Chapter 7: Free Shear Flows: Jets, Mixing Layers and Wakes (Pope)

Part 1: Round and 2D Jets

In contrast to wall flows, remote from solid surfaces and turbulence due to meanvelocity differences.

Round jet: EFD

Fig. 5.1. A sketch of a round-jet experiment, showing the polar-cylindrical coordinate system employed.
$R e=\frac{U_{J} d}{v}$ defines the flow, i.e., only non-dimensional parameter.

$$
\bar{U}(x, r, \theta)=\bar{U}(x, r)
$$

Centerline velocity:

$$
U_{0}(x)=\bar{U}(x, 0)
$$

Definition of jet's half-width:

$$
\bar{U}\left(x, r_{1 / 2}(x)\right)=\frac{1}{2} U_{0}(x) \text { defines } r_{1 / 2}(x)
$$

IC dependent details nozzle and $U_{J}: 0 \leq x / d \leq 25$

For $x \uparrow: U_{0}(x) \downarrow$

$$
r_{1 / 2}(x) \uparrow
$$

i.e., jet decays and

 spreads, but shape remains same.Fig. 5.2. Radial profiles of mean axial velocity in a turbulent round jet, $\operatorname{Re}=95,500$ The dashed lines indicate the half-width, $r_{1 / 2}(x)$, of the profiles. (Adapted from the data of Hussein et al. (1994).)

Self-similarity

For $x / d>30, \bar{U} / U_{0}(x)$ vs $r / r_{1 / 2}(x)$ collapses on a single self-similar curve

$$
\begin{gathered}
\frac{U_{0}(x)}{U_{J}}=\frac{B}{\left(x-x_{0}\right) / d} \sim x^{-1} \\
x_{0}=\text { virtual origin } \\
B=\text { experimental constant } \\
S \equiv \frac{d r_{1 / 2}(x)}{d x}=\text { spread rate }= \\
\text { constant } \\
r_{1 / 2}(x)=S\left(x-x_{0}\right) \sim x
\end{gathered}
$$

Fig. 5.3: Mean axial velocity against radial distance in a turbulent round jet, $\operatorname{Re} \approx 10^{5}$ measurements of Wygnanski and Fiedler (1969). Symbols: $0, x / d=40 ; \Delta, x / d=50$ $\square, x / d=60 ; \diamond, x / d=75 ; \bullet, x / d=97.5$.

Fig. 5.4. The variation with axial distance of the mean velocity along the centerline in a turbulent round jet, $\mathrm{Re}=95,500$: symbols, experimental data of Hussein et al. (1994); and line, Eq. (5.6) with $x_{0} / d=4$ and $B=5.8$.

$$
U=\bar{U}+u \quad V=\bar{V}+v W=w
$$

Momentum equation in x-direction $\times r$:

$$
\frac{\partial}{\partial x}\left(r \bar{U}^{2}\right)+\frac{\partial}{\partial r}(r \overline{U V}+r \overline{u v})=0
$$

Integrating with respect to r :

$$
\frac{d}{d x} \int_{0}^{\infty} r \bar{U}^{2} d r=-[r \overline{U V}+r \overline{u v}]_{0}^{\infty}=0
$$

Since, for large $r, \bar{U} \bar{V}$ and $\overline{u v}$ tend to zero more rapidly than r^{-1}. Therefore, momentum flux of the mean flow is independent of x :

$$
\begin{gathered}
\dot{M}=\int_{0}^{\infty} 2 \pi r \rho \bar{U}^{2} d r=\text { constant } \neq f(x) \\
=2 \pi \rho\left(r_{1 / 2} U_{0}\right)^{2} \int_{0}^{\infty} \xi f(\xi)^{2} d \xi \\
\therefore r_{1 / 2}(x) U_{0}(x) \neq f(x)
\end{gathered}
$$

i.e., $r_{1 / 2}(x) \sim x$ and $U_{0}(x) \sim x^{-1}$ consistent with momentum flux being constant and

$$
R e_{0}(x)=\frac{r_{1 / 2}(x) U_{0}(x)}{v} \neq f(x)
$$

Table 5.1. The spreading rate S (Eq. (5.7)) and velocity-decay constant B (Eq. (5.6)) for turbulent round jets (from Panchapakesan and Lumley (1993a))

	Panchapakesan and Lumley (1993a)	Hussein et al. (1994), hot-wire data	Hussein et al. (1994), laser-Doppler data
Re	11,000	95,500	95,500
S	0.096	0.102	0.094
B	6.06	5.9	5.8

$$
S \text { and } B=\text { constants } \neq f(R e)
$$

Fig. 1.2. Planar images of concentration in a turbulent jet: (a) $\operatorname{Re}=5,000$ and (b) $\mathrm{Re}=20,000$. From Dahm and Dimotakis (1990) .

Re only effects flow via small scale structures.

Cross-stream similarity variable can either be:

$$
\xi=r / r_{1 / 2}
$$

or:
$\eta=\frac{r}{x-x_{0}}=S \xi \quad$ (i..e., ξ and η are linearly realted)
$S=\frac{d r_{1 / 2}(x)}{d x}=r_{1 / 2} / x-x_{0}$
Self-similar mean velocity profile:

$f(\eta)=\frac{\bar{U}(x, r)}{U_{0}(x)}$
Fig. 5.5. The self-similar profile of the mean axial velocity in the self-similar round jet: curve fit to the LDA data of Hussein et al. (1994).

The mean lateral velocity \bar{V} can be determined from \bar{U} via the continuity equation (Pope Ex.
5.4):
$\frac{\partial \bar{U}}{\partial x}+\frac{1}{r} \frac{\partial}{\partial r}(r \bar{V})=0$

Fig. 5.6. The mean lateral velocity in the self-similar round jet. From the LDA data of Hussein et al. (1994).

