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Chapter 7: Properties of Turbulent Free Shear Flow (Chap. 11 Bernard) 

Part 4:  Turbulent Mixing Layer 

Two parallel fluid streams with different mean velocities are brought together at a 

sufficiently high Re. 

 

𝑅𝑒𝜔 = 6500, i.e., based on vorticity thickness ∆𝑈/(𝑑𝑈/𝑑𝑦)
𝑚𝑎𝑥

 is condition for 

transition to fully turbulent flow.  

 

Kelvin-Helmholtz interface instability with spanwise rollers, which grow as they 

convect downstream by ingesting the external irrotational flow. Irregular motions 

within roller exhibit the turbulence. Pairing of the rollers occurs when two adjacent 

rollers merge into single larger vortex.  

 

Mixing layer turbulence and roller size grow linearly. Coherent roller structures 

persist at large distances.  

 

 

 

 

𝑈𝑙 < 𝑈𝑢 

𝑈𝑙

𝑈𝑢
= 0.38 
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Top view shows another coherent structure, i.e., streamwise rib vortices, which 

wrap around (braid) the rolling vortices.  

 

11.10 Formation of interaction rollers and rib vortices 

 

 

Braiding of rib and roller 

vortices 

Close up 3D view of 

transition to turbulence as 

roller + rib vortices interact. 
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Self-Preserving Mixing Layer 

Recall BL streamwise momentum equation: 

 

𝑈
𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
+

𝜕𝑢𝑣

𝜕𝑦
= 0     (1) 

 

For a mixing layer with 𝑈𝑙 and 𝑈𝑢 as uniform mean velocities on low and high-

speed sides, the form of the stream function is: 

 

ψ = 𝑙𝑈𝑚𝐹(𝜂) 

 

Where: 

 

𝑈𝑚 =
(𝑈𝑢 + 𝑈𝑙)

2
 

 

And 𝜂 = 𝑦/𝑙 is the similarity variable. 

 

Recall relation between 𝑈, 𝑉 and ψ: 

 

𝑈 = ψ
𝑦

     (2) 

 𝑉 = −ψ
𝑥

   (3) 

 

Such that:  

 

𝑈 = 𝑙𝑈𝑚

𝑑𝐹(𝜂)

𝑑𝜂

𝑑𝜂

𝑑𝑦
= 𝑈𝑚𝐹′     (4) 

𝑉 = −
𝑑𝑙

𝑑𝑥
𝑈𝑚𝐹(𝜂) − 𝑙𝑈𝑚

𝑑𝐹(𝜂)

𝑑𝜂

𝑑𝜂

𝑑𝑥
 

𝑉 = −
𝑑𝑙

𝑑𝑥
𝑈𝑚𝐹(𝜂) + 𝜂𝑈𝑚𝐹′

𝑑𝑙

𝑑𝑥
     (5) 

𝑑𝜂

𝑑𝑥
=

𝑑 (
𝑦
𝑙

)

𝑑𝑥
 

= −
𝑦

𝑙2

𝑑𝑙

𝑑𝑥
= −

𝜂

𝑙

𝑑𝑙

𝑑𝑥
 

 

𝑑𝜂

𝑑𝑦
=

𝑑 (
𝑦
𝑙

)

𝑑𝑦
=

1

𝑙
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Differentiating Eq. (4) with respect to 𝑥 yields: 

 

𝜕𝑈

𝜕𝑥
= 𝑈𝑚

𝑑𝐹′

𝑑𝜂

𝑑𝜂

𝑑𝑥
= −

𝜂

𝑙
𝑈𝑚𝐹′′

𝑑𝑙

𝑑𝑥
     (6) 

 

Similarly, differentiating with respect to 𝑦 gives: 

 

𝜕𝑈

𝜕𝑦
= 𝑈𝑚

𝑑𝐹′

𝑑𝜂

𝑑𝜂

𝑑𝑦
=

𝑈𝑚

𝑙
𝐹′′     (7) 

 

Assuming: 

 

𝑢𝑣 = −𝑈𝑚
2 𝑔(𝜂)     (8) 

 

Comparing with wake scaling where ∆𝑈 = 𝑈𝑒 − 𝑈𝑚𝑖𝑛(𝑥) and jet flow where  ∆𝑈 =

𝑈𝑚𝑎𝑥(𝑥), for mixing layers ∆𝑈 = 𝑈𝑢(𝑥) − 𝑈𝑙(𝑥). Therefore, 

 

