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Chapter 7: Properties of Turbulent Free Shear Flow (Chap. 11 Bernard) 

Part 2: Turbulent Wake: Circular Cylinder 
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Self-Preserving Far Wake 

 

Near wake: organized Karman vortices. 

Far wake: disorganized large-scale vortices/broad-band and no dominant 

frequencies. 

 

For far downstream wake flow, conditions for similarity solution of mean velocity 

achieved → diffrerences between mean velocity profiles at different 𝑥 locations 

attributable to change in scale, not in functional form.  

𝑈 = 𝑈𝑒 − ∆𝑈𝑓(𝜂)⏟    
velocity defect

   (1) 

−𝑢𝑣 = (∆𝑈)2𝑔(𝜂)     (2) 

Where: 

 

𝜂 =
𝑦

𝑙(𝑥)
 

 

 

 

is a similarity variable and ∆𝑈(𝑥) = 𝑈𝑒 − 𝑈𝑚𝑖𝑛(𝑥).  Velocity defect obeys similarity 

law, which by the definition of ∆𝑈, 𝑓(0) = 1, while symmetry implies that 𝑓′(0) =

0.  Anti-symmetry in RS implies that 𝑔(0) = 0. 

BC1: 𝑈(𝑥, 0) = 𝑈𝑚𝑖𝑛(𝑥) = 𝑈𝑚𝑖𝑛 

𝑈(𝑥, 0) = 𝑈𝑒 − ∆𝑈𝑓(0) 

= 𝑈𝑒 − (𝑈𝑒 − 𝑈𝑚𝑖𝑛(𝑥))𝑓(0)  

𝑓(0) = 1 

BC2: 𝑑𝑈(𝑥, 0)/𝑑𝑦 = 0 

𝑑𝑈𝑒
𝑑𝑦

−
𝑑∆𝑈

𝑑𝑦
𝑓(0) − ∆𝑈

𝑑𝑓(0)

𝑑𝜂⏟  

𝑓′(0)

𝑑𝜂

𝑑𝑦
= 0 

−∆𝑈𝑓′(0)
𝑑 (
𝑦
𝑙
)

𝑑𝑦
= −

∆𝑈

𝑙
𝑓′(0) = 0 

𝑓′(0) = 0 
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Idea is to use momentum equation: 

𝜕

𝜕𝑥
[𝑈(𝑈 − 𝑈𝑒)] +

𝜕

𝜕𝑦
[𝑉(𝑈 − 𝑈𝑒)] +

𝜕

𝜕𝑦
𝑢𝑣 = 0     (3) 

 to explore nature of similarity solutions.  

 

Integrating mean continuity equation (𝜕𝑈/𝜕𝑥 + 𝜕𝑉/𝜕𝑦 = 0) : 

 

𝑉 = −∫
𝜕𝑈

𝜕𝑥
𝑑𝑦

𝑦

0

     (4) 

 

Since 𝑉 = 0 at centerline 𝑦 = 0. 

Differentiating Eq. (1) with respect to 𝑥 gives 

 

𝜕𝑈

𝜕𝑥
= −𝑓

𝑑∆𝑈

𝑑𝑥
− ∆𝑈

𝑑𝑓

𝑑𝜂⏟
𝑓′

𝑑𝜂

𝑑𝑙⏟

−
𝜂
𝑙

𝑑𝑙

𝑑𝑥
 

𝜕𝑈

𝜕𝑥
= −𝑓

𝑑∆𝑈

𝑑𝑥
+ ∆𝑈𝑓′

𝜂

𝑙

𝑑𝑙

𝑑𝑥
     (5) 

 

Differentiating Eq. (1) with respect to 𝑦 yields: 

𝜕𝑈

𝜕𝑦
=
𝜕𝑈𝑒
𝜕𝑦

− ∆𝑈
𝜕𝑓(𝜂)

𝜕𝑦
= −∆𝑈

𝑑𝑓

𝑑𝜂⏟
𝑓′

𝑑𝜂

𝑑𝑦⏟
1
𝑙

 

𝜕𝑈

𝜕𝑦
= −

∆𝑈

𝑙
𝑓′     (6) 
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Differentiating Eq. (2) with respect to 𝑦 gives: 

