Chapter 7: Free Shear Flows: Jets, Mixing Layers and Wakes (Pope)
Part 1: Round and 2D Jets

In contrast to wall flows, remote from solid surfaces and turbulence due to mean-
velocity differences.

Round jet: EFD
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Fig. 5.1. A sketch of a round-jet experiment, showing the polar-cylindrical coordinate
system employed.

uid | .. . . :
Re = % defines the flow, i.e., only non-dimensional parameter.

Ux,1,0) = U(x, )

Centerline velocity:
UO (X) = ﬁ(x, 0)

Definition of jet’s half-width:

U(x, rl/z(x)) = EUO (x) defines 1/, (x)

IC dependent details nozzle and U;: 0 < x/d < 25
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Fig. 5.2. Radi_al pl:ofi{es of mean axial velocity in a turbulent round jet, Re = 95,500.
The dashed lines indicate the half-width, ry/»(x), of the profiles. (Adapted from the

data of Hussein et al. (1994).)

Self-similarity

For x/d > 30, U/Uy(x)
vs 1 /11 /2 (x) collapses on
a single self-similar curve
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Xy = virtual origin
B = experimental constant
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Fig. 5.3. Mean axial velocity against radial distance in a turbulent round jet, Re = 10°;
measurements of Wygnanski and Fiedler (1969). Symbols: o, x/d = 40; A, x/d = 50;
D, x/d =60; ¢, x/d =175; e, x/d=975.
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Fig. 5.4. The variation with axial distance of the mean velocity along the centerline
in a turbulent round jet, Re = 95500: symbols, experimental data of Hussein et al.
(1994); and line, Eq. (5.6) with x,/d =4 and B = 5.8.




U=sU+u V=V+vW=w
Momentum equation in x —direction X 7:

d ; —2 0, — __
a( U )+§(rUV+ruv)=0

Integrating with respect to 7:

d ® _2 —_— 7
—f rU dr = —[rUV +ruv]0 =0
0

dx
Since, for large r, UV and uv tend to zero more rapidly than r~1. Therefore,
momentum flux of the mean flow is independent of x:
. *° —2
M = j 2nrpU dr = constant # f(x)
0 r
7”1/2(%)

= an(rl/zUo)zj Ef(E)*dé
0

= 112 Up(x) # f(x)

i.e., 71/ (x)~x and Uy(x)~x~1 consistent with momentum flux being constant
and




Table 5.1. The spreading rate S (Eq. (5.7)) and velocity-decay constant
B (Eq. (5.6)) for turbulent round jets (from Panchapakesan and Lumley
(1993a))

Panchapakesan and Hussein et al. (1994), Hussein et al. (1994),

Lumley (1993a) hot-wire data laser-Doppler data
Re . 11000 95,500 95,500
S 0.096 0.102 0.094
B 6.06 R 5.8

S and B = constants # f(Re)

(b)

Fig. 1.2. Planar images of concentration in a turbulent jet: (a) Re = 5,000 and
(b) Re = 20,000. From Dahm and Dimotakis (1990) .

Re only effects flow via small scale structures.



Cross-stream similarity variable can either be:

§ = 7"/7”1/2
or:

r

=S5¢ (i..e,éandn

m= X—Xq
are linearly realted)

dry /2 (x)
dx

§= =T12/ X — Xo

Self-similar mean velocity profile:

B U(x, 1)

fm) = m

The mean lateral velocity V can
be determined from U via the
continuity equation (Pope Ex.
5.4):
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Fig. 5.5. The self-similar profile of the mean axial velocity in the self-similar round
jet: curve fit to the LDA data of Hussein er al. (1994).
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Fig. 5.6. The mean lateral velocity in the self-similar round jet. From the LDA data
of Hussein er al. (1994).

V < 0 near the edge— indicating entrainment of the external flow

<

0

Reynolds stresses

= h(n) where: n(fn) = (hn)’

u? uv
uv v?
0 0




Due to circumferential symmetry, uw = vw = 0 and normal stresses are even

functions of r, while uv is an odd function.

Consider the rms axial velocity on the centerline

. _21/2
uo(x) = u?,-g

In the self-similar region:

U (x)
Up(x)

~uy(x)~x~1 # f(Re)

UiUj .
o7 self-similar vs /1y /5 or 1.
0

uv > 0 where U, < 0 — positive
turbulent viscosity v;:

uv = —v. U,

~0.25 = constant

010

0.08

Significant
. anisotropy

LDA data of Hussein er al. (1994).