Such that:

$$
\bar{V}<0 \text { near the edge } \rightarrow \text { indicating entrainment of the external flow }
$$

$\frac{\bar{v}}{U_{0}}=h(\eta)$ where: $\eta(f \eta)^{\prime}=(h \eta)^{\prime}$

Reynolds stresses

$$
\overline{u_{i} u_{j}}=\left[\begin{array}{ccc}
\overline{u^{2}} & \overline{u v} & 0 \\
\overline{u v} & \overline{v^{2}} & 0 \\
0 & 0 & \overline{w^{2}}
\end{array}\right]
$$

Due to circumferential symmetry, $\overline{u w}=\overline{v w}=0$ and normal stresses are even functions of r, while $\overline{u v}$ is an odd function.

Consider the rms axial velocity on the centerline

$$
u_{0}^{\prime}(x)=\bar{u}_{r=0}^{2 / 2}
$$

In the self-similar region:

$$
\begin{aligned}
& \frac{u_{0}^{\prime}(x)}{U_{0}(x)} \sim 0.25=\text { constant } \\
& \therefore u_{0}^{\prime}(x) \sim x^{-1} \neq f(R e)
\end{aligned}
$$

$\frac{\overline{u_{i} u_{j}}}{U_{0}^{2}}$ self-similar vs $r / r_{1 / 2}$ or η.
$\overline{u v}>0$ where $\overline{U_{r}}<0 \rightarrow$ positive turbulent viscosity v_{t} :

$$
\overline{u v}=-v_{t} \overline{U_{r}}
$$

Fig. 5.7. Profiles of Reynolds stresses in the self-similar round jet: curve fit to the LDA data of Hussein et al. (1994).

Since the profiles for $\overline{u v}$ and $\overline{U_{r}}$ are selfsimilar \rightarrow the profile of v_{t} is also selfsimilar:

$$
v_{t}(x, r)=U_{0}(x) r_{1 / 2}(x) \hat{v}_{t}(\eta)
$$

Fig. 5.8. The profile of the local turbulence intensity - $\left\langle u^{2}\right\rangle^{1 / 2} /\langle U\rangle-$ in the self-similar round jet. From the curve fit to the experimental data of Hussein et al. (1994).
Both curves same
shape

Fig. 5.10. The normalized turbulent diffusivity \hat{v}_{T} (Eq. (5.34)) in the self-similar round jet. From the curve fit to the experimental data of Hussein et al. (1994).

Fig. 5.9. Profiles of $\langle u v\rangle / k$ and the $u-v$ correlation coefficient $\rho_{u v}$ in the self-similar round jet. From the curve fit to the experimental data of Hussein et al. (1994).
$\hat{v}_{t}(\eta)$ fairly uniform over bulk of the jet, within 15% of 0.028 for $0.1<r / r_{1 / 2}<$ 1.5 , afterwards decreases towards zero at the jet edge.
$v_{t}=\frac{m}{s} \times m \rightarrow v_{t}=u^{\prime} l$
Where $u^{\prime}={\overline{u^{2}}}^{1 / 2}$.
$l=$ local length scale $l(x, r)=$ self-similar and $l / r_{1 / 2}$ within 15% of 0.12 for most of the jet ($0.1<r / r_{1 / 2}<2.1$).

Fig. 5.11. The profile of the lengthscale defined by Eq. (5.35) in the self-similar round jet. From the curve fit to the experimental data of Hussein et al. (1994).

Fig. 5.12. Self-similar profiles of the integral lengthscales in the turbulent round jet. From Wygnanski and Fiedler (1969).

Fig. 5.13. The longitudinal autocorrelation of the axial velocity in the self-similar round jet. From Wygnanski and Fiedler (1969).

Longitudinal and transverse 2-point velcoity correlation.
L_{11} and L_{22} characterize distance over which the fluctuating velocities are correlated.

Mean momentum: Boundary-layer equations

Dominant flow direction: x
$\bar{V} \approx 0.03|\bar{U}|$ and the flow spreads gradually $\left(d r_{1 / 2} / d x=S \approx 0.1\right)$
$\therefore \frac{\partial}{\partial x} \ll \frac{\partial}{\partial r}$
Consider statistically stationary 2D flows, with velocity components U, V, and W, with $\bar{W}=0$.

As $y \rightarrow \infty$ no flow or uniform stream. It is possible to define $\delta(x)$ as the characteristic flow width, $U_{c}(x)$ the characteristic convective velocity, and $U_{s}(x)$ as the characteristic velocity difference.

(b)

Fig. 5.14. Sketches of plane two-dimensional shear flows showing the characteristic flow width $\delta(x)$, the characteristic convective velocity U_{c}, and the characteristic velocity difference U_{s}.

Mean flow continuity and momentum equations:

$$
\begin{gathered}
\frac{\partial \bar{U}}{\partial x}+\frac{\partial \bar{V}}{\partial y}=0 \\
\bar{U} \frac{\partial \bar{U}}{\partial x}+\bar{V} \frac{\partial \bar{U}}{\partial y}=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x}+v \frac{\partial^{2} \bar{U}}{\partial x^{2}}+v \frac{\partial^{2} \bar{U}}{\partial y^{2}}-\frac{\partial \overline{u^{2}}}{\partial x}-\frac{\partial \overline{u v}}{\partial y} \\
\bar{U} \frac{\partial \bar{V}}{\partial x}+\bar{V} \frac{\partial \bar{V}}{\partial y}=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial y}+v \frac{\partial^{2} \bar{V}}{\partial x^{2}}+v \frac{\partial^{2} \bar{V}}{\partial y^{2}}-\frac{\partial \overline{u v}}{\partial x}-\frac{\partial v^{2}}{\partial y}
\end{gathered}
$$

Turbulent y-momentum BL equation neglects convection and viscosity terms, and axial derivatives of RS:

$$
\frac{1}{\rho} \frac{\partial \bar{p}}{\partial y}+\frac{\partial \overline{v^{2}}}{\partial y}=0
$$

Integrating between 0 and y, with $y \rightarrow \infty$, such that $\bar{p}(\infty)=p_{0}$ and $\overline{v^{2}}(\infty)=0$:

$$
\frac{\bar{p}}{\rho}=\frac{p_{0}}{\rho}-\overline{v^{2}}
$$

And the axial pressure gradient is:

$$
\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x}=\frac{1}{\rho} \frac{d p_{0}}{d x}-\frac{\partial \overline{v^{2}}}{\partial x}
$$

For flows with quiescent or uniform free streams, $d p_{0} / d x$ is zero. In general, it can be obtained in terms of the free-stream velocity by Bernoulli's equation.