 

𝜕𝑢𝑣

𝜕𝑦
= −(∆𝑈)2

𝜕𝑔(𝜂)

𝜕𝑦
= −(∆𝑈)2

𝑑𝑔

𝑑𝜂⏟
𝑔′

𝑑𝜂

𝑑𝑦⏟
1
𝑙

 

𝜕𝑢𝑣

𝜕𝑦
= −

∆𝑈2

𝑙
𝑔′    (7) 

 

Substituting Eq. (5) into (4) and converting the 𝑦 integration into 𝜂 integration 

gives 

𝑉 = −∫ [−𝑓
𝑑∆𝑈

𝑑𝑥
+ ∆𝑈𝑓′

𝜂

𝑙

𝑑𝑙

𝑑𝑥
] 𝑙𝑑𝜂

𝜂

0

 

= 𝑙
𝑑∆𝑈

𝑑𝑥
∫ 𝑓𝑑𝜂
𝜂

0⏟    
𝐺(𝜂)

− ∆𝑈
𝑑𝑙

𝑑𝑥
∫ 𝑓′𝜂𝑑𝜂
𝜂

0⏟      
𝐻(𝜂)

 

𝑉 = 𝑙
𝑑∆𝑈

𝑑𝑥
𝐺(𝜂) − ∆𝑈

𝑑𝑙

𝑑𝑥
𝐻(𝜂)     (8) 

 

Using Eqs. (5), (6), (7) and (8) and dividing by ∆𝑈2/𝑙, Eq. (3) becomes: 

 

−𝛼∗𝑓 + 𝛽∗𝜂𝑓′ + 𝛼∗
∆𝑈

𝑈𝑒
[−𝑓′𝐺 + 𝑓2] − 𝛽∗

∆𝑈

𝑈𝑒
[−𝑓′𝐻 + 𝜂𝑓𝑓′] = 𝑔′     (9) 

 

Where: 

𝛼∗ =
𝑈𝑒𝑙

(∆𝑈)2
𝑑∆𝑈

𝑑𝑥
     (10) 

 

And 

 

𝛽∗ =
𝑈𝑒
∆𝑈

𝑑𝑙

𝑑𝑥
     (11) 

Represent dimensionless parameters.  

Appendix 

A.1 

𝑑𝑦 = 𝑙𝑑𝜂 
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Eq. (9) shows that sufficient condition for a similarity solution to exist is that 𝛼∗ and 

𝛽∗ ≠ 𝑓(𝑥). 

 

In far wake  
∆𝑈

𝑈𝑒
→ 0  as  𝑥 → ∞ 

 

Such that Eq. (15) simplifies to: 

 

−𝛼∗𝑓 + 𝛽∗𝜂𝑓′ = 𝑔′ 

 

Taking the ratio of Eqs. (10) and (11) gives: 

 

𝛼∗

𝛽∗
=

∆𝑈𝑥
∆𝑈
𝑙𝑥
𝑙

≡ 𝑛 = constant 

 

Assuming the rate of growth of 𝑙(𝑥) and the rate of decay of ∆𝑈(𝑥) are equal, then 

their ratio is a constant. Consequently,  

 
∆𝑈𝑥
∆𝑈

=
𝑙𝑥
𝑙
𝑛 

 

ln ∆𝑈 = 𝑛 ln 𝑙 + 𝐶 = ln 𝑙𝑛 + 𝐶 

 

∆𝑈 = 𝐶𝑙𝑛     (12) 

 

Substituting Eq. (12) into (11), gives 

 

𝛽∗ =
𝑈𝑒
∆𝑈

𝑑𝑙

𝑑𝑥
=
𝑈𝑒
𝐶𝑙𝑛

𝑑𝑙

𝑑𝑥
 

 
𝛽∗𝐶

𝑈𝑒
𝑑𝑥 =

𝑑𝑙

𝑙𝑛
     (13) 
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Integrating Eq. (13) yields: 

 

𝛽∗𝐶

𝑈𝑒
(𝑥 − 𝑥0) =

𝑙1−𝑛

(1 − 𝑛)
 

(1 − 𝑛)
𝛽∗𝐶

𝑈𝑒⏟        
𝛼

(𝑥 − 𝑥0) = 𝑙
1−𝑛 

 