𝜕𝑢𝑣

𝜕𝑦
= −𝑈𝑚

2
𝑑𝑔(𝜂)

𝑑𝜂

𝑑𝜂

𝑑𝑦
= −

𝑈𝑚
2

𝑙
𝑔′    (9) 

 

And combining Eqs. (4), (5), (6), (7) and (9) into Eq. (1) gives: 

 

−𝐹′
𝜂

𝑙
𝑈𝑚

2 𝐹′′
𝑑𝑙

𝑑𝑥
+ (−

𝑑𝑙

𝑑𝑥
𝑈𝑚𝐹 + 𝜂𝑈𝑚𝐹′

𝑑𝑙

𝑑𝑥
)

𝑈𝑚

𝑙
𝐹′′ −

𝑈𝑚
2

𝑙
𝑔′ = 0 

−𝐹′
𝜂

𝑙
𝑈𝑚

2 𝐹′′
𝑑𝑙

𝑑𝑥
−

𝑑𝑙

𝑑𝑥

𝑈𝑚
2

𝑙
𝐹𝐹′′ + 𝐹′

𝜂

𝑙
𝑈𝑚

2 𝐹′′
𝑑𝑙

𝑑𝑥
=

𝑈𝑚
2

𝑙
𝑔′ 
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Divide by 𝑈𝑚
2 /𝑙: 

 
𝑑𝑙

𝑑𝑥
𝐹𝐹′′ + 𝑔′ = 0     (10) 

 

Eq. (10) implies that for a similarity solution to exist,  

𝑙(𝑥) = 𝛼(𝑥 − 𝑥0) →
𝑑𝑙

𝑑𝑥
=  𝛼 

Where 𝛼 is a constant. 

 

Assuming eddy viscosity model: 

𝑢𝑣 = −𝜈𝑡

𝜕𝑈

𝜕𝑦
= −𝜈𝑡

𝑈𝑚

𝑙
𝐹′′ 

𝜕𝑢𝑣

𝜕𝑦
= −𝜈𝑡

𝑈𝑚

𝑙

𝑑𝐹′′

𝑑𝜂

𝑑𝜂

𝑑𝑦
= −𝜈𝑡

𝑈𝑚

𝑙2
𝐹′′′ = −

𝑈𝑚
2

𝑙
𝑔′ 

i.e., 

𝑔′ =
𝜈𝑡

𝑈𝑚𝑙
𝐹′′′ =

𝐹′′′

𝑅𝑡
 

 

Such that Eq. (10) becomes: 

 

𝛼𝑅𝑡𝐹𝐹′′ + 𝐹′′′ = 0     (11) 

 

Where 𝑅𝑡 must be constant to maintain similarity, i.e., 𝜈𝑡 ∝ 𝑥. 

 

BCs for Eq. (11) are: 

 𝑈(𝑥, +∞) = 𝑈𝑢 → 𝐹′(+∞) =
𝑈𝑢

𝑈𝑚
=

2𝑈𝑢

𝑈𝑢 + 𝑈𝑙
 

𝑅𝑡 =
𝑈𝑚𝑙

𝜈𝑡
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𝐹′(+∞) =
𝑈𝑢 + 𝑈𝑙

𝑈𝑢 + 𝑈𝑙
+

𝑈𝑢 − 𝑈𝑙

𝑈𝑢 + 𝑈𝑙
= 1 +

∆𝑈

2𝑈𝑚
= 1 + 𝜆 

𝐹′(+∞) = 1 + 𝜆 

Where: 

𝜆 =
∆𝑈

2𝑈𝑚
 

and 

∆𝑈 = 𝑈𝑢 − 𝑈𝑙 

Similarly, for 

𝑈(𝑥, −∞) = 𝑈𝑙 → 𝐹′(−∞) = 1 − 𝜆 

 

Eq. (11) is identical to classical Blasius BL equation for zero-pressure gradient BL. 

As in the case of BL flow, Eq. (11) does not have closed form solution. However, it 

is possible to assume a power series solution for small 𝜆: 

 

𝐹(𝜂) = 𝜂 + 𝜆𝐹1(𝜂) + 𝜆2𝐹2(𝜂) + ⋯    (12) 

 

Where the functions 𝐹𝑛 = 𝐹𝑛(𝜂) need to be determined. 