Since the profiles for uv and U, are self-
similar — the profile of v, is also self-
similar:

ve(x, 1) = U (x)ﬁ/z (xX)V:(m)
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Fig. 5.7. Profiles of Reynolds stresses in the self-similar round jet: curve fit to the
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Fig. 53 The profile of the local turbulence intensity - (W) 2 (U} - in the self-similar
round jet. From the curve fit to the experimental data of Hussein er al. (1994).



Both curves same
shape
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0.0 0.1 0.2 Fig. 5.10. The normalized turbulent diffusivity #1 (Eq. (5.34)) in the self-similar round
' n jet. From the curve fit to the experimental data of Hussein er al. (1994).

Fig. 5.9. Profiles of (uv)/k and the u-v correlation coefficient p,, in the self-similar
round jet. From the curve fit to the experimental data of Hussein et al. (1994).

V¢(n) fairly uniform over bulk of the jet, within 15% of 0.028 for 0.1 < r/ry/, <
1.5, afterwards decreases towards zero at the jet edge.

vi=—Xm-ov, =u'l

Where u' = u?

—1/2

| = local length scale [(x, ) = self-similar and [ /7y /, within 15% of 0.12 for most
of thejet (0.1 <r/ry/, <2.1).

015

in _ 2
0.10

0.05

T

0.00 —d

0.0 1.0 "
74 n

0.0 0.1 0.2
17

g

Fig. 5.11. The profile of the lengthscale defined by Eq. (5.35) in the self-similar round
jet. From the curve fit to the experimental data of Hussein et al. {1994).
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Fig. 5.12. Self-similar profiles of the integral lengthscales in the turbulent round jet. _
1 i — ~ From Wygnanski and Fiedler (1969).
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Fig. 5.13. The longitudinal autocorrelation of the axial velocity in the self-
round jet. From Wygnanski and Fiedler (1969).

similar

Longitudinal and transverse 2-point velcoity correlation.

L4 and L,, characterize distance over which the fluctuating velocities are
correlated.



Mean momentum: Boundary-layer equations

Dominant flow direction: x
V=~ 0.03|ﬁ| and the flow spreads gradually (dry/,/dx = S = 0.1)

(@ — = |

Consider statistically stationary 2D /i:
flows, with velocity components U, V,

and W, with w =0.

Plane jet wy

As y — oo no flow or uniform stream. It e
is possible to define §(x) as the =——— : /

characteristic flow width, U.(x) the = = - %

Planc mixing layer

—_ ay |

characteristic convective velocity, and —
Us;(x) as the characteristic velocity =3 | @

difference. s

(c)

=— 1 | ; x @

| Plane wake \ Boundary layer
——

Fig. 5.14. Sketches of plane two-dimensional shear flows showing the characteristic

flow width 6(x), the characteristic convective velocity U,, and the characteristic velocity
difference Us,.

Mean flow continuity and momentum equations:

aU v
ax ay
_aU _aU 19p 92U  9*U ou? ow

dx ay p 0x v6x2+v8y2_ ox Ay
_av _aV 10p 02V 0%V oww ov?
ox ay p ay 0x? dy? odx  dy




Turbulent y-momentum BL equation neglects convection and viscosity terms, and
axial derivatives of RS:

10p ov?
_—t—=
poy 0dy
Integrating between 0 and y, with y — o, such that B(c0) = p, and v2(e0) = 0:

—UZ

° |3

And the axial pressure gradient is:

lop 1dp, 0v?
pdx pdx Ox

For flows with quiescent or uniform free streams, dp,/dx is zero. In general, it can
be obtained in terms of the free-stream velocity by Bernoulli’s equation.

The axial momentum equation becomes:

_dU —oU 9°U 1dp, ouv 0 ,— —
__ZPo _ (u2 _ vz)
ox dy dy? pdx dy 0x
—
In turbulent free shear flows, 1/6—U~1/U52/52~Re_1 and is negligible, which is not
dy?

the case for BL flows.