The axial momentum equation becomes:

$$
\bar{U} \frac{\partial \bar{U}}{\partial x}+\bar{V} \frac{\partial \bar{U}}{\partial y}=v \frac{\partial^{2} \bar{U}}{\partial y^{2}}-\frac{1}{\rho} \frac{d p_{0}}{d x}-\frac{\partial \overline{u v}}{\partial y}-\frac{\partial}{\partial x}\left(\overline{u^{2}}-\overline{v^{2}}\right)
$$

In turbulent free shear flows, $v \frac{\partial^{2} \bar{U}}{\partial y^{2}} \sim v U_{S}^{2} / \delta^{2} \sim R e^{-1}$ and is negligible, which is not the case for BL flows.

In laminar BL, $v \frac{\partial^{2} U}{\partial x^{2}} \sim R e^{-1}$ and negligible. Comparable term in turbulent BL flows is $\frac{\partial}{\partial x}\left(\overline{u^{2}}-\overline{v^{2}}\right) \rightarrow$ it can be neglected, but is $\sim 10 \%$ dominant terms, i.e., not insignificant approximation.

Therefore, axial momentum equation becomes:

$$
\bar{U} \frac{\partial \bar{U}}{\partial x}+\bar{V} \frac{\partial \bar{U}}{\partial y}=v \frac{\partial^{2} \bar{U}}{\partial y^{2}}-\frac{\partial \overline{u v}}{\partial y}
$$

For statistically axisymmetric, stationary non-swirling flows, the corresponding BL equations are:

$$
\begin{gather*}
\frac{\partial \bar{U}}{\partial x}+\frac{1}{r} \frac{\partial(r \bar{V})}{\partial r}=0 \\
\bar{U} \frac{\partial \bar{U}}{\partial x}+\bar{V} \frac{\partial \bar{U}}{\partial r}=\frac{v}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \bar{U}}{\partial r}\right)-\frac{1}{r} \frac{\partial}{\partial r}(r \overline{u v}) \tag{1}
\end{gather*}
$$

The mean pressure distribution is

$$
\frac{\bar{p}}{\rho}=\frac{p_{0}}{\rho}-\overline{v^{2}}+\int_{r}^{\infty} \frac{\overline{v^{2}}-\overline{w^{2}}}{r^{\prime}} d r^{\prime}
$$

Axisymmetric $W=0$ equations.

Mass, momentum and energy fluxes

Neglecting viscous term and multiplying by r, Eq. (1) becomes:

$$
\frac{\partial}{\partial x}\left(r \bar{U}^{2}\right)+\frac{\partial}{\partial r}(r \bar{U} \bar{V}+r \overline{u v})=0
$$

Integrating with respect to r :

$$
\frac{d}{d x} \int_{0}^{\infty} r \bar{U}^{2} d r=-[r \bar{U} \bar{V}+r \overline{u v}]_{0}^{\infty}=0
$$

Since, for large $r, \bar{U} \bar{V}$ and $\overline{u v}$ tend to zero more rapidly than r^{-1}.

The momentum flow rate of the mean flow is:

$$
\begin{equation*}
\dot{M}=\int_{0}^{\infty} 2 \pi r \rho \bar{U}^{2} d r \neq f(x) \tag{2}
\end{equation*}
$$

And is conserved.

The mean velocity profile can be written as:

$$
\bar{U}(x, r, 0)=U_{0}(x) f(\xi)
$$

Where

$$
\xi=\frac{r}{r_{1 / 2}(x)}
$$

Eq. (2) can be rewritten as:

$$
\dot{M}(x)=2 \pi \rho\left(r_{1 / 2} U_{0}\right)^{2} \int_{0}^{\infty} \xi f(\xi)^{2} d \xi
$$

Where the integral is a non-dimensional constant determined by the shape of the profile, but independet of x.
For the self-similar round jet, the mass flow rate is:

$$
\dot{m}(x)=\int_{0}^{\infty} 2 \pi r \rho \bar{U} d r=2 \pi r_{1 / 2} \rho\left(r_{1 / 2} U_{0}\right) \int_{0}^{\infty} \xi f(\xi) d \xi
$$

The kinetic energy flow rate is:

$$
\dot{E}(x)=\int_{0}^{\infty} \pi r \rho \bar{U}^{3} d r=\frac{\pi \rho}{r_{1 / 2}}\left(r_{1 / 2} U_{0}\right)^{3} \int_{0}^{\infty} \xi f(\xi)^{3} d \xi
$$

The integrals and $r_{1 / 2} U_{0} \neq f(x), \dot{m}(x) \propto x \propto r_{1 / 2}$ and $\dot{E}(x) \propto x^{-1} \propto r_{1 / 2}^{-1}$.

Self-similarity

$$
\begin{gathered}
\bar{U}(x, r)=U_{0}(x) f(\xi) \\
\overline{u v}(x, r)=U_{0}(x)^{2} g(\xi) \\
U_{0}(x) \sim x^{-1}
\end{gathered}
$$

$$
\begin{gathered}
\xi=\frac{r}{r_{1 / 2}(x)} \\
\frac{d r_{1 / 2}}{d x}=S \rightarrow r_{1 / 2} \propto x \\
U_{0}(x) \propto x^{-1}
\end{gathered}
$$

Assuming self-similar flow, and neglecting viscous term, Eq. (1) can be rewritten as (Pope Ex. 5.12):

$$
\left[\xi f^{2}\right]\left\{\frac{r_{1 / 2}}{U_{0}} \frac{d U_{0}}{d x}\right\}-\left[\frac{d f}{d \xi} \int_{0}^{\infty} \xi f(\xi) d \xi\right]\left\{\frac{r_{1 / 2}}{U_{0}} \frac{d U_{0}}{d x}+2 \frac{d r_{1 / 2}}{d x}\right\}=-\left[\frac{d}{d \xi}(\xi g)\right]
$$

