small

 

 

This gives an alternative form of the TKE equation: 

 

𝐷𝑘

𝐷𝑡
+
𝜕

𝜕𝑥𝑖
[
1

2
〈𝑢𝑖𝑢𝑗𝑢𝑗〉 +

〈𝑢𝑖𝑝
′〉

ρ
] = ν∇2𝑘 + 𝑃 − 휀̃ 

 

𝐷𝑘

𝐷𝑡
=

𝜕

𝜕𝑥1
[
1

2
〈𝑢𝑖𝑢𝑗𝑢𝑗〉 +

〈𝑢𝑖𝑝
′〉

𝜌
] = 𝜈∇2𝑘 + 𝑃 − 휀 

vs. 

 

𝐷𝑘

𝐷𝑡
+ ∇ ∙ 𝑇′ = 𝑃 − 휀 

 

𝑇𝑖
′ =

𝜕

𝜕𝑥𝑖
[
1

2
〈𝑢𝑖𝑢𝑗𝑢𝑗〉 +

〈𝑢𝑖𝑝
′〉

ρ
− 2𝜈〈𝑢𝑗𝑠𝑖𝑗〉] 
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Plane jet 

Statistically 2D. In EFD, rectangular nozzle with height 𝑑 (𝑦) and width 𝑤 (𝑧) and 

flows in 𝑥 direction.  

𝑤/𝑑 ≫ 1 ≈ 50 such that for 𝑧 = 0 the flow is statistically 2D and free of end 

effects, for 𝑥/𝑤 not large. 

Centerline velocity: 

𝑈0(𝑥) = 〈𝑈(𝑥, 0,0)〉 

Half-width: 
1

2
𝑈0(𝑥) = 〈𝑈(𝑥, 𝑦1/2(𝑥), 0)〉 

 

Mean velocity and RS self-similar for 𝑥/𝑑 > 40, when scaled with 𝑈0(𝑥) and 

𝑦1/2(𝑥). 

 
 

 

 

 

 

 

 

 

 

 

 

 

𝜉 =
𝑦

𝑦1/2(𝑥)
 

 

Profile shapes and scales RS 

comparable with round jet. 

𝑑𝑦1/2

𝑑𝑥
= 𝑆 ≈ 0.1 

𝑈0(𝑥) ≈ 𝑥
−1/2 vs. 𝑥−1 round jet due 

differences similarity transformation. 
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Conservative form BL equation neglecting viscous term: 

 
𝜕

𝜕𝑥
〈𝑈〉2 +

𝜕

𝜕𝑦
(〈𝑈〉〈𝑉〉) = −

𝜕

𝜕𝑦
〈𝑢𝑣〉 

 

Integrating with respect to 𝑦, gives: 

 
𝑑

𝑑𝑥
∫ 〈𝑈〉2𝑑𝑦
∞

−∞

= 0 

 

Since 〈𝑈〉 and 〈𝑢𝑣〉 are zero for 𝑦 → ±∞. Hence, momentum flow rate per unit 

span: 

 

�̇� = ∫ 𝜌〈𝑈〉2𝑑𝑦
∞

−∞

= constant ≠ 𝑓(𝑥) 

 

In the self-similar region: 

 

1) 〈𝑈〉 = 𝑈0(𝑥)𝑓(𝜉) 

 

And the momentum flow rate is: 

 

�̇� = 𝜌𝑈0(𝑥)
2𝑦1/2(𝑥)∫ 𝑓(𝜉)2𝑑𝜉

∞

−∞

 

 

𝑈0(𝑥)
2𝑦1/2(𝑥) ≠ 𝑓(𝑥) 

 

i.e., 

2𝑈0
𝑑𝑈0
𝑑𝑥

𝑦1/2 + 𝑈0
2
𝑑𝑦1/2

𝑑𝑥
 

 
𝑦1/2

𝑈0

𝑑𝑈0
𝑑𝑥

= −
1

2

𝑑𝑦1/2

𝑑𝑥
 

 