. o%u _ .. .
In laminar BL, vﬁ~Re L and negligible. Comparable term in turbulent BL flows

. 0 (—~ . . . .
is a(uz —vz) — it can be neglected, but is ~10% dominant terms, i.e., not

insignificant approximation.
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Therefore, axial momentum equation becomes:

For statistically axisymmetric, stationary non-swirling flows, the corresponding BL
equations are:

@ 16(7’?)_0
6x+r or

_oU _oU va<aﬁ> 10
r
or

Ua-l-VE:;E —;a(ruv) (D)

The mean pressure distribution is

© IS
<

“Bvry [
P r

Axisymmetric W = 0 equations.
Mass, momentum and energy fluxes

Neglecting viscous term and multiplying by 7, Eq. (1) becomes:

d ; —2 d, —— __
a( U )+§(TUV+ruv)=O

Integrating with respect to 7:

@ —2 I a0
EJO rU dr:—[rUV+ruv]0 =0

Since, for large r, UV and v tend to zero more rapidly than 1.
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The momentum flow rate of the mean flow is:

M= fOOanp U dr + fx) (2)
0

And is conserved.
The mean velocity profile can be written as:

E(x, r, O) = UO (x)f(f)

Where
r

B 7’1/2(x)

$
Eq. (2) can be rewritten as:
: 2 [ 2
MG = 2mp(rpU0)” | 678
0

Where the integral is a non-dimensional constant determined by the shape of the
profile, but independet of x.
For the self-similar round jet, the mass flow rate is:

) = | 2mrplidr = 2mnop(riU0) | 676
0 0

The kinetic energy flow rate is:
: © 3 p 3 [
B = | ol dr =T (n000)" [ 67@)d
0 T1/2 0

The integrals and 1, Uy # f(x), m(x) < x o 1y, and E(x) <« x™ 1 rl_/é

12



Self-similarity

r

Ux,m) = Upg(x)f (§) @
wv(x,r) = Uo(x)zg(f) % =851y, XX
dx
UO (x)~x_1 Up(x) < x~1

Assuming self-similar flow, and neglecting viscous term, Eq. (1) can be rewritten
as (Pope Ex. 5.12):

dU dU, d
£ ) [ | ff(f)dfl{l/z 242 ;lf}—

IT: (fg)]

The terms in [ ] depend only on §, while those in { } depend only on x.

RHS = f(&) «~ LHS # f(x), i.e,

rl/ZdUO
——=C (3
U, dx 3
11/, dU dr

1/2 0 5 1/2

=C+2S
Uy, dx dx *

Assuming { } # 0. Eliminating C from the above two equations:

drl/z
dx

=S 112(%) = S(x — %)

Showing that the linear spreading of the jet is a consequence of self-similarity. Eq.

(3) implies that Uy (x)~x", wheren = —1, i.e., % ~x7?. Thus,

_T128Uo _
Uy, dx

13



Uniform turbulent viscosity

Closure problem — v, is defined using eddy viscosity concept:

uv = —v. U,
Where for the self-similar round jet:
ve(x, 1) = 7”1/2(X)U0(x)17t(77)

And V,(n) is within 15% of 0.028 for 0.1 < r /7y, < 1.5 — assume V, is constant,
i.e., # f(n) such that BL momentum equation becomes:

EaUJrVaU_vta oU .
ox or _ror\ or )

Where the viscous term has been neglected, although it could be retained by
replacing vy with vgg.

T =20°C

Similarity solution round jet for uniform turbulent viscosity: ” = 10-6 m?/s
water —

10y 7 19y Vair = 1.5-107°m?/s

This choice automatically satisfies the continuity equation. With x measured from
the virtual origin (x,) based U;/Uo(x) vs. x/d so thatn = r/x:

Y = vxF(n)

Where F is non-dimensional. Consequently,

ﬁ_vtF’
X 77 FI=Z_F
- v F
V:—t(F’——) 7
x n

14



To satisfy the condition that V = 0 on the axis = F(0) = F'(0) = 0.

All the terms in Eq. (4) can be expresed as a function of F and its derivatives:

FF' F* FF" d(_,  F
2 B =—\F ——
nsoonm on o dn U

The LHS is (—FF'/n)’, so that the equation can be integrated to yield
FF'=F" —nF" (5)

And the constant of integration is zero due to BCs. Eq. (5) can be rewritte as:

!

(%Fﬂ = 2F' — (nF")’

And integrated a second time, with integration constant equal to zero:

1F2—2F F'
S Fe = n
or
1 dF 1

2F—%F2m7_"
Integrating a third time:

Setting a = e?¢, the solution is:

4an?
1+ an?

F(n) =

15



By differentiating the solution, the mean velocity profile is obtained:

T 8av, 1
 x (14 an?)?
And the centerline velocity is:
8av,
Up(x) = (6)
And the self-similar profile:
O —
fn) = (1 + an?)?

