Chapter 7: Properties of Turbulent Free Shear Flow (Chap. 11 Bernard)

Part 3: Turbulent Jet

Figure 1.4 Transition to turbulence in a jet. Courtesy of J.-L. Balint and L. Ong.
Round jet $\bar{w}=0$, i.e., without swirl.
Herein, plane jet considered.
Near nozzle exit mixing layers due to ΔU as potential core shrinks, and flow becomes fully developed, transitions to turbulence, and becomes self-similar at $x / d \approx 50$ such that:

$$
\begin{equation*}
\frac{\bar{U}}{\Delta U}=f(\eta) \tag{1}
\end{equation*}
$$

Where $\eta=y / l$ and $\Delta U=\bar{U}_{\text {max }}$, and both η and ΔU are $f(x) . \bar{U}$ reaches selfsimilarity before $\overline{u_{i} u_{j}}$.

Introducing a stream function $\bar{\psi}(x, y)$ defined as

$$
\bar{\psi}=l \Delta U F(\eta)
$$

Where:

$$
\begin{equation*}
F^{\prime}(\eta)=f(\eta) \tag{2}
\end{equation*}
$$

and the coefficient $l \Delta U$ is chosen for dimensional consistency, i.e., $\bar{\psi}$ has dimensions $\mathrm{m}^{2} / \mathrm{s}$.

By the definition of $\bar{\psi}$:

$$
\begin{align*}
\bar{U} & =\bar{\psi}_{y} \tag{3}\\
\bar{V} & =-\bar{\psi}_{x} \tag{4}
\end{align*}
$$

From Eq. (3):

$$
\begin{aligned}
& \bar{U}=l \Delta U \underbrace{\frac{d F}{d \eta}}_{\underbrace{\prime \prime}} \frac{d \eta}{d y} \\
& \bar{U}=\Delta U F^{\prime}
\end{aligned}
$$

$$
\frac{d \eta}{d y}=\frac{d\left(\frac{y}{l}\right)}{d y}=\frac{1}{l}
$$

From Eq. (4):

$$
\begin{gather*}
\bar{V}=-\frac{d(l \Delta U)}{d x} F-l \Delta U \frac{d F}{d \eta} \frac{d \eta}{d x} \\
\bar{V}=-\frac{d(l \Delta U)}{d x} F+\eta \Delta U \frac{d l}{d x} F^{\prime} \tag{6}
\end{gather*}
$$

$$
\begin{gathered}
\frac{d \eta}{d x}=\frac{d\left(\frac{y}{l}\right)}{d x} \\
=-\frac{y}{l^{2}} \frac{d l}{d x}=-\frac{\eta}{l} \frac{d l}{d x}
\end{gathered}
$$

Recall BL streamwise mean momentum equation:

$$
\bar{U} \frac{\partial \bar{U}}{\partial x}+\bar{V} \frac{\partial \bar{U}}{\partial y}+\frac{\partial \overline{u v}}{\partial y}=0
$$

And

$$
-\overline{u v}=(\Delta U)^{2} g(\eta)
$$

Which differs from wake scaling where $\Delta U=U_{e}-\bar{U}_{\min }(x)$, whereas for jet flow $\Delta U=\bar{U}_{\text {max }}(x)$.

Substitution of Eqs. (5), (6), and $\overline{u v}$ into mean momentum equation gives:

$$
\begin{aligned}
& \Delta U F^{\prime 2} \frac{d(\Delta U)}{d x}+\Delta U^{2} F^{\prime} \underbrace{\frac{d F^{\prime}}{d \eta}}_{F^{\prime \prime}} \frac{d \eta}{d x}+\left(-\frac{d(l \Delta U)}{d x} F+\eta \Delta U \frac{d l}{d x} F^{\prime}\right) \Delta U \underbrace{\frac{d F^{\prime}}{d \eta} \frac{d \eta}{d y}}_{F^{\prime \prime}} \\
& -\Delta U^{2} \frac{d g(\eta)}{d \eta} \frac{d \eta}{d y}=0 \\
& \Delta U{F^{\prime}}^{2} \frac{d(\Delta U)}{d x}-\underbrace{\eta \Delta U^{2} \frac{d l}{d x} \frac{F^{\prime} \Delta U F^{\prime \prime}}{l}}-\frac{d(l \Delta U)}{d x} \frac{F \Delta U F^{\prime \prime}}{l}+\frac{\eta \Delta U^{2} \frac{d l}{d x} F^{\prime} \Delta U F^{\prime \prime}}{l} \\
& -\frac{\Delta U^{2}}{l} g^{\prime}=0
\end{aligned}
$$

Multiply by $l / \Delta U^{2}$:

$$
\begin{align*}
& \frac{l F^{\prime 2}}{\Delta U} \frac{d(\Delta U)}{d x}-\frac{l}{\Delta U} \frac{d \Delta U}{d x} F F^{\prime \prime}-\frac{d l}{d x} F F^{\prime \prime}=g^{\prime} \\
& \underbrace{\frac{l}{\Delta U} \frac{d(\Delta U)}{d x}}_{\beta}\left(F^{\prime 2}-F F^{\prime \prime}\right)-\underbrace{\frac{d l}{\alpha}}_{\underbrace{\frac{d l}{d x}}_{\alpha}} F F^{\prime \prime}=g^{\prime} \tag{7}
\end{align*}
$$

Where:

$$
\begin{gather*}
\frac{d l}{d x}=\alpha \tag{8}\\
\frac{l}{\Delta U} \frac{d(\Delta U)}{d x}=\beta \tag{9}
\end{gather*}
$$

Self-similarity can be achieved if α and β are not $f(x)$, i.e., either constant or $f(\eta)$. One way to achieve similarity is to assume they are constant.

Integration of Eqs. (8) and (9) gives:

$$
\begin{align*}
l & =\alpha\left(x-x_{0}\right) \tag{10}\\
\Delta U & =C\left(x-x_{0}\right)^{m} \tag{11}
\end{align*}
$$

$m \equiv \beta / \alpha$ is a constant which needs to be determined, x_{0} represents the virtual origin and C is a constant.

Integration of

$$
\frac{\partial}{\partial x}\left[\bar{U}\left(\bar{U}-U_{e}\right)\right]+\frac{\partial}{\partial y}\left[\bar{V}\left(\bar{U}-U_{e}\right)\right]+\frac{\partial}{\partial y} \overline{u v}=0
$$

showed that:

$$
\begin{equation*}
\frac{d}{d x} \int_{-\infty}^{\infty} \bar{U}\left(\bar{U}-U_{e}\right) d y=0 \tag{12}
\end{equation*}
$$

Changing the integration variable to η, using Eq. (5) and the fact that $U_{e}=0$ for a jet with no co-flow:

$$
\frac{d}{d x} \int_{-\infty}^{\infty} \bar{U}^{2} l d \eta=\frac{d}{d x}\left(l \Delta U^{2} \int_{-\infty}^{\infty} F^{\prime 2} d \eta\right)=0
$$

And substituting Eqs. (10) and (11) for l and ΔU^{2} :

$$
\frac{d}{d x}\left(C \alpha\left(x-x_{0}\right)^{1+2 m} \int_{-\infty}^{\infty}{F^{\prime}}^{2} d \eta\right)=0
$$

Which shows that $1+2 m=0$ (i.e., $m=-1 / 2$) for $l \Delta U^{2} \neq f(x)$.

Substituting this value for m into Eq. (11) gives:

$$
\Delta U=C\left(x-x_{0}\right)^{-1 / 2}
$$

i.e., l grows linearly and ΔU decreases as $x^{-1 / 2}$.

