Chapter 7: Properties of Turbulent Free Shear Flow (Chap. 11 Bernard)

Part 2: Turbulent Wake: Circular Cylinder

Apclied Okran Recearch 39 (2016):663-675

Large-eddy simulation of the flow past a circular cylinder at sub- toCronsMark super-critical Reynolds numbers
Seong Mo Yeon, Jianming Yang, Frederick Stern ${ }^{\prime}$

ARTICLE INFO

Artide nisaon:

Received 26 January 2015
Received in revssed form 5 October 2015
Accepted 12 November 2015
Available online 23 December 2015

Keywads Larse-eddy
 Large eddy simulation
 Orcular yytioset

Ids number
Verification and validation

ABSTRACT
Large-eddy simulation of turbulem flow past a circular cylinder at sub- to super-critical Reynolds numibers is performed using a high-fidelity orthogenal curvilinear grid solver. Verification studies investigate the effects of grid resolution. aspect ratio and convection scheme. Monotonic convergence is achieved in grid convergence studies. Validation studies use all available experimental benchmark data. Athough in grid convergence studies. Valids are relatively large and fine enough for sufficiently resolved turbulence near the cylinder, the grid uncertainties are large indicating the need for even finer grids. Large aspect ratio is required for sub-critical Reynolds number cases, whereas small aspect ratio is sufficient for critical and super-critical Reynolds number cases. All the experimental trends were predicted with reasonable accuracy. in consideration the large faclity bias, age of most of the data, and differences between experimental and computational setup in particular free stream turbulence and roughness. The largest errors were for under prediction of turbulence separation.

(a) $\mathrm{Re}=1.26 \times 10^{3}$

(b) $\mathrm{Re}=2.52 \times 10^{9}$

(c) $\mathrm{Re}=7.57 \times 10$

FIg. 7. Instantaneous spanwise vorticity contours, right side shows the close-up views.

Self-Preserving Far Wake

Figure 11.2 Circular cylinder wake at $R_{e}=2200$; smoke wire at (a) $x / d=1$ and (b) $x / d=160$, [3]. Reprinted with permission of Cambridge University Press.

Near wake: organized Karman vortices.
Far wake: disorganized large-scale vortices/broad-band and no dominant frequencies.

For far downstream wake flow, conditions for similarity solution of mean velocity achieved \rightarrow diffrerences between mean velocity profiles at different x locations attributable to change in scale, not in functional form.

$$
\begin{gather*}
\bar{U}=U_{e}-\underbrace{}_{\underbrace{\Delta U f(\eta)}_{\text {velocity defect }}} \tag{1}\\
-\overline{u v}=(\Delta U)^{2} g(\eta)
\end{gather*}
$$

Where:

$$
\eta=\frac{y}{l(x)}
$$

$$
\begin{gathered}
\mathrm{BC1}: \bar{U}(x, 0)=U_{\min }(x)=\overline{U_{\min }} \\
\bar{U}(x, 0)=U_{e}-\Delta U f(0) \\
=U_{e}-\left(U_{e}-U_{\min }(x)\right) f(0) \\
f(0)=1 \\
\mathrm{BC2}: d \bar{U}(x, 0) / d y=0 \\
\frac{d U / e}{a y}-\frac{d \Delta y}{\not a y} f(0)-\Delta U \underbrace{\frac{d f(0)}{d \eta}}_{f^{\prime}(0)} \frac{d \eta}{d y}=0 \\
-\Delta U f^{\prime}(0) \frac{d\left(\frac{y}{l}\right)}{d y}=-\frac{\Delta U}{l} f^{\prime}(0)=0 \\
f^{\prime}(0)=0
\end{gathered}
$$

is a similarity variable and $\Delta U(x)=U_{e}-U_{\min }(x)$. Velocity defect obeys similarity law, which by the definition of $\Delta U, f(0)=1$, while symmetry implies that $f^{\prime}(0)=$ 0 . Anti-symmetry in RS implies that $g(0)=0$.

Idea is to use momentum equation:

$$
\begin{equation*}
\frac{\partial}{\partial x}\left[\bar{U}\left(\bar{U}-U_{e}\right)\right]+\frac{\partial}{\partial y}\left[\bar{V}\left(\bar{U}-U_{e}\right)\right]+\frac{\partial}{\partial y} \overline{u v}=0 \tag{3}
\end{equation*}
$$

to explore nature of similarity solutions.