The constant a and v, can be related to S = r,/x (see Pope Ex. 5.3). Noting that
r =11/, correspondston = S:

v T dr
Ve = ‘ §=—2= "2 _ tonstant
r1/2Uo X dx
X r T
n:;—))g:;—)S: 1;277

Ifry,=r->8=n

from the definition of r; /, — U (x, T1/2 (x)) = %UO (x), it is required that

f&) =1/2
This leads to
£(S) =%=m—>1+a52 =2
V2 -1
4=

16



And from Eq. (6),

8av, UyxS? Ve UyxS?
Uo(x) =—— v =—Frz—T"- 7V = -
x 8(v2—1) ri2Uo  8(V2 = 1)ry U
A SZ S
Vi

8(W2-1)S 8(2-1)
Using the constant value 7; = 0.028, the corresponding S is given by:
S =8(vV2—1)v, = 0.094

Which agrees with the profile shown in Fig. 5.15.

1.0
048
{U} ] Disagreement near the edge
Ug 0.6 due to using v; constant vs.
empirical curve — 0 at the
edge.
0.4
0.2
o
0.0 1.0 / 2.0
2
" L 1 " "
0.0 0.1 0.2
U

Fig. 5.15. The mean velocity profile in the self-similar round jet: solid line, curve fit to
the experimental data of Hussein et al. (1994); dashed line, uniform turbulent viscosity
solution (Eq. 5.82).

Turbulent Reynolds number:

Upg(X)r12(x) 1
Vi Vi
i.e., mean velocity in the turbulent round jet is the same as the velocity field in a

laminar jet with Re = 35.

17



Kinetic Energy

B(t) = 3U(xt) Uz )

The ensemble averaged mean of E can be decomposed into two parts:

(E(xt)) =E(xt) +k(x,t)
Where E(g, t) is the kinetic energy of the mean flow

— 1— —

E(xt) =5U(xt) U(xt)

And k(g, t) is the TKE:

The anisotropic tensor is:

And scales with k.

For turbulent jet the anisotropic part also scales with k: uv = 0.27k and bounded

by uv < k.

The equation for the evolution of the instantaneous kinetic energy is:

DE

Dt
o _1(0u; oy,
b 2 ax] axi

18

Where




And
Up
p

Tij = — ZVU]SU

Is the flux of energy.
Integrating Eq. (7) over a fixed control volume gives:

%fffEdV+U(gE +Z)-QdA=—Uj2vSijSijdV
A V

2) accounts for inflow, outflow, and work done on the control surface, i.;e.,
energy transfer.

3) = 0, i.e., energy sink due to viscous dissipation: conversion of mechanical
energy into heat.

Conclusion: no source energy in the flow.
The equation for the mean kinetic energy (E(g, t)) is obtained by taking the

mean of Eq. (7):

D(E) o
W+V (@E)"‘(Z))— E—¢

Where

And

e~Re ! and « & — negligible.

19



The equations for E and k can be written as:

DE — _
—+V:-T=—-P—c¢
t
Dk
—+V-T'=-P—c¢
Dt
Where
— (U (UXp) —
Ty T B
, (u;p")
Ti = E (uiujuj) + lT - 2V<u]'5ij>
p'=p—(p)
And
aU;
P = —(uiuj)%

]

Represents production, i.e., source of energy = action of the mean velocity
gradient working against RS: removes energy from E and transfers it to k.

20



Production
1) Only the symmetric part of the velocity gradient affects production, i.e.,
P = —(uiuj)gij
Since product of symmetric (RS) and antisymmetric tensor is zero.

2) Only the anisotropic part of RS affects production, i.e.,

P = _aijSij

Where: aij = (uiuj) - gk&]
— 2 —
—(ww)Si; = —(a;; + 7kdij) Sij

k8,5, = 2k aFi+am =0
3 WU T 3% o\ o, ax; )

3) According to the turbulent viscosity hypothesis: a;; = —2vt§ij the
production term is:

P = ZVtSijSij = Evt/v
4) For BL flow, only mean velocity gradient given by Uy or ﬁrz
__au

P=-v—
uvay

5) Using both BL and turbulent viscosity hypothesis:

— 2
au
FevGy

21



Dissipation
E = 2V<Sijsij>

Fluctuating velocity gradients work against fluctuating rate of strain, transform KE
into internal energy.