𝑙(𝑥) = 𝛼𝑚(𝑥 − 𝑥0)
𝑚     (14) 

 

Where 𝑥0 = virtual origin and  

𝑚 =
1

1 − 𝑛
 

 

Substituting Eq. (14) into (12) gives 

 

∆𝑈(𝑥) = 𝐶𝛼𝑚−1(𝑥 − 𝑥0)
𝑚−1     (15) 

 

 

Recall definition of total mean flux of momentum per unit length in spanwise 

direction: 

𝑀 = 𝜌∫ 𝑈(𝑈 − 𝑈𝑒)𝑑𝑦
∞

−∞

= constant ≠ 𝑓(𝑥) 

 𝑀 = −𝜌𝑈𝑒
2𝜃 = −body drag, which induces wake 

Where: 

𝜃 = ∫
𝑈

𝑈𝑒
(1 −

𝑈

𝑈𝑒
)𝑑𝑦

∞

−∞

    (16) 

 

Represents the momentum thickness, in analogy to boundary layer theory, and it 

is constant in wake flow. 

 

 

𝛼 = (1 − 𝑛)𝛽∗𝐶/𝑈𝑒 
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Substituting  𝑈 = 𝑈𝑒 − ∆𝑈𝑓(𝜂) into Eq. (16) gives: 

 

𝜃 = ∫
𝑈𝑒 − ∆𝑈𝑓(𝜂)

𝑈𝑒
(1 −

𝑈𝑒 − ∆𝑈𝑓(𝜂)

𝑈𝑒
)𝑑𝑦

∞

−∞

 

𝜃 = ∫ (1 −
∆𝑈𝑓(𝜂)

𝑈𝑒
)(1 − 1 +

∆𝑈𝑓(𝜂)

𝑈𝑒
)

∞

−∞

𝑑𝑦⏟
𝑙𝑑𝜂

 

𝜃 =
∆𝑈

𝑈𝑒
∫ (1 −

∆𝑈𝑓(𝜂)

𝑈𝑒
)𝑓(𝜂)𝑙

∞

−∞

𝑑𝜂 

 

Dividing by 𝑙: 

 

𝜃

𝑙
=
∆𝑈

𝑈𝑒
[∫ 𝑓(𝜂)

∞

−∞

𝑑𝜂 −
∆𝑈

𝑈𝑒
∫ 𝑓2(𝜂)
∞

−∞

𝑑𝜂
⏟          

] 

 

 

Therefore, 

 

𝑙∆𝑈 =
𝑈𝑒𝜃

∫ 𝑓(𝜂)
∞

−∞
𝑑𝜂
= constant ≠ 𝑓(𝑥) 

 

∴ 𝑙∆𝑈 ≠ 𝑓(𝑥) and equal to a constant in the far wake, as previously assumed, i.e., 

assumption 𝑛 = constant. 

 

Substituting Eqs. (14) and (15) for 𝑙∆𝑈 gives: 

 

𝑙(𝑥)∆𝑈(𝑥) = 𝛼𝑚(𝑥 − 𝑥0)
𝑚 𝐶𝛼𝑚−1(𝑥 − 𝑥0)

𝑚−1 ≠ 𝑓(𝑥)     (17) 

 

i.e., 𝑚 +𝑚 − 1 = 0 → 𝑚 = 1/2, such that: 

 

𝑙(𝑥) = 𝛼1/2(𝑥 − 𝑥0)
1/2     (18) 

 

∆𝑈(𝑥) = 𝐶𝛼−1/2(𝑥 − 𝑥0)
−1/2     (19) 

∆𝑈

𝑈𝑒
→ 0 far wake 
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Circular cylinder reaches self-similarity about 80-90 diameters downstream for 

mean variables and larger distance for turbulence variables. 