The terms in [] depend only on ξ, while those in $\}$ depend only on x.
RHS $=f(\xi) \therefore$ LHS $\neq f(x)$, i.e,

$$
\begin{gathered}
\frac{r_{1 / 2}}{U_{0}} \frac{d U_{0}}{d x}=C \\
\frac{r_{1 / 2}}{U_{0}} \frac{d U_{0}}{d x}+2 \frac{d r_{1 / 2}}{d x}=C+2 S
\end{gathered}
$$

Assuming $\} \neq 0$. Eliminating C from the above two equations:

$$
\frac{d r_{1 / 2}}{d x}=S \quad r_{1 / 2}(x)=S\left(x-x_{0}\right)
$$

Showing that the linear spreading of the jet is a consequence of self-similarity. Eq.
(3) implies that $U_{0}(x) \sim x^{n}$, where $n=-1$, i.e., $\frac{d U_{0}}{d x} \sim x^{-2}$. Thus,

$$
C=\frac{r_{1 / 2}}{U_{0}} \frac{d U_{0}}{d x}=-S
$$

Uniform turbulent viscosity

Closure problem $\rightarrow v_{t}$ is defined using eddy viscosity concept:

$$
\overline{u v}=-v_{t} \overline{U_{r}}
$$

Where for the self-similar round jet:

$$
v_{t}(x, r)=r_{1 / 2}(x) U_{0}(x) \hat{v}_{t}(\eta)
$$

And $\hat{v}_{t}(\eta)$ is within 15% of 0.028 for $0.1<r / r_{1 / 2}<1.5 \rightarrow$ assume \hat{v}_{t} is constant, i.e., $\neq f(\eta)$ such that BL momentum equation becomes:

$$
\begin{equation*}
\bar{U} \frac{\partial \bar{U}}{\partial x}+\bar{V} \frac{\partial \bar{U}}{\partial r}=\frac{v_{t}}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \bar{U}}{\partial r}\right) \tag{4}
\end{equation*}
$$

Where the viscous term has been neglected, although it could be retained by replacing v_{t} with $v_{\text {eff }}$.

Similarity solution round jet for uniform turbulent viscosity:

$$
\bar{U}=\frac{1}{r} \frac{\partial \psi}{\partial r} \quad \bar{V}=-\frac{1}{r} \frac{\partial \psi}{\partial x}
$$

$$
\begin{gathered}
T=20^{\circ} \mathrm{C} \\
v_{\text {water }}=10^{-6} \mathrm{~m}^{2} / \mathrm{s} \\
v_{\text {air }}=1.5 \cdot 10^{-5} \mathrm{~m}^{2} / \mathrm{s}
\end{gathered}
$$

This choice automatically satisfies the continuity equation. With x measured from the virtual origin $\left(x_{0}\right)$ based $\mathrm{U}_{\mathrm{J}} / \mathrm{U}_{0}(\mathrm{x})$ vs. x / d so that $\eta=r / x$:

$$
\psi=v_{t} x F(\eta)
$$

Where F is non-dimensional. Consequently,

$$
\begin{array}{cc}
\bar{U}=\frac{v_{t}}{x} \frac{F^{\prime}}{\eta} & F^{\prime}=\frac{d F}{d \eta} \\
\bar{V}=\frac{v_{t}}{x}\left(F^{\prime}-\frac{F}{\eta}\right) &
\end{array}
$$

To satisfy the condition that $\bar{V}=0$ on the axis $\rightarrow F(0)=F^{\prime}(0)=0$.

All the terms in Eq. (4) can be expresed as a function of F and its derivatives:

$$
\frac{F F^{\prime}}{\eta^{2}}-\frac{F^{\prime 2}}{\eta}-\frac{F F^{\prime \prime}}{\eta}=\frac{d}{d \eta}\left(F^{\prime \prime}-\frac{F^{\prime}}{\eta}\right)
$$

The LHS is $\left(-F F^{\prime} / \eta\right)^{\prime}$, so that the equation can be integrated to yield

$$
\begin{equation*}
F F^{\prime}=F^{\prime}-\eta F^{\prime \prime} \tag{5}
\end{equation*}
$$

And the constant of integration is zero due to BCs. Eq. (5) can be rewritte as:

$$
\left(\frac{1}{2} F^{2}\right)^{\prime}=2 F^{\prime}-\left(\eta F^{\prime}\right)^{\prime}
$$

And integrated a second time, with integration constant equal to zero:

$$
\frac{1}{2} F^{2}=2 F-\eta F^{\prime}
$$

or

$$
\frac{1}{2 F-\frac{1}{2} F^{2}} \frac{d F}{d \eta}=\frac{1}{\eta}
$$

Integrating a third time:

$$
\frac{1}{2} \ln \left(\frac{F}{4-F}\right)=\ln \eta+c
$$

Setting $a=e^{2 c}$, the solution is:

$$
F(\eta)=\frac{4 a \eta^{2}}{1+a \eta^{2}}
$$

By differentiating the solution, the mean velocity profile is obtained:

$$
\bar{U}=\frac{8 a v_{t}}{x} \frac{1}{\left(1+a \eta^{2}\right)^{2}}
$$

And the centerline velocity is:

$$
\begin{equation*}
U_{0}(x)=\frac{8 a v_{t}}{x} \tag{6}
\end{equation*}
$$

And the self-similar profile:

$$
f(\eta)=\frac{1}{\left(1+a \eta^{2}\right)^{2}}
$$

The constant a and v_{t} can be related to $S=r_{1 / 2} / x$ (see Pope Ex. 5.3). Noting that $r=r_{1 / 2}$ corresponds to $\eta=S$:

$$
\begin{gathered}
\hat{v}_{t}=\frac{v_{t}}{r_{1 / 2} U_{0}} \quad S=\frac{r_{1 / 2}}{x}=\frac{d r_{1 / 2}}{d x}=\text { constant } \\
\eta=\frac{x}{r} \rightarrow x=\frac{r}{\eta} \rightarrow S=\frac{r_{1 / 2} \eta}{r} \\
\text { If } r_{1 / 2}=r \rightarrow S=\eta
\end{gathered}
$$

from the definition of $r_{1 / 2} \rightarrow \bar{U}\left(x, r_{1 / 2}(x)\right)=\frac{1}{2} U_{0}(x)$, it is required that

$$
f(S)=1 / 2
$$

This leads to

$$
\begin{gathered}
f(S)=\frac{1}{2}=\frac{1}{\left(1+a S^{2}\right)^{2}} \rightarrow 1+a S^{2}=\sqrt{2} \\
a=\frac{\sqrt{2}-1}{S^{2}}
\end{gathered}
$$