Integrating mean continuity equation $(\partial \bar{U} / \partial x+\partial \bar{V} / \partial y=0)$:

$$
\begin{equation*}
\bar{V}=-\int_{0}^{y} \frac{\partial \bar{U}}{\partial x} d y \tag{4}
\end{equation*}
$$

Since $\bar{V}=0$ at centerline $y=0$.
Differentiating Eq. (1) with respect to x gives

$$
\begin{gather*}
\frac{\partial \bar{U}}{\partial x}=-f \frac{d \Delta U}{d x}-\Delta U \underbrace{-\frac{\eta}{l}}_{\underbrace f l_{f \prime}^{\frac{d f}{d \eta}} \frac{d \eta}{d l}} \frac{d l}{d x} \\
\frac{\partial \bar{U}}{\partial x}=-f \frac{d \Delta U}{d x}+\Delta U f^{\prime} \frac{\eta}{l} \frac{d l}{d x} \tag{5}
\end{gather*}
$$

Differentiating Eq. (1) with respect to y yields:

$$
\begin{gather*}
\frac{\partial \bar{U}}{\partial y}=\frac{\partial U / e}{\partial y}-\Delta U \frac{\partial f(\eta)}{\partial y}=-\Delta U \underbrace{\frac{d f}{d \eta}}_{f^{\prime}} \underbrace{\frac{d \eta}{d y}}_{\left[\frac{1}{l}\right]} \\
\frac{\partial \bar{U}}{\partial y}=-\frac{\Delta U}{l} f^{\prime}
\end{gather*}
$$

Differentiating Eq. (2) with respect to y gives:

$$
\begin{gather*}
\frac{\partial \overline{u v}}{\partial y}=-(\Delta U)^{2} \frac{\partial g(\eta)}{\partial y}=-(\Delta U)^{2} \underbrace{\frac{d g}{d \eta}}_{g^{\prime}} \underbrace{\frac{d \eta}{d y}}_{\left[\frac{1}{l}\right.} \\
\frac{\partial \overline{u v}}{\partial y}=-\frac{\Delta U^{2}}{l} g^{\prime} \tag{7}
\end{gather*}
$$

Substituting Eq. (5) into (4) and converting the y integration into η integration gives

$$
\begin{array}{rlr}
\bar{V} & =-\int_{0}^{\eta}\left[-f \frac{d \Delta U}{d x}+\Delta U f^{\prime} \frac{\eta}{l} \frac{d l}{d x}\right] l d \eta & d y=l d \eta \\
& =l \frac{d \Delta U}{d x} \underbrace{\int_{0}^{\eta} f d \eta}_{G(\eta)}-\Delta U \frac{d l}{d x} \underbrace{\int_{0}^{\eta} f^{\prime} \eta d \eta}_{\boxed{H(\eta)}} \\
\bar{V} & =l \frac{d \Delta U}{d x} G(\eta)-\Delta U \frac{d l}{d x} H(\eta) \tag{8}
\end{array}
$$

Using Eqs. (5), (6), (7) and (8) and dividing by $\Delta U^{2} / l$, Eq. (3) becomes:

$$
-\alpha^{*} f+\beta^{*} \eta f^{\prime}+\alpha^{*} \frac{\Delta U}{U_{e}}\left[-f^{\prime} G+f^{2}\right]-\beta^{*} \frac{\Delta U}{U_{e}}\left[-f^{\prime} H+\eta f f^{\prime}\right]=g^{\prime} \quad \text { (9) } \quad \begin{gathered}
\text { Appendix } \\
\text { A. } 1
\end{gathered}
$$

Where:

$$
\begin{equation*}
\alpha^{*}=\frac{U_{e} l}{(\Delta U)^{2}} \frac{d \Delta U}{d x} \tag{10}
\end{equation*}
$$

And

$$
\begin{equation*}
\beta^{*}=\frac{U_{e}}{\Delta U} \frac{d l}{d x} \tag{11}
\end{equation*}
$$

Represent dimensionless parameters.

Eq. (9) shows that sufficient condition for a similarity solution to exist is that α^{*} and $\beta^{