The Reynolds number:

$$
R e=\frac{l \Delta U}{v}=\frac{\alpha\left(x-x_{0}\right) \times C\left(x-x_{0}\right)^{-1 / 2}}{v}=\frac{\alpha C \sqrt{x-x_{0}}}{v}
$$

increases with distance by $\sqrt{x-x_{0}}$ such that thin layer assumptions increasingly well justified.

To obtain the similarity form of the mean velocity field, a model is needed for g^{\prime} to be related to F. Recall gradient law and combine with $\overline{u v}=-(\Delta U)^{2} g(\eta)$:

$$
\begin{gather*}
\overline{u v}=-v_{t} \frac{\partial \bar{U}}{\partial y}=-v_{t} \frac{\Delta U}{l} F^{\prime \prime}=-(\Delta U)^{2} g(\eta) \\
g(\eta)=R_{t}^{-1} F^{\prime \prime} \tag{13}
\end{gather*}
$$

$$
R_{t}=\frac{l \Delta U}{v_{t}}
$$

Differentiating Eq. (13) gives:

$$
\begin{equation*}
g^{\prime}(\eta)=R_{t}^{-1} F^{\prime \prime} \tag{14}
\end{equation*}
$$

Recall

$$
\begin{gathered}
m \equiv \frac{\beta}{\alpha}=-\frac{1}{2} \\
2 \beta=-\alpha \rightarrow \beta=-\alpha / 2
\end{gathered}
$$

Substituting this relation and Eq. (14) into (7) yields:

$$
\begin{align*}
& -\frac{\alpha}{2}\left({F^{2}}^{2}-F F^{\prime \prime}\right)-\alpha F F^{\prime \prime}=R_{t}^{-1} F^{\prime \prime \prime} \\
& \frac{\alpha}{2}\left({F^{\prime}}^{2}+F F^{\prime \prime}\right)+R_{t}^{-1} F^{\prime \prime \prime}=0 \tag{15}
\end{align*}
$$

For Eq. (15) to have a similarity solution, it must be that R_{t} is constant, which implies that $v_{t} \propto \sqrt{x-x_{0}}$.

Boundary conditions for Eq. (15) are given by:

$$
\begin{gathered}
F(0)=0 \rightarrow y=0 \text { symmetry line is a streamline. } \\
F^{\prime}(0)=\frac{\bar{U}(x, 0)}{\Delta U(x, 0)}=\frac{\bar{U}_{\max }(x, 0)}{\bar{U}_{\max }(x, 0)}=1 \\
\operatorname{Lim}_{\eta \rightarrow \infty} F^{\prime}(\eta)=0 \text { since } \bar{U}(x, \eta) \rightarrow 0 \text { as } \eta \rightarrow \infty \\
\operatorname{Lim}_{\eta \rightarrow \infty} F^{\prime \prime}(\eta)=0 \text { since } \bar{U}_{\eta}(x, \eta) \rightarrow 0 \text { as } \eta \rightarrow \infty
\end{gathered}
$$

Integrating Eq. (15) twice and applying BCs gives

$$
F^{2}+\frac{4}{\alpha R_{t}}\left(F^{\prime}-1\right)=0
$$

Appendix A. 1

Which represents an example of a Riccati equation.
The solution is given by:

$$
\begin{equation*}
F(\eta)=\frac{2}{\sqrt{\alpha R_{t}}} \tanh \left(\frac{\sqrt{\alpha R_{t}}}{2} \eta\right) \tag{16}
\end{equation*}
$$

Taking a derivative of Eq. (16) and using Eq. (5) gives

$$
\begin{align*}
& F^{\prime}(\eta)=\frac{\bar{U}}{\Delta U}=\left[1-\tanh ^{2}\left(\frac{\sqrt{\alpha R_{t}}}{2} \eta\right)\right] \\
& \bar{U}=\Delta U\left[1-\tanh ^{2}\left(\frac{\sqrt{\alpha R_{t}}}{2} \eta\right)\right] \tag{17}
\end{align*}
$$