Recall: 

𝑈 = 𝑈𝑚𝐹′     (4) 

 

And substituting power series solution of 𝐹(𝜂) gives: 

 

𝑈 = 𝑈𝑚𝐹′ = 𝑈𝑚 + 𝑈𝑚𝜆𝐹1
′(𝜂) + 𝑈𝑚𝜆2𝐹2

′(𝜂) + ⋯     (13) 

 

Substituting Eqs. (12) and (13) into Eq. (11) gives: 

 

𝛼𝑅𝑡(𝜂 + 𝜆𝐹1(𝜂) + 𝜆2𝐹2(𝜂))(𝜆𝐹1
′′(𝜂) + 𝜆2𝐹2

′′(𝜂)) + 𝜆𝐹1
′′′(𝜂) + 𝜆2𝐹2

′′′(𝜂) = 0 
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And collecting terms according to powers of 𝜆: 

 

1st order: 𝛼𝑅𝑡 𝜂𝐹1
′′(𝜂) + 𝐹1

′′′(𝜂) = 0 

𝐹1
′′(𝜂) = 𝐶𝑒−

𝛼𝑅𝑡𝜂2

2  

 
The arbitrary constant 𝛼 can be picked such that 𝛼𝑅𝑡 = 2. Therefore, 

 

𝜂 =
𝑦

𝑙
=

𝑦

𝛼(𝑥 − 𝑥0)
=

𝑅𝑡

2

𝑦

𝑥 − 𝑥0
 

 

And  

 

𝐹1
′′(𝜂) = 𝐶𝑒−𝜂2

     (14) 

 
If 𝐹(𝜂) is truncated to 1st order: 

 

𝐹(𝜂) = 𝜂 + 𝜆𝐹1(𝜂) 

 

The BCs 𝐹′(±∞) = 1 ± 𝜆 imply that: 

 

𝐹1
′(±∞) = ±1     (15) 

 

Integrating Eq. (14) and applying Eq. (15) gives 

 

𝐹1
′ = erf 𝜂 
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Where: 

 

erf 𝜂 =
2

√𝜋
∫ 𝑒−𝜉2

𝑑𝜉
𝜂

0

 

 

is the error function. Finally, truncating Eq. (13) to 1st order gives: 

 

𝑈 ≈ 𝑈𝑚(1 + 𝜆𝐹1
′(𝜂)) = 𝑈𝑚 (1 +

∆𝑈

2𝑈𝑚
erf 𝜂)     (16) 

 

The only parameter left is 𝑅𝑡 = 𝑓(𝑈𝑢/𝑈𝑙) ≈ 27 typical value from EFD. 

 

Alternative definition of momentum thickness for mixing layers is given by: 

 

𝜌𝜃(∆𝑈)2 = 𝜌 ∫ (𝑈𝑢 − 𝑈)(𝑈 − 𝑈𝑙)𝑑𝑦
∞

−∞

     (17) 

 

RHS = Momentum deficit (in relation to 𝑈𝑢) in the flux of momentum measured 

relative to 𝑈𝑙. 

𝜃 = thickness of a layer due to momentum defect at speed 𝑈𝑢 with flux relative 

to 𝑈𝑙. 

Substituting Eq. (16) into (17) shows that: 

 
𝜃

𝑙
=

1

4
∫ (1 − erf 2 𝜂)𝑑𝜂

∞

−∞

 

 

or 

 

𝜃~𝑙 =  𝛼(𝑥 − 𝑥0) 
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Growth rate parameter: 

𝑟𝜃 =
𝑈𝑚

∆𝑈

𝑑𝜃

𝑑𝑥
 

 

is a universal constant. 

 

 

 

Reynolds stresses: EFD and DNS with 𝜂 = 𝑦/𝜃. 

 

𝑢𝑖𝑢𝑗|𝑚𝑎𝑥 → 𝜂 = 0 

 

where 𝑈 has inflection point. 

 

𝑢2 > 𝑤2 > 𝑣2 

 

Good agreement 

theory and both DNS 

and EFD (not shown). 



10 
 

𝑢𝑣 also shows self-similarity. 

𝜈𝑡~ constant 𝜂 ≤ ±3. 

 

 

Max at 𝜂 = 0 

where 𝑈 has 

inflection point, 

max gradient 𝑈𝑦 


