Chapter 7: Properties of Turbulent Free Shear Flow (Chap. 11 Bernard)

Part 3: Turbulent Jet

Figure 1.4 Transition to turbulence in a jet. Courtesy of J.-L. Balint and L. Ong.

Round jet w = 0, i.e., without swirl.
Herein, plane jet considered.

Near nozzle exit mixing layers due to AU as potential core shrinks, and flow
becomes fully developed, transitions to turbulence, and becomes self-similar at
x/d = 50 such that:
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Z=fm O

Where n = y/l and AU = U,,,,, and both n and AU are f(x). U reaches self-
similarity before u;u;.

Introducing a stream function Y (x, y) defined as

W = [AUF(n)

Where:

FFm=fm @)
and the coefficient [AU is chosen for dimensional consistency, i.e., $ has
dimensions m?/s.



By the definition of E:
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From Eq. (3):
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From Eq. (4):
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Recall BL streamwise mean momentum equation:

And

—uv = (AU)*g(n)

Which differs from wake scaling where AU = U, — U,,;;»(x), whereas for jet flow

AU = ﬁmax ().




Substitution of Egs. (5), (6), and uv into mean momentum equation gives:
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Multiply by [/AU?:
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Where:
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Self-similarity can be achieved if @ and 8 are not f(x), i.e., either constant or
f(n). One way to achieve similarity is to assume they are constant



Integration of Egs. (8) and (9) gives:
[=alx—x,) (10)
AU =C(x —xo)™ (11)

m = [f/a is a constant which needs to be determined, x, represents the virtual
origin and C is a constant.

Integration of

0 — — 0 — — 0 __
o [U(U-U,)]+ 3y V(U -U,)|+ 3y 0= 0
showed that:
d (©—,—
- _OOU(U —U,)dy =0 (12)

Changing the integration variable to 7, using Eq. (5) and the fact that U, = 0 for a
jet with no co-flow:
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And substituting Eqgs. (10) and (11) for [ and AU?:

d (00]
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Which shows that 1 + 2m = 0 (i.e., m = —1/2) for [AU? # f(x).



Substituting this value for m into Eq. (11) gives:

AU = C(x — xy) /2

i.e., [ grows linearly and AU decreases as x ~1/2,

The Reynolds number:

. INU  a(x —xy) X C(x —x9)" % aC\/x — x,
e = = =
v v v

increases with distance by ,/x — x, such that thin layer assumptions increasingly
well justified.

To obtain the similarity form of the mean velocity field, a model is needed for g’
to be related to F. Recall gradient law and combine with uv = —(AU)?g(n):

au AU

v = —vta = —vtTF” = —(AU)?*g(n)
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Differentiating Eq. (13) gives:
g'm=R7F" (14
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Substituting this relation and Eq. (14) into (7) yields:

a I2 144 r - 122
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z (F’> +FF")+R{'F" =0 (15)

For Eq. (15) to have a similarity solution, it must be that R; is constant, which

implies that v; « \/x — x,.

Boundary conditions for Eq. (15) are given by:
F(0) = 0 » y = 0 symmetry line is a streamline.

V&0 _Una(c0) _,

FO =1 (x,0)  U,..(x0)

Lim F'(n) = Osince U(x,n) = 0asn — o
n—00

Lim F''(n) = 0 since Un(x,n) —»0asn > x
n—o

Integrating Eq. (15) twice and applying BCs gives

4
F? + W(F, -1)=0 Appendix A.1
t

Which represents an example of a Riccati equation.

The solution is given by:

F(n) =



https://en.wikipedia.org/wiki/Riccati_equation

Taking a derivative of Eq. (16) and using Eq. (5) gives

F'(n) = % = [1 — tanh? <—C;Rt 77>]
U=AU [1 — tanh? (—“C;Rtn>] (17)

For simplicity, assume a = 4/R;, Eq. (17) becomes:

U =AU(1 —tanh?n) (18)

Where:

YR;

= 4(x — xg)

Eq. (18), in combination with AU = C(x — x,)~'/? shows that:

U= C(x —x)"¥?2(1 —tanh?n) = f(R,, C)

And C can be expressed in terms of the momentum flux, M:

3MR,
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From EFD, R; = 2 = 25.7. With C and R, values established plots for U, AU and
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[ can be generated. It can be observed from Eq. (18) thatwhenn = 1,i.e.,,y =1 =
a(x —x,), U= AU(1 —tanh? 1) = 0.42AU.
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Figure 11.4 Centerline mean velocity and jet width development of a turbulent plane jet at
Re, =34 % 10*. Data from [13]. 0, 1/(AU)%; v, £ /d.
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AU = C(x = x0) " > AU = —

l/d = a(x —x,)/d

AU? linear for x/d > 45 and [ linear for x/d > 65. Linear growth confirms
similarity analysis.
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Figure 11.5 Mean streamwise velocity profiles of turbulent plane jetat Re, = 3.4 x 10° for Q.
x/d = 47; 0,65; 0, 85; v, 103; A\, 125; %, 155; and, —, Eq. (11.68). Data from [13].

Good agreement except near jet edge due to intermittency of turbulence and v; #
constant.
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Figure 11.6 Growth of ﬁ along the centerline of a turbulent plane jet at Re, = 3.4 x 10*. 0, data
from [13]; —, fit to the data.

Upms = \/(u2)|y:0 = linear for x/d > 45
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Figure 11.7 Velocity variances for turbulent plane jet at Re, = 3.4 x 10* and x/d = 101. Data from [13]
with fitted curves: x and —, u? /(AU)*; 0 and - - -, v /(AU)’; @ and ——, w2 /(AU)’.

Peak of u2 > 2v2 and = 2w?2.
Forn = 0.3, uiz/AU2 ~ 0, i.e., RS become negligible compared to ﬁmax. This
value of 7 can be expressed in function of [:

n= AR y = 0.3Ax = 0.3 x101d~2.51
Ax
Sincel/d~12.5at x/d = 101 in Fig. 11.4.

In this region, jet flow is irrotational and outside turbulent core of the jet.

Forn < 0.15 (~1.3L from y = 0) flow fully turbulent (only occasionally
irrotational).
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Figure 11.8 Reynolds shear stress distribution for turbulent plane jet at Re, = 3.4 x 10* and

n

x/d = 101; o, data from [13]; —, fit to data; ——, Eq. (11.70).

Good agreement g for
1 < 0.08, but poor
agreement larger n
probably due to EFD

errors.

uv peaks at n~0.07 (0.6L fromy = 0) and is 0 at y = 0 due to symmetry of

mean flow.
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Obtained from Eq. (14).
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Appendix A
A.l

%(F’Z +FF")+R;IF" =0 (14)

F(0)=0 (24)
F'(0)=1 (34
lim F'(n) =0 (44)
77—)00
lim F"(n) =0 (54)
T]—)OO
2 d
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Such that Eq. (1A) becomes:
ad

——(FF'") = —=R;F"
Zdn( ) ‘

Integrating with respect to 7:

a
SFF'==R'F"+C  (64)

Application of BCs Eqg. (4A) and (5A) into (6A) gives:
0=—R;1F" () +C
C=R;F"(0) =0

The term on the LHS can be rewritten as:
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And Eg. (6A) becomes:

@ d (1 FZ) — R—lFH
2dn\2° )t

Integrating with respect to 7:

Applying BCs in Egs. (2A) and (3A) to Eq. (7A) gives:

F(0)? = —iF’(O) +£
aR; a

F2+i(F’—1) =0
aR;
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