For simplicity, assume $\alpha=4 / R_{t}$, Eq. (17) becomes:

$$
\begin{equation*}
\bar{U}=\Delta U\left(1-\tanh ^{2} \eta\right) \tag{18}
\end{equation*}
$$

Where:

$$
\eta=\frac{y R_{t}}{4\left(x-x_{0}\right)}
$$

Eq. (18), in combination with $\Delta U=C\left(x-x_{0}\right)^{-1 / 2}$ shows that:

$$
\bar{U}=C\left(x-x_{0}\right)^{-1 / 2}\left(1-\tanh ^{2} \eta\right)=f\left(R_{t}, C\right)
$$

And C can be expressed in terms of the momentum flux, M :

$$
M=\rho \int_{-\infty}^{\infty} \bar{U}^{2} l d \eta \rightarrow C=\sqrt{\frac{3 M R_{t}}{16 \rho}}
$$

From EFD, $R_{t}=\frac{l \Delta U}{v_{t}}=25.7$. With C and R_{t} values established plots for $\bar{U}, \Delta U$ and l can be generated. It can be observed from Eq. (18) that when $\eta=1$, i.e., $y=l=$ $\alpha\left(x-x_{0}\right), \bar{U}=\Delta U\left(1-\tanh ^{2} 1\right)=0.42 \Delta U$.

$$
R e_{d}=\frac{U_{j} d}{v}
$$

$U_{j}=$ jet exit velocity
$d=$ jet width at nozzle exit

Figure 11.4 Centerline mean velocity and jet width development of a turbulent plane jet at $R e_{d}=3.4 \times 10^{4}$. Data from [13]. o, $1 /(\Delta U)^{2} ; \nabla, \ell / d$.

$$
\begin{gathered}
\Delta U=C\left(x-x_{0}\right)^{-1 / 2} \rightarrow \Delta U^{-2}=\frac{x-x_{0}}{C^{2}} \\
l / d=\alpha\left(x-x_{0}\right) / d
\end{gathered}
$$

ΔU^{-2} linear for $x / d \geq 45$ and l linear for $x / d \geq 65$. Linear growth confirms similarity analysis.

Figure 11.5 Mean streamwise velocity profiles of turbulent plane jet at $R e_{d}=3.4 \times 10^{4}$ for Δ,
$x / d=47 ; 0,65 ; \square, 85 ; \nabla, 103 ; \triangle, 125 ; *, 155 ;$ and, -, Eq. (11.68). Data from [13].
Good agreement except near jet edge due to intermittency of turbulence and $v_{t} \neq$ constant.

Figure 11.6 Growth of $\sqrt{\overline{u^{2}}}$ along the centerline of a turbulent plane jet at $R e_{d}=3.4 \times 10^{4}$. O , data from [13]; -, fit to the data.

$$
u_{r m s}=\left.\sqrt{\left\langle u^{2}\right\rangle}\right|_{y=0}=\text { linear for } x / d \geq 45
$$

Figure 11.7 Velocity variances for turbulent plane jet at $R e_{d}=3.4 \times 10^{4}$ and $x / d=101$. Data from [13] with fitted curves: * and,$- \overline{u^{2}} /(\Delta U)^{2} ; \circ$ and $\cdots, \overline{v^{2}} /(\Delta U)^{2} ; \bullet$ and,$-- \overline{w^{2}} /(\Delta U)^{2}$.

Peak of $\overline{u^{2}}>2 \overline{v^{2}}$ and $=2 \overline{w^{2}}$.
For $\eta \geq 0.3, \overline{u_{i}^{2}} / \Delta U^{2} \approx 0$, i.e., RS become negligible compared to $\bar{U}_{\text {max }}$. This value of η can be expressed in function of l :

$$
\eta=\frac{y}{\Delta x} \rightarrow y=0.3 \Delta x=0.3 \times 101 d \sim 2.5 l
$$

Since $l / d \sim 12.5$ at $x / d=101$ in Fig. 11.4.
In this region, jet flow is irrotational and outside turbulent core of the jet.
For $\eta \leq 0.15$ ($\sim 1.3 l$ from $y=0$) flow fully turbulent (only occasionally irrotational).