1
sij = Sij = (Su) = 5 (wi +w5,)

For self-similar jet U/U, and uiuj/Ug are function of ¢ = r/ry/, and independent
of Re

Consequently,

Also self-similar and independent of Re.

Dk/Dt and P scale with Ug/ry; = € =¢/(U;/ry/2) also self-similar and
independent from Re.

Suppose have two jets with same U; and d, but different v, and v, e.g., air and
water. At same x, Uy (x) and 7y ,(x) same since

Uy(x) 3 B

U, (x —x9)/d

11/2(x) = S(x — xp)

3
wgg(x,r) =g (x,1r) = é( r > Yo

T2 (x) T12

However, € = 2v(s;;s;;} < v which is different. Explanation is s;; are different:
higher Re finer scale of small structure — steeper gradients — larger s;;.

22



Kolmogorov: universal equilibrium range small scale motions only depend on € and
V.
1/2

RN %
I

&

Kolmogorov scales vary with Rey = Ugry /v = SBU;d/v (S~0.1, B~6), whereas
Up(x) and 11, (x) do not.

1/4

3
n (?> v3/4 v/t ~3/4 5—1/4

= = 1/4 = 3/ = Rey ' €
T1/2 T1/2 €2 £1/4U

4
r1/2
Similarly,
— py"1/2-1/2
Tn/(ﬁ/z/Uo) = Re, "¢ /
u
n_ —1/4 21/4
— = Re &
U, 0
i.e., smallest motions decrease in size and timescale as Re increases.
Note that
nu,
v

1

i.e., however large Re,, Re of smallest scales is unity and motions at these small
scales are strongly dependent on v.

Up\? v Vv _ Up\?
v(—) =—=—=e,1.e.,(—) =¢/v
n T v/e n

i.e., velocity gradients o« to the inverse of the turnover time such that ¢ is
independent of v.

(sl-jsl-j) scales as 7,2, i.e., inversely proportional to v, so that

€a = Vg (SijSij>a =& = Vp (Sijsij>b
| — |

-1 -1
scales v scales vy,

23



TKE Budget
Dk
_—+V'Z’ =—P—c¢ (8)
Dt

Fig. 5.16 shows the terms of Eq. (8) divided by Ug/rl/z.

0.02 — P/e~0.8
Production
- T/Tl/z = 06
I Mean-flow
g 001 '”“:(-.._._" convection
O ’/: . /
L/
On centerline predicted P = 0 - -
since uvU, = 0 and (E—F)ﬁx 0.00 . Stk
neglected in BL approximation N

Turbulent
transport

Dissipation Dominant

. ' 1 l 1
00255 10 3.0

",

Fig. 5.16. The turbulent-kinetic-energy budget in the self-similar round jet. Quantities
are normalized by Uy and ry;;. (From Panchapakesan and Lumley (1993a).)

P and Ek/ﬁt +20% EFD accuracy, while other terms have large uncerstainty
and the results differs by a factor two or more in different experiments.
At the edge P /¢ = 0 such that:

VT = —e—(w)Vk

Comparison of scales
T = time to dissipate k at rate «.

T, = time to produce k at rate P = flight time from t; (virtual origin) of a particle
moving on the centerline at speed U, (x) ~ 37, time scale imposed shear S™1 —
turbulence is long-lived.

L,; and L,, have physical significance, while ' = v, /u’ and L = k3/? /¢ do not.

24



Pseudo-dissipation

N———————
usually small

This gives an alternative form of the TKE equation:

VS.

5k+a
Dt 0x;|
Dk_ 0
Dt_axl_
. 0
LT ox;

L

E (uiujuj) +

E (uiujuj) +

up’)l
ﬂ =vwW?k+P—¢

u;n')]
(wip') =vWk+P—c¢

Dk
— 4V T'=P—c¢
Dt

1

(w;p')

E (uiujuj) + T - 2V<u]'5ij>

25



5.3 The round jet: kinetic energy 131

Ta
T TS T T TP Tm
H—+— o » . - .
0 1 5 10
Fig. 5.17. Timescales in the self-similar round jet in units of 7,. See Table 5.2 for
definitions.
f L:z L|| ?"Uz L X
o . » + - =
0.1 1 10

Fig. 5.18. Lengthscales in the self-similar round jet in units of rys. Ly, and L, are the

longitudinal and lateral integral scales; L = k*/?/e;1 = vr/u'; evaluated at r/ry;» = 0.7.
(Note the logarithmic scale.)

