Chapter 7: Properties of Turbulent Free Shear Flow (Chap. 11 Bernard)
Part 4: Turbulent Mixing Layer

Two parallel fluid streams with different mean velocities are brought together at a
sufficiently high Re.
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Figure 11.9 Growth of a turbulent mixing layer with x, y, and z denoting the streamwise, cross-stream,
and spanwise coordinates, respectively. Top: viewed from above (x — z) plane; bottom: viewed from
the side (x — y) plane. From [15].

Re, = 6500, i.e., based on vorticity thickness AU/(dﬁ/dy)max is condition for

transition to fully turbulent flow.

Kelvin-Helmholtz interface instability with spanwise rollers, which grow as they
convect downstream by ingesting the external irrotational flow. Irregular motions
within roller exhibit the turbulence. Pairing of the rollers occurs when two adjacent
rollers merge into single larger vortex.

Mixing layer turbulence and roller size grow linearly. Coherent roller structures
persist at large distances.



Top view shows another coherent structure, i.e., streamwise rib vortices, which

wrap around (braid) the rolling vortices.

Braiding of rib and roller
vortices

Figure 15. Topology of streamwise vortex lines.

11.10 Formation of interaction rollers and rib vortices

Figure 11.10 Overhead (top) and side (lower) Figure 11.12 Detail of a chain-link
views of a vortex filament computgcion ofa fence vortex pattern developing in a
mixing layer [22]. Used by permission of AIAA. vortex filament simulation of a mixing

Figure 11.13 Overhead view of a
mixing layer containing oblique
roller/braid vortices.

Figure 11.11 Detail of braid/roller
vortices developing in a vortex filament
simulation of a mixing layer [22]. Used
by permission of AIAA.

Close up 3D view of
transition to turbulence as
roller + rib vortices interact.

layer [22]. Used by permission of AIAA.




Self-Preserving Mixing Layer

Recall BL streamwise momentum equation:

For a mixing layer with U; and U,, as uniform mean velocities on low and high-

speed sides, the form of the stream function is:

Y = Wy, F(n)
Where:
_ (Uu + Ul)
m- 2

And n = y/lis the similarity variable.

Recall relation between U, V and E;

U=y, @
V=-9, (3
Such that:
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Differentiating Eq. (4) with respect to x yields:

oU  dF'dn Ny e @
ox Mdndx 1l ™ dx (6)

Similarly, differentiating with respect to y gives:

oU _ dF'dn Uy,
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Assuming:

w = —Ung(m (8)

Comparing with wake scaling where AU = U, — U,,;, (x) and jet flow where AU =
U max (%), for mixing layers AU = U, (x) — U,(x). Therefore,

ouv d d Uz
ay dn dy l

And combining Eqgs. (4), (5), (6), (7) and (9) into Eq. (1) gives:
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Divide by U2 /1:

dl
—FF" +¢g' = 1
I +9'=0 (10)

Eqg. (10) implies that for a similarity solution to exist,

dl

l = — _—=
() =alx—x)>—=a
Where «a is a constant.
Assuming eddy viscosity model:
_ oU Un .,
v= Vg = —vtTmF
Jduv Uy, dF" dn Un ., U2 ,
— = —V;— —=—Vv;—F"" = ——
dy [ dn dy [? [
i.e.,
! Vt 24 " U l
= —F = — —_— —_—
9 = U R, Re=~

Such that Eq. (10) becomes:
aR.FF" +F'"" =0 (11)

Where R; must be constant to maintain similarity, i.e., v; & x.

BCs for Eq. (11) are:

u, 2U,

U(x, +) = U, - F'(+0) = TASRTT
m u l




prpooy = nt U Bu= U B0,
o0 ) = = _—
U, +U, U, +0, 20,

F'(+0)=1+41

Where:
P
2U,,
and
AU =U, — U,

Similarly, for

U(x,—0) =U, > F'(—0)=1-2

Eqg. (11) is identical to classical Blasius BL equation for zero-pressure gradient BL.
As in the case of BL flow, Eq. (11) does not have closed form solution. However, it
is possible to assume a power series solution for small A:

Fm) =n+AF,(m) + 2*F,(m) + - (12)

Where the functions E, = F,(n) need to be determined.

Recall:

U=U,F' (4)
And substituting power series solution of F(n) gives:

U=U,F' =U, +U,AF(n) + U, A2F;(n) + - (13)

Substituting Eqgs. (12) and (13) into Eq. (11) gives:

aR:(n + AF () + 22F, () ) (AF' () + A*F' () + AF{" (n) + A2F3" () = 0
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And collecting terms according to powers of A:

1*torder: aR; nF{' (M) + F{""(n) = 0

aRn?

Fi'(n) =Ce 2

The arbitrary constant a can be picked such that aR; = 2. Therefore,

_y__ vy Ry
=17 alx —xy) 2 x—x

And
F'(n) = Ce™ (14)

If F(n) is truncated to 1* order:

F(n) =n+ AF ()

The BCs F'(+o) = 1 + A imply that:

F{(£») =+1 (15)
Integrating Eq. (14) and applying Eq. (15) gives

F| =erfn



Where:

n
erfn = ij e‘fzdf
v Jo

is the error function. Finally, truncating Eq. (13) to 1*' order gives:

—_ AU
U= Uyp(1+2AF[(1M) = Uy (1 + —erfr]) (16)

The only parameter leftis R, = f (U, /U;) = 27 typical value from EFD.

Alternative definition of momentum thickness for mixing layers is given by:

pO(AU)? = pJ_ (U, -0)(U-U)dy (17)

RHS = Momentum deficit (in relation to U,,) in the flux of momentum measured
relative to Uj;.

0 = thickness of a layer due to momentum defect at speed U,, with flux relative
to Ul'

Substituting Eq. (16) into (17) shows that:

o 1(* ,
T = Zf (1 — erf ﬂ)dn
or

0~l = alx — x,)



Growth rate parameter:

B U, do
AU dx

is a universal constant.

1.05r

0.95r

0.9

0.85r

Good agreement
theory and both DNS

0.75
and EFD (not shown).

0.7

0.65

0.6

055,55 1 o5 0 05 1 15 2

n
Figure 11.14 Mean streamwise velocity distributions in a self-preserving two-stream mixing layer.

Solid lines are results from seven locations across a vortex filament simulation of a mixing layer ([22]).
0, Eq.(11.88). Used by permission of AIAA.

Reynolds stresses: EFD and DNS withn = y/6.

uiujlmax -n=0
where U has inflection point.

uz > w? > p2



uv also shows self-similarity.

v~ constantp < 3.

Maxatn =0
where U has
inflection point,

max gradient U_y

Figure 11.15 Normal Reynolds stresses in a two-stream mixing layer. Here, 5 = y /0. Experiment [25]:
¢ .R; =1.792;m, R, = 2.483. Experiment [26]: 0, R, ~ 3.820; {), R, ~ 4.380; A\, R, ~ 6.365.DNS [21]:
—, averaged for R, = 1,500-2,000.

-0.01

Figure 11.16 Reynolds shear stress distributions in a two-stream mixing layer. Here, 5 = y /0. Symbols
asin Figure 11.15.
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