And from Eq. (6),

$$
\begin{gathered}
U_{0}(x)=\frac{8 a v_{t}}{x} \rightarrow v_{t}=\frac{U_{0} x S^{2}}{8(\sqrt{2}-1)} \rightarrow \hat{v}_{t}=\frac{v_{t}}{r_{1 / 2} U_{0}}=\frac{U_{0} x S^{2}}{8(\sqrt{2}-1) r_{1 / 2} U_{0}} \\
\hat{v}_{t}=\frac{S^{2}}{8(\sqrt{2}-1) S}=\frac{S}{8(\sqrt{2}-1)}
\end{gathered}
$$

Using the constant value $\hat{v}_{t}=0.028$, the corresponding S is given by:

$$
S=8(\sqrt{2}-1) \hat{v}_{t}=0.094
$$

Which agrees with the profile shown in Fig. 5.15.

Fig. 5.15. The mean velocity profile in the self-similar round jet: solid line, curve fit to the experimental data of Hussein et al. (1994); dashed line, uniform turbulent viscosity solution (Eq. 5.82).

Turbulent Reynolds number:

$$
R_{T}=\frac{U_{0}(x) r_{1 / 2}(x)}{v_{t}}=\frac{1}{\hat{v}_{t}} \approx 35
$$

i.e., mean velocity in the turbulent round jet is the same as the velocity field in a laminar jet with $R e=35$.

Kinetic Energy

$$
E(\underline{x}, t)=\frac{1}{2} \underline{U}(\underline{x}, t) \cdot \underline{U}(\underline{x}, t)
$$

The ensemble averaged mean of E can be decomposed into two parts:

$$
\langle E(\underline{x}, t)\rangle=\bar{E}(\underline{x}, t)+k(\underline{x}, t)
$$

Where $\bar{E}(\underline{x}, t)$ is the kinetic energy of the mean flow

$$
\bar{E}(\underline{x}, t)=\frac{1}{2} \underline{\bar{U}}(\underline{x}, t) \cdot \underline{\bar{U}}(\underline{x}, t)
$$

And $k(\underline{x}, t)$ is the TKE:

$$
k(\underline{x}, t)=\frac{1}{2} \overline{u_{i} u_{j}}
$$

The anisotropic tensor is:

$$
a_{i j}=\overline{u_{i} u_{j}}-\frac{2}{3} k \delta_{i j}
$$

And scales with k.

For turbulent jet the anisotropic part also scales with $k: \overline{u v} \approx 0.27 k$ and bounded by $\overline{u v}<k$.

The equation for the evolution of the instantaneous kinetic energy is:

$$
\begin{equation*}
\frac{D E}{D t}+\nabla \cdot \underline{T}=-2 v S_{i j} S_{i j} \tag{7}
\end{equation*}
$$

Where

$$
S_{i j}=\frac{1}{2}\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right)
$$

And

$$
T_{i j}=\frac{U_{i} p}{\rho}-2 v U_{j} S_{i j}
$$

Is the flux of energy.

Integrating Eq. (7) over a fixed control volume gives:

$$
\underbrace{\frac{d}{d t} \iiint_{V} E d V}_{1}+\underbrace{\iint_{A}(\underline{U} E+\underline{T}) \cdot \underline{n} d A}_{2}=-\underbrace{\iiint_{V} 2 v S_{i j} S_{i j} d V}_{3}
$$

2) accounts for inflow, outflow, and work done on the control surface, i.;e., energy transfer.
3) ≥ 0, i.e., energy sink due to viscous dissipation: conversion of mechanical energy into heat.

Conclusion: no source energy in the flow.

The equation for the mean kinetic energy $\langle E(\underline{x}, t)\rangle$ is obtained by taking the mean of Eq. (7):

$$
\frac{\bar{D}\langle E\rangle}{\bar{D} t}+\nabla \cdot(\langle\underline{u} E\rangle+\langle\underline{T}\rangle)=-\bar{\varepsilon}-\varepsilon
$$

Where

$$
\bar{\varepsilon}=2 v \bar{S}_{i j} \bar{S}_{i j} \quad \varepsilon=2 v \overline{S_{i j} S_{i j}}
$$

And

$$
\begin{gathered}
\bar{S}_{i j}=\left\langle S_{i j}\right\rangle=\frac{1}{2}\left(\frac{\partial \overline{U_{i}}}{\partial x_{j}}+\frac{\partial \overline{U_{j}}}{\partial x_{i}}\right) \\
s_{i j}=S_{i j}-\bar{S}_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
\end{gathered}
$$

$\bar{\varepsilon} \sim R e^{-1}$ and $\ll \varepsilon \rightarrow$ negligible.

The equations for \bar{E} and k can be written as:

$$
\begin{aligned}
& \frac{\bar{D} \bar{E}}{\bar{D} t}+\nabla \cdot \overline{\bar{T}}=-P-\bar{\varepsilon} \\
& \frac{\bar{D} k}{\bar{D} t}+\nabla \cdot \underline{T}^{\prime}=-P-\varepsilon
\end{aligned}
$$

Where

$$
\begin{gathered}
\overline{T_{i}}=\frac{\left\langle U_{j}\right\rangle}{\left\langle u_{i} u_{j}\right\rangle}+\frac{\left\langle U_{i}\right\rangle\langle p\rangle}{\rho}-2 v\left\langle U_{j}\right\rangle \bar{S}_{i j} \\
T_{i}^{\prime}=\frac{1}{2}\left\langle u_{i} u_{j} u_{j}\right\rangle+\frac{\left\langle u_{i} p^{\prime}\right\rangle}{\rho}-2 v\left\langle u_{j} s_{i j}\right\rangle \\
p^{\prime}=p-\langle p\rangle
\end{gathered}
$$

And

$$
P=-\left\langle u_{i} u_{j}\right\rangle \frac{\partial \overline{U_{i}}}{\partial x_{j}}
$$

Represents production, i.e., source of energy $=$ action of the mean velocity gradient working against RS: removes energy from \bar{E} and transfers it to k.