Figure 11.8 Reynolds shear stress distribution for turbulent plane jet at $R e_{d}=3.4 \times 10^{4}$ and $x / d=101 ; 0$, data from [13]; -, fit to data; --, Eq. (11.70).
$\overline{u v}$ peaks at $\eta \sim 0.07(0.6 l$ from $y=0)$ and is 0 at $y=0$ due to symmetry of mean flow.

$$
g=-\frac{\sqrt{\alpha}}{R_{t}} \tanh \left(\frac{\sqrt{\alpha R_{t}}}{2} \eta\right)\left[1-\tanh ^{2}\left(\frac{\sqrt{\alpha R_{t}}}{2} \eta\right)\right]
$$

Obtained from Eq. (14).

$$
\begin{equation*}
g^{\prime}(\eta)=R_{t}^{-1} F^{\prime \prime \prime} \tag{14}
\end{equation*}
$$

Appendix A

A. 1

$$
\begin{gather*}
\frac{\alpha}{2}\left(F^{2}+F F^{\prime \prime}\right)+R_{t}^{-1} F^{\prime \prime \prime}=0 \tag{1A}\\
F(0)=0 \quad(2 A) \tag{2A}\\
F^{\prime}(0)=1 \quad(3 A) \tag{3A}\\
\lim _{\eta \rightarrow \infty} F^{\prime}(\eta)=0 \quad(4 A) \tag{4A}\\
\lim _{\eta \rightarrow \infty} F^{\prime \prime}(\eta)=0 \quad(5 A) \tag{5A}\\
F^{\prime 2}+F F^{\prime \prime}=\frac{d}{d \eta}\left(F F^{\prime}\right)
\end{gather*}
$$

Such that Eq. (1A) becomes:

$$
\frac{\alpha}{2} \frac{d}{d \eta}\left(F F^{\prime}\right)=-R_{t}^{-1} F^{\prime \prime \prime}
$$

Integrating with respect to η :

$$
\begin{equation*}
\frac{\alpha}{2} F F^{\prime}=-R_{t}^{-1} F^{\prime \prime}+C \tag{6A}
\end{equation*}
$$

Application of BCs Eq. (4A) and (5A) into (6A) gives:

$$
\begin{array}{r}
0=-R_{t}^{-1} F^{\prime \prime}(\infty)+C \\
C=R_{t}^{-1} F^{\prime \prime}(\infty)=0
\end{array}
$$

The term on the LHS can be rewritten as:

$$
F F^{\prime}=\frac{d}{d \eta}\left(\frac{1}{2} F^{2}\right)
$$

And Eq. (6A) becomes:

$$
\frac{\alpha}{2} \frac{d}{d \eta}\left(\frac{1}{2} F^{2}\right)=-R_{t}^{-1} F^{\prime \prime}
$$

Integrating with respect to η :

$$
\begin{gather*}
\frac{\alpha}{4} F^{2}=-R_{t}^{-1} F^{\prime}+D \\
F^{2}=-\frac{4}{\alpha R_{t}} F^{\prime}+\frac{4 D}{\alpha}, \tag{7A}
\end{gather*}
$$

Applying BCs in Eqs. (2A) and (3A) to Eq. (7A) gives:

$$
\begin{gathered}
F(0)^{2}=-\frac{4}{\alpha R_{t}} F^{\prime}(0)+\frac{4 D}{\alpha} \\
\frac{4}{\alpha R_{t}}=\frac{4 D}{\alpha} \\
D=\frac{1}{R_{t}} \\
F^{2}+\frac{4}{\alpha R_{t}}\left(F^{\prime}-1\right)=0
\end{gathered}
$$