2) 〈𝑢𝑣〉 = 𝑈0
2𝑔(𝜉) 

𝜉 =
𝑦

𝑦1/2(𝑥)
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Plugging in 1) and 2) into BL equation, gives: 

 

1

2

𝑑𝑦1/2

𝑑𝑥
(𝑓2 + 𝑓′∫ 𝑓𝑑𝜉

𝜉

0

)
⏟          

≠𝑓(𝑥)

= 𝑔′     (9) 

 

∴ 𝑑𝑦1/2/𝑑𝑥 ≠ 𝑓(𝑥), i.e., 𝑆 is constant and 𝑈0~𝑥
−1/2. 

 

3) 𝜈𝑡 = 𝑈0(𝑥)𝑦1/2(𝑥)𝜈�̂�(𝜉) 

 

𝜈𝑡~𝑥
1/2 

 

𝑅𝑒0 =
𝑈0(𝑥)𝑦1/2(𝑥)

𝜈
~𝑥1/2 

 

𝑅𝑇 =
𝑈0(𝑥)𝑦1/2(𝑥)

𝜈𝑡(𝑥, 𝑦1/2)
≠ 𝑓(𝑥) 

 

For 𝜈�̂� = constant, Eq. (9) becomes: 

 

1

2
𝑆

(

 
 
𝑓2 + 𝑓′∫ 𝑓𝑑𝜉

𝜉

0⏟  

𝐹(𝜉) )

 
 
= −𝜈�̂�𝑓

′′    (10) 

 

Since 𝑓(𝜉) is an even function, 𝐹(𝜉) is odd: 

Even: 

𝑓(𝑥) = 𝑓(−𝑥) 

→ 𝑧 = −𝑥 → 𝑓(𝑥) = 𝑓(𝑧) 

→ 𝑓′(𝑥) = 𝑓′(𝑧)
𝑑𝑧

𝑑𝑥
= −𝑓′(𝑧) 

= −𝑓′(−𝑥) 

i.e., odd → F odd since 𝑓 even. 
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𝐹(0) = 𝐹′′(0) = 0 

 

Eq. (10) becomes: 

 
1

2
𝑆[𝐹′2 + 𝐹′′𝐹] = −𝜈�̂�𝐹

′′′    (11) 

 

Noting that: 

 

𝐹′2 + 𝐹′′𝐹 = (𝐹𝐹′)′ =
1

2
(𝐹2)′′ 

 

And integrating Eq. (11) twice: 

 
1

4
𝑆𝐹2 = −𝜈�̂�𝐹

′ + 𝑎 + 𝑏𝜉     (12) 

 

𝐹2 and 𝐹′ even → 𝑏 = 0 

𝐹′(0) = 1 → 𝑎 = 𝜈�̂� 

 

Defining: 

𝛼 = √
𝑆

4𝜈�̂�
     (13) 

 

Eq. (12) then becomes: 

 

𝐹′ = 1 − (𝛼𝐹)2 

 

Integrating: 

 

𝐹 =
1

𝛼
tanh(𝛼𝜉) 

𝑓 = 𝐹′ = sech2(𝛼𝜉) 

 

 



31 
 

〈𝑈〉 = 𝑈0𝑓(𝜉) →
〈𝑈〉

𝑈0
=
1

2
= 𝑓(1) = sech2(𝛼) 

𝛼 =
1

2
ln(1 + √2)

2
≈ 0.88 

 

This, together with Eq. (13), relates 𝑆 to 𝜈�̂�: 

 

𝑆 = [ln(1 + √2)
2
]
2

𝜈�̂� 

 

Or 

 

𝑅𝑇 =
1

𝜈�̂�
=
[ln(1 + √2)

2
]
2

𝑆
≈ 31 

 

Using 𝑆 = 0.1. 

 