Production

1) Only the symmetric part of the velocity gradient affects production, i.e.,

$$
P=-\left\langle u_{i} u_{j}\right\rangle \bar{S}_{i j}
$$

Since product of symmetric (RS) and antisymmetric tensor is zero.
2) Only the anisotropic part of RS affects production, i.e.,

$$
P=-a_{i j} \bar{S}_{i j}
$$

Where: $a_{i j}=\left\langle u_{i} u_{j}\right\rangle-\frac{2}{3} k \delta_{i j}$.

$$
\begin{gathered}
-\left\langle u_{i} u_{j}\right\rangle \bar{S}_{i j}=-\left(a_{i j}+\frac{2}{3} k \delta_{i j}\right) \bar{S}_{i j} \\
\frac{2}{3} k \delta_{i j} \bar{S}_{i j}=\frac{2}{3} k \frac{1}{2}\left(\frac{\partial \overline{U_{i}}}{\partial x_{i}}+\frac{\partial \overline{U_{i}}}{\partial x_{i}}\right)=0
\end{gathered}
$$

3) According to the turbulent viscosity hypothesis: $a_{i j}=-2 v_{t} \bar{S}_{i j}$ the production term is:

$$
P=2 v_{t} \bar{S}_{i j} \bar{S}_{i j}=\bar{\varepsilon} v_{t} / v
$$

4) For BL flow, only mean velocity gradient given by \bar{U}_{y} or \bar{U}_{r} :

$$
P=-\overline{u v} \frac{\partial \bar{U}}{\partial y}
$$

5) Using both BL and turbulent viscosity hypothesis:

$$
P=v_{t}\left(\frac{\partial \bar{U}}{\partial y}\right)^{2}
$$

Dissipation

$$
\varepsilon=2 v\left\langle s_{i j} s_{i j}\right\rangle
$$

Fluctuating velocity gradients work against fluctuating rate of strain, transform KE into internal energy.

$$
s_{i j}=S_{i j}-\left\langle S_{i j}\right\rangle=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right)
$$

For self-similar jet \bar{U} / U_{0} and $\overline{u_{i} u_{j}} / U_{0}^{2}$ are function of $\xi=r / r_{1 / 2}$ and independent of $R e$

Consequently,

$$
\hat{P}=\frac{P}{U_{0}^{3} / r_{1 / 2}} \approx-\frac{\overline{u v}}{U_{0}^{2}} \frac{r_{1 / 2}}{U_{0}} \frac{\partial \bar{U}}{\partial r}
$$

Also self-similar and independent of $R e$.
$D k / D t$ and P scale with $U_{0}^{3} / r_{1 / 2} \rightarrow \hat{\varepsilon}=\varepsilon /\left(U_{0}^{3} / r_{1 / 2}\right)$ also self-similar and independent from $R e$.

Suppose have two jets with same U_{J} and d, but different v_{a} and v_{b}, e.g., air and water. At same $x, U_{0}(x)$ and $r_{1 / 2}(x)$ same since

$$
\begin{gathered}
\frac{U_{0}(x)}{U_{J}}=\frac{B}{\left(x-x_{0}\right) / d} \\
r_{1 / 2}(x)=S\left(x-x_{0}\right) \\
\therefore \varepsilon_{a}(x, r)=\varepsilon_{b}(x, r)=\hat{\varepsilon}\left(\frac{r}{r_{1 / 2}(x)}\right) \frac{U_{0}^{3}}{r_{1 / 2}}
\end{gathered}
$$

However, $\varepsilon=2 v\left\langle s_{i j} s_{i j}\right\rangle \propto v$ which is different. Explanation is $s_{i j}$ are different: higher $R e$ finer scale of small structure \rightarrow steeper gradients \rightarrow larger $s_{i j}$.

Kolmogorov: universal equilibrium range small scale motions only depend on ε and ν.

$$
\eta=\left(\frac{v^{3}}{\varepsilon}\right)^{1 / 4} \tau_{\eta}=\left(\frac{v}{\varepsilon}\right)^{1 / 2} u_{\eta}=(v \varepsilon)^{1 / 4}
$$

Kolmogorov scales vary with $R e_{0}=U_{0} r_{1 / 2} / v=S B U_{j} d / v(S \sim 0.1, B \sim 6)$, whereas $U_{0}(x)$ and $r_{1 / 2}(x)$ do not.

$$
\frac{\eta}{r_{1 / 2}}=\frac{\left(\frac{v^{3}}{\varepsilon}\right)^{1 / 4}}{r_{1 / 2}}=\frac{v^{3 / 4}}{\varepsilon^{1 / 4} r_{1 / 2}}=\frac{v^{3 / 4} r_{1 / 2}{ }^{1 / 4}}{\hat{\varepsilon}^{1 / 4} U_{0}^{3 / 4} r_{1 / 2}}=R e_{0}^{-3 / 4} \hat{\varepsilon}^{-1 / 4}
$$

Similarly,

$$
\begin{gathered}
\tau_{\eta} /\left(r_{1 / 2} / U_{0}\right)=R e_{0}^{-1 / 2} \hat{\varepsilon}^{-1 / 2} \\
\frac{u_{\eta}}{U_{0}}=R e_{0}^{-1 / 4} \hat{\varepsilon}^{1 / 4}
\end{gathered}
$$

i.e., smallest motions decrease in size and timescale as $R e$ increases. Note that

$$
\frac{\eta u_{\eta}}{v}=1
$$

i.e., however large $R e_{0}, R e$ of smallest scales is unity and motions at these small scales are strongly dependent on v.

$$
v\left(\frac{u_{\eta}}{\eta}\right)^{2}=\frac{v}{\tau_{\eta}^{2}}=\frac{v}{v / \varepsilon}=\varepsilon \text {, i.e. , }\left(\frac{u_{\eta}}{\eta}\right)^{2}=\varepsilon / v
$$

i.e., velocity gradients α to the inverse of the turnover time such that ε is independent of v.
$\left\langle s_{i j} s_{i j}\right\rangle$ scales as τ_{η}^{-2}, i.e., inversely proportional to v, so that

$$
\varepsilon_{a}=v_{a} \underbrace{\left\langle s_{i j} s_{i j}\right\rangle_{a}}_{\text {scales } v_{a}^{-1}}=\varepsilon_{b}=v_{b} \underbrace{\left\langle s_{i j} s_{i j}\right\rangle_{b}}_{\text {scales } v_{b}^{-1}}
$$

TKE Budget

$$
\begin{equation*}
\frac{\bar{D} k}{\bar{D} t}+\nabla \cdot \underline{T}^{\prime}=-P-\varepsilon \tag{8}
\end{equation*}
$$

Fig. 5.16 shows the terms of Eq. (8) divided by $U_{0}^{3} / r_{1 / 2}$.