 

 

Using control volume analysis, a relationship between 𝜃 and drag (𝐷) can be 

established (Betz Method): 

𝐷 = 𝜌𝑈𝑒
2∫

𝑈

𝑈𝑒
(1 −

𝑈

𝑈𝑒
)𝑑𝑦

∞

−∞

= 𝜌𝑈𝑒
2𝜃 

 

Now, that relations for 𝑙(𝑥) and ∆𝑈(𝑥) are established, it is possible to find the 

mean velocity field 𝑈, by determining 𝑓(𝜂) via 

 

−𝛼∗𝑓 + 𝛽∗𝜂𝑓′ = 𝑔′    (20) 

 

once a model for 𝑔(𝜂) = −𝑢𝑣/(∆𝑈)2 is proposed. 

 

Traditional approach → eddy viscosity model with 𝜈𝑡 = constant. 

 

𝑢𝑣 = −𝜈𝑡
𝜕𝑈

𝜕𝑦
= −(∆𝑈)2 𝑔(𝜂)     (21) 

 

Recall 

𝜕𝑈

𝜕𝑦
= −

∆𝑈

𝑙
𝑓′ 

 

And substituting into Eq. (21) gives 

 

𝜈𝑡
∆𝑈

𝑙
𝑓′ = −(∆𝑈)2 𝑔(𝜂) 

 𝑔(𝜂) = −𝜈𝑡
𝑓′

𝑙∆𝑈
= −

𝑓′

𝑅𝑡
     (22) 

 

https://user.engineering.uiowa.edu/~me_160/Examples%20for%20class/Betz%20Method.pdf
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Where: 

 

𝑅𝑡 =
𝑙∆𝑈

𝜈𝑡
 

 

Is a constant Reynolds number; since  𝑙∆𝑈 = constant. 

Substituting Eq. (22) into (20) gives 

−𝛼∗𝑓 + 𝛽∗𝜂𝑓′ = −
𝑓′′

𝑅𝑡
     (23) 

Moreover, recall 

𝑚 =
1

1 − 𝑛
=
1

2
→ 𝑛 = −1 

 

And  

𝑛 =
𝛼∗

𝛽∗
→ 𝛽∗ = −𝛼∗ 

 

Consequently, Eq. (23) can be rewritten as 

−𝛼∗(𝑓 + 𝜂𝑓′) = −
𝑓′′

𝑅𝑡
 

𝑓′′ − 𝑅𝑡𝛼
∗(𝑓 + 𝜂𝑓′) = 0     (24) 

Rewriting Eq. (24) as  

𝑓′′ − 𝑅𝑡𝛼
∗
𝑑

𝑑𝜂
(𝜂𝑓) = 0      

And integrating with respect to 𝜂 gives: 

 
𝑑𝑓

𝑑𝜂
− 𝑅𝑡𝛼

∗(𝜂𝑓) = 𝐶      

𝑓 + 𝜂𝑓′ =
𝑑

𝑑𝜂
(𝜂𝑓) 
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Where 𝐶 = 0, due to BC 𝑓′(0) = 0 

𝑑𝑓

𝑓
= 𝑅𝑡𝛼

∗𝜂𝑑𝜂 

Integrating again with respect to 𝜂 

ln 𝑓 = 𝑅𝑡𝛼
∗
𝜂2

2
+ 𝐶 

𝑓(𝜂) = 𝐶𝑒𝛼
∗𝜂
2

2
𝑅𝑡  

Where 𝐶 = 1, due to BC 𝑓(0) = 1. 

Substituting the definitions of 𝛼∗ =
𝑈𝑒𝑙

(∆𝑈)2
𝑑∆𝑈

𝑑𝑥
 and 𝑅𝑡 =

𝑙∆𝑈

𝜈𝑡
 combined with Eqs. 

(18) and (19) gives: 

𝑓(𝜂) = exp(
𝑈𝑒𝑙

2

∆𝑈𝜈𝑡

𝑑∆𝑈

𝑑𝑥

𝜂2

2
) 

= exp [−
𝐶

2

𝑈𝑒𝛼(𝑥 − 𝑥0)

𝐶𝛼−1/2(𝑥 − 𝑥0)
−1/2𝜈𝑡

𝛼−1/2(𝑥 − 𝑥0)
−3/2

𝜂2

2
] 

𝑓(𝜂) = 𝑒
−
𝑈𝑒𝛼
4𝜈𝑡

𝜂2

 

 

𝛼 only effects scaling of distances → can be chosen arbitrarily → 𝛼 = 𝑑, such that: 

 

𝑓(𝜂) = 𝑒−
𝑅𝑑𝜂

2

4  

Is a Gaussian function where: 

𝑅𝑑 =
𝑈𝑒𝑑

𝜈𝑡
, i.e., 𝜈𝑡 =

𝑈𝑒𝑑

𝑅𝑑
 

And 

𝜂 =
𝑦

√𝑑(𝑥 − 𝑥0)
 



11 
 

Experimental measurements of  

𝑈𝑒 − 𝑈

∆𝑈
= 𝑓(𝜂) 

 

In the far wake of a circular cylinder at several cross sections are shown in Fig. 