Table 5.2. Timescales, rates, and ratios in the self-similar round jet: the first
four entries are evaluated from Uy(x), ry;(x) and the spreading rate S; the
remaining entries are estimated from experimental data at r/r ;2 = 0.7, where

(uv) and |8(U)/ér| peak

Value in
self-similar round
jet, normalized

Definition Description Timescale by 19
Tp = l‘u;’f U;] Reference timescale 0 1
used for normalization
1 =1x/Ug Mean flight time from 1y 5.3
virtual origin
Uy dm . _
Q, = o dx Entrainment rate Tm =0, 10.6
d
Qu = % Axial strain rate Ta = Q! 10.6
S= (2§,;S‘U)U2 Strain rate s = S_l 1.7
_ |9{U)
or
o= ¢k Turbulence decay rate t=w ' =k/e 4.5
Qp =P/k Turbulence-production rate ~ tp = Q3! 5.7
P/le Ratio of production to 0.8
dissipation
S/w=8k/¢e Ratio of strain rate to 2.6
=1/15 decay rate
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Plane jet
Statistically 2D. In EFD, rectangular nozzle with height d () and width w (z) and

flows in x direction.
w/d > 1 = 50 such that for z = 0 the flow is statistically 2D and free of end

effects, for x/w not large.

Centerline velocity:
UO(x) = (U(x, 010)>
Half-width:

1
5 Uo() = (U(x,1/2(x), 0))

Mean velocity and RS self-similar for x/d > 40, when scaled with U,(x) and
J’1/2(x)-

1.0 "*04...1_
*Q\.\\
jo-Y ™ § = 2
&)=~ =
Uo \\\ Y1i/2 (x)
05} ‘-\.\
M
b\“—“&\‘
-, ;":-._____\______
0.0 0 ] q t e
- 4

Fig 5.19. The mean velocity profile in the self-similar plane jet. Symbols, experimental
data of Heskestad (1965); line, uniform turbulent-viscosity solution, Eq. (5.187) (with
permission of ASME).
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Fig. 5.20. Reynolds-stress profiles in the self-similar plane jet. From the measurements
of Heskestad (1965) (with permission of ASME).
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Conservative form BL equation neglecting viscous term:
0 (U)* + 0 (UXV)) = 0 (uv)
d0x dy ~ dy w
Integrating with respect to y, gives:
d j OO(U)Zd =0
dx J_, Y=

Since (U) and (uv) are zero for y — +00. Hence, momentum flow rate per unit
span:

M= j p{U)?dy = constant # f(x)

In the self-similar region:

1) (U) = Up()f (©) (7
J’1/2(X)

And the momentum flow rate is:

M = pUs a0 [ £

Uo(x)z)’1/2(x) * f(x)

dU, d}’1/2
2o g Y2 + Vs g

Vi 8o _ 18312
U, dx 2 dx

2) (uv) = U§g(&)
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Plugging in 1) and 2) into BL equation, gives:

1‘1)’1/2 2
Sy | fd€> ©)

w dyy ,/dx # f(x), i.e., Sis constant and Uy~x~1/2.

3) ve = Uy (x))’1/2 () 7:(8)

vt~x1/2
e = Uo(x)iﬁ/z(x) oy 1/2
Uo(x)y1/2(x)
T = # f(x)
Vt(xr }’1/2)

For V; = constant, Eq. (9) becomes:

\

1 3
§S|f2+f’ fdé | =-vf" (10)
0

Since f (&) is an even function, F(§) is odd:
Even:

f&) = f(=x)
—z=-x-f(x)=f(2)

dz
510 = '@ = ')
= —f'(=0)

i.e., odd = F odd since f even.
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F(0O)=F"(0)=0
Eqg. (10) becomes:
1
ES[F’Z + F'"Fl = —v,F" (11)
Noting that:
1
F/Z + FIIF — (FF/)/ — E(FZ)H
And integrating Eq. (11) twice:
1
—SF? = —,F' +a+ b (12)

4

F?and F'even—> b =0
F(0)=1-a=7

—513
“—rﬂ()

F'=1-(aF)?

Defining:

Eg. (12) then becomes:

Integrating:

F = %tanh(af)
f =F' = sech?(af)
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U 1
W) = Uof(©) » T = 2 = (1) = sech*(@)
0

1 2
a=-In(1+v2) ~088
This, together with Eq. (13), relates S to V;:

s =[in(1+ x/E)Z]ZvAt

Or
2 2
1 [ln(l + \/i) ]
Using S = 0.1.
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