On centerline predicted $P=0$ since $\overline{u v} \bar{U}_{r}=0$ and $\left(\overline{u^{2}}-\overline{v^{2}}\right) \bar{U}_{x}$ neglected in BL approximation

Fig. 5.16. The turbulent-kinetic-energy budget in the self-similar round jet. Quantities are normalized by U_{0} and $r_{1 / 2}$. (From Panchapakesan and Lumley (1993a).)
P and $\bar{D} k / \bar{D} t \pm 20 \%$ EFD accuracy, while other terms have large uncerstainty and the results differs by a factor two or more in different experiments. At the edge $P / \varepsilon=0$ such that:

$$
\nabla \cdot \underline{T}^{\prime}=-\varepsilon-\langle\underline{u}\rangle \cdot \nabla k
$$

Comparison of scales

$\tau=$ time to dissipate k at rate ε.
$\tau_{p}=$ time to produce k at rate $P=$ flight time from τ_{J} (virtual origin) of a particle moving on the centerline at speed $U_{0}(x) \approx 3 \tau_{s}$ time scale imposed shear $S^{-1} \rightarrow$ turbulence is long-lived.
L_{11} and L_{22} have physical significance, while $l^{\prime}=v_{t} / u^{\prime}$ and $L=k^{3 / 2} / \varepsilon$ do not.

Pseudo-dissipation

$$
\tilde{\varepsilon}=v\left\langle\frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{i}}{\partial x_{j}}\right\rangle=\varepsilon-\underbrace{v \frac{\partial^{2}\left\langle u_{i} u_{j}\right\rangle}{\partial x_{i} \partial x_{j}}}_{\text {usually small }}
$$

This gives an alternative form of the TKE equation:

$$
\begin{aligned}
& \frac{\bar{D} k}{\bar{D} t}+\frac{\partial}{\partial x_{i}}\left[\frac{1}{2}\left\langle u_{i} u_{j} u_{j}\right\rangle+\frac{\left\langle u_{i} p^{\prime}\right\rangle}{\rho}\right]=\nu \nabla^{2} k+P-\tilde{\varepsilon} \\
& \frac{D k}{D t}=\frac{\partial}{\partial x_{1}}\left[\frac{1}{2}\left\langle u_{i} u_{j} u_{j}\right\rangle+\frac{\left\langle u_{i} p^{\prime}\right\rangle}{\rho}\right]=\nu \nabla^{2} k+P-\varepsilon
\end{aligned}
$$

vs.

$$
\begin{gathered}
\frac{\bar{D} k}{\bar{D} t}+\nabla \cdot \underline{T}^{\prime}=P-\varepsilon \\
T_{i}^{\prime}=\frac{\partial}{\partial x_{i}}\left[\frac{1}{2}\left\langle u_{i} u_{j} u_{j}\right\rangle+\frac{\left\langle u_{i} p^{\prime}\right\rangle}{\rho}-2 v\left\langle u_{j} s_{i j}\right\rangle\right]
\end{gathered}
$$

Fig. 5.17. Timescales in the self-similar round jet in units of τ_{0}. See Table 5.2 for definitions.

Fig. 5.18. Lengthscales in the self-similar round jet in units of $r_{1 / 2}$. L_{11} and L_{12} are the longitudinal and lateral integral scales; $L \equiv k^{3 / 2} / \varepsilon ; l=v_{\mathrm{T}} / u^{\prime} ;$ evaluated at $r / r_{1 / 2} \approx 0.7$. (Note the logarithmic scale.)

Table 5.2. Timescales, rates, and ratios in the self-similar round jet: the first four entries are evaluated from $U_{0}(x), r_{1 / 2}(x)$ and the spreading rate S; the remaining entries are estimated from experimental data at $r / r_{1 / 2} \approx 0.7$, where $\langle u v\rangle$ and $|\partial\langle U\rangle / \partial r|$ peak

			Value in Definition
$\tau_{0}=r_{1 / 2} / U_{0}$	Description	Reference timescale used for normalization setsimilar round normalized by τ_{0}	
$\tau_{\mathrm{J}}=\frac{1}{2} x / U_{0}$	Mean flight time from virtual origin	τ_{0}	1
$\Omega_{m}=\frac{U_{0}}{\dot{m}} \frac{\mathrm{~d} \dot{m}}{\mathrm{~d} x}$	Entrainment rate		

Plane jet

Statistically 2D. In EFD, rectangular nozzle with height $d(y)$ and width $w(z)$ and flows in x direction.
$w / d \gg 1 \approx 50$ such that for $z=0$ the flow is statistically 2 D and free of end effects, for x / w not large.
Centerline velocity:

$$
U_{0}(x)=\langle U(x, 0,0)\rangle
$$

Half-width:

$$
\frac{1}{2} U_{0}(x)=\left\langle U\left(x, y_{1 / 2}(x), 0\right)\right\rangle
$$

Mean velocity and RS self-similar for $x / d>40$, when scaled with $U_{0}(x)$ and $y_{1 / 2}(x)$.

Fig. 5.19. The mean velocity profile in the self-similar plane jet. Symbols, experimental data of Heskestad (1965); line, uniform turbulent-viscosity solution, Eq. (5.187) (with permission of ASME).