11.3. 

 

𝜂 < 0.3 good fit using 𝑅𝑑 = 61.04. 

 

Outer part discrepancies due to using 𝜈𝑡 = constant and intermittency. Including 

an intermittency factor 𝛾(𝜂) shows better agreement. 
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Integrating  

𝑙∆𝑈 =
𝑈𝑒𝜃

∫ 𝑓(𝜂)
∞

−∞
𝑑𝜂
= 𝐶 

Using  

𝑓(𝜂) = 𝑒−
𝑅𝑑𝜂

2

4  

Gives  

𝐶 = √
𝑅𝑑
𝜋

𝑈𝑒𝜃

2
= 2.204𝑈𝑒𝜃 

Such that 

∆𝑈(𝑥)

𝑈𝑒
= 2.204

𝜃

𝑑
√

𝑑

𝑥 − 𝑥0
 

Introducing the drag coefficient 

𝑐𝐷 ≡
𝐷

1
2
𝜌𝑑𝑈𝑒

2
 

And recalling that 

𝐷 = 𝜌𝑈𝑒
2𝜃 

It is found that: 

𝜃

𝑑
=
1

2
𝑐𝐷 

Such that: 

∆𝑈(𝑥)

𝑈𝑒
=
2.204𝑐𝐷
2

√
𝑑

𝑥 − 𝑥0
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Appendix A 

A.1 

𝜕

𝜕𝑥
[𝑈(𝑈 − 𝑈𝑒)] +

𝜕

𝜕𝑦
[𝑉(𝑈 − 𝑈𝑒)] +

𝜕

𝜕𝑦
𝑢𝑣 = 0     (1𝐴) 

 

Recall  

𝑈 = 𝑈𝑒 − ∆𝑈𝑓(𝜂)⏟    
velocity defect

   (2𝐴) 

𝑉 = 𝑙
𝑑∆𝑈

𝑑𝑥
𝐺(𝜂) − ∆𝑈

𝑑𝑙

𝑑𝑥
𝐻(𝜂)     (3𝐴) 

−𝑢𝑣 = (∆𝑈)2𝑔(𝜂)     (4𝐴) 

𝜕𝑢𝑣

𝜕𝑦
= −

∆𝑈2

𝑙
𝑔′     (5𝐴) 

 

Differentiating Eq. (2A) with respect to 𝑥: 

 

𝜕

𝜕𝑥
(𝑈 − 𝑈𝑒) = −𝑓

𝑑∆𝑈

𝑑𝑥
+ ∆𝑈𝑓′

𝜂

𝑙

𝑑𝑙

𝑑𝑥
     (6𝐴) 

 

Differentiating Eq. (2A) with respect to 𝑦: 

 

𝜕

𝜕𝑦
(𝑈 − 𝑈𝑒) = −

∆𝑈

𝑙
𝑓′     (7𝐴) 

 

Expanding the derivatives in Eq. (1A) yields: 

𝜕𝑈

𝜕𝑥
(𝑈 − 𝑈𝑒) + 𝑈

𝜕

𝜕𝑥
(𝑈 − 𝑈𝑒) +

𝜕𝑉

𝜕𝑦
(𝑈 − 𝑈𝑒) + 𝑉

𝜕

𝜕𝑦
(𝑈 − 𝑈𝑒) +

𝜕

𝜕𝑦
𝑢𝑣 = 0 (8𝐴) 
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Substituting Eqs. (3A), (5A), (6A) and (7A) into (8A) gives: 