Profile shapes and scales RS comparable with round jet.

$$
\frac{d y_{1 / 2}}{d x}=S \approx 0.1
$$

$U_{0}(x) \approx x^{-1 / 2}$ vs. x^{-1} round jet due differences similarity transformation.

Fig. 5.20. Reynolds-stress profiles in the self-similar plane jet. From the measurements of Heskestad (1965) (with permission of ASME).

Conservative form BL equation neglecting viscous term:

$$
\frac{\partial}{\partial x}\langle U\rangle^{2}+\frac{\partial}{\partial y}(\langle U\rangle\langle V\rangle)=-\frac{\partial}{\partial y}\langle u v\rangle
$$

Integrating with respect to y, gives:

$$
\frac{d}{d x} \int_{-\infty}^{\infty}\langle U\rangle^{2} d y=0
$$

Since $\langle U\rangle$ and $\langle u v\rangle$ are zero for $y \rightarrow \pm \infty$. Hence, momentum flow rate per unit span:

$$
\dot{M}=\int_{-\infty}^{\infty} \rho\langle U\rangle^{2} d y=\text { constant } \neq f(x)
$$

In the self-similar region:

1) $\langle U\rangle=U_{0}(x) f(\xi)$

And the momentum flow rate is:

$$
\xi=\frac{y}{y_{1 / 2}(x)}
$$

$$
\begin{gathered}
\dot{M}=\rho U_{0}(x)^{2} y_{1 / 2}(x) \int_{-\infty}^{\infty} f(\xi)^{2} d \xi \\
U_{0}(x)^{2} y_{1 / 2}(x) \neq f(x)
\end{gathered}
$$

i.e.,

$$
\begin{gathered}
2 U_{0} \frac{d U_{0}}{d x} y_{1 / 2}+U_{0}^{2} \frac{d y_{1 / 2}}{d x} \\
\frac{y_{1 / 2}}{U_{0}} \frac{d U_{0}}{d x}=-\frac{1}{2} \frac{d y_{1 / 2}}{d x}
\end{gathered}
$$

2) $\langle u v\rangle=U_{0}^{2} g(\xi)$

Plugging in 1) and 2) into BL equation, gives:

$$
\begin{equation*}
\frac{1}{2} \frac{d y_{1 / 2}}{d x} \underbrace{\left(f^{2}+f^{\prime} \int_{0}^{\xi} f d \xi\right)}_{\nexists f(x)}=g^{\prime} \tag{9}
\end{equation*}
$$

$\therefore d y_{1 / 2} / d x \neq f(x)$, i.e., S is constant and $U_{0} \sim x^{-1 / 2}$.
3) $v_{t}=U_{0}(x) y_{1 / 2}(x) \widehat{v}_{t}(\xi)$

$$
\begin{gathered}
v_{t} \sim x^{1 / 2} \\
R e_{0}=\frac{U_{0}(x) y_{1 / 2}(x)}{v} \sim x^{1 / 2} \\
R_{T}=\frac{U_{0}(x) y_{1 / 2}(x)}{v_{t}\left(x, y_{1 / 2}\right)} \neq f(x)
\end{gathered}
$$

For $\widehat{v_{t}}=$ constant, Eq. (9) becomes:

$$
\begin{equation*}
\frac{1}{2} S(f^{2}+f^{\prime} \underbrace{\int_{0}^{\xi} f d \xi}_{\underbrace{F(\xi)}})=-\widehat{v_{t}} f^{\prime \prime} \tag{10}
\end{equation*}
$$

Since $f(\xi)$ is an even function, $F(\xi)$ is odd:
Even:

$$
\begin{gathered}
f(x)=f(-x) \\
\rightarrow z=-x \rightarrow f(x)=f(z) \\
\rightarrow f^{\prime}(x)=f^{\prime}(z) \frac{d z}{d x}=-f^{\prime}(z) \\
=-f^{\prime}(-x)
\end{gathered}
$$

i.e., odd $\rightarrow \mathrm{F}$ odd since f even.

$$
F(0)=F^{\prime \prime}(0)=0
$$

Eq. (10) becomes:

$$
\begin{equation*}
\frac{1}{2} S\left[F^{\prime 2}+F^{\prime \prime} F\right]=-\widehat{v_{t}} F^{\prime \prime \prime} \tag{11}
\end{equation*}
$$

Noting that:

$$
F^{\prime 2}+F^{\prime \prime} F=\left(F F^{\prime}\right)^{\prime}=\frac{1}{2}\left(F^{2}\right)^{\prime \prime}
$$

And integrating Eq. (11) twice:

$$
\begin{equation*}
\frac{1}{4} S F^{2}=-\widehat{v}_{t} F^{\prime}+a+b \xi \tag{12}
\end{equation*}
$$

F^{2} and F^{\prime} even $\rightarrow b=0$

$$
F^{\prime}(0)=1 \rightarrow a=\widehat{v_{t}}
$$

Defining:

$$
\begin{equation*}
\alpha=\sqrt{\frac{S}{4 \widehat{v_{t}}}} \tag{13}
\end{equation*}
$$

Eq. (12) then becomes:

$$
F^{\prime}=1-(\alpha F)^{2}
$$

Integrating:

$$
\begin{gathered}
F=\frac{1}{\alpha} \tanh (\alpha \xi) \\
f=F^{\prime}=\operatorname{sech}^{2}(\alpha \xi)
\end{gathered}
$$

$$
\begin{gathered}
\langle U\rangle=U_{0} f(\xi) \rightarrow \frac{\langle U\rangle}{U_{0}}=\frac{1}{2}=f(1)=\operatorname{sech}^{2}(\alpha) \\
\alpha=\frac{1}{2} \ln (1+\sqrt{2})^{2} \approx 0.88
\end{gathered}
$$

This, together with Eq. (13), relates S to $\widehat{v_{t}}$:

$$
S=\left[\ln (1+\sqrt{2})^{2}\right]^{2} \widehat{v_{t}}
$$

Or

$$
R_{T}=\frac{1}{\widehat{v_{t}}}=\frac{\left[\ln (1+\sqrt{2})^{2}\right]^{2}}{S} \approx 31
$$

Using $S=0.1$.