𝜕𝑈

𝜕𝑥
(𝑈 − 𝑈𝑒) + 𝑈 (−𝑓

𝑑∆𝑈

𝑑𝑥
+ ∆𝑈𝑓′

𝜂

𝑙

𝑑𝑙

𝑑𝑥
) +

𝜕𝑉

𝜕𝑦
(𝑈 − 𝑈𝑒)

+ (𝑙
𝑑∆𝑈

𝑑𝑥
𝐺(𝜂) − ∆𝑈

𝑑𝑙

𝑑𝑥
𝐻(𝜂)) (−

∆𝑈

𝑙
𝑓′) −

∆𝑈2

𝑙
𝑔′ = 0   (9𝐴) 

 

Using continuity: 

𝜕𝑈

𝜕𝑥
+
𝜕𝑉

𝜕𝑦
= 0 →

𝜕𝑈

𝜕𝑥
= −

𝜕𝑉

𝜕𝑦
 

 

Such that Eq. (9A) simplifies to: 

 

−𝑈𝑓
𝑑∆𝑈

𝑑𝑥
+ 𝑈∆𝑈𝑓′

𝜂

𝑙

𝑑𝑙

𝑑𝑥
− ∆𝑈𝑓′

𝑑∆𝑈

𝑑𝑥
𝐺(𝜂) +

∆𝑈2

𝑙
𝑓′
𝑑𝑙

𝑑𝑥
𝐻(𝜂) −

∆𝑈2

𝑙
𝑔′

= 0   (10𝐴) 

Using Eq. (2A), 𝑈 can be substituted by 𝑈𝑒 − ∆𝑈𝑓(𝜂) such that Eq. (10A) 

becomes: 

(−𝑈𝑒 + ∆𝑈𝑓)𝑓
𝑑∆𝑈

𝑑𝑥
+ (𝑈𝑒 − ∆𝑈𝑓)∆𝑈𝑓

′
𝜂

𝑙

𝑑𝑙

𝑑𝑥
− ∆𝑈𝑓′

𝑑∆𝑈

𝑑𝑥
𝐺(𝜂)

+
∆𝑈2

𝑙
𝑓′
𝑑𝑙

𝑑𝑥
𝐻(𝜂) −

∆𝑈2

𝑙
𝑔′ = 0   (11𝐴) 

 

 

Dividing Eq. (11A) by ∆𝑈2/𝑙 gives 

 

−𝑈𝑒𝑙𝑓

∆𝑈2
𝑑∆𝑈

𝑑𝑥
+
𝑓2𝑙

∆𝑈

𝑑∆𝑈

𝑑𝑥
+
𝑈𝑒𝜂𝑓

′

∆𝑈

𝑑𝑙

𝑑𝑥
− 𝑓𝑓′𝜂

𝑑𝑙

𝑑𝑥
−
𝑙𝑓′

∆𝑈

𝑑∆𝑈

𝑑𝑥
𝐺(𝜂) + 𝑓′

𝑑𝑙

𝑑𝑥
𝐻(𝜂)

= 𝑔′   (12𝐴) 
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Defining  

𝛼∗ =
𝑈𝑒𝑙

(∆𝑈)2
𝑑∆𝑈

𝑑𝑥
     (13𝐴) 

 

And 

 

𝛽∗ =
𝑈𝑒
∆𝑈

𝑑𝑙

𝑑𝑥
     (14𝐴) 

 

Eq. (12A) becomes: 

 

−𝛼∗𝑓 + 𝛼∗
∆𝑈

𝑈𝑒
𝑓2 + 𝛽∗𝜂𝑓′ − 𝛽∗

∆𝑈

𝑈𝑒
𝑓𝑓′𝜂 − 𝛼∗

∆𝑈

𝑈𝑒
𝑓′𝐺(𝜂) + 𝛽∗

∆𝑈

𝑈𝑒
𝑓′𝐻(𝜂) = 𝑔′  

 

−𝛼∗𝑓 + 𝛽∗𝜂𝑓′ + 𝛼∗
∆𝑈

𝑈𝑒
(𝑓2 − 𝑓′𝐺(𝜂)) − 𝛽∗

∆𝑈

𝑈𝑒
(𝑓𝑓′𝜂 − 𝑓′𝐻(𝜂)) = 𝑔′  

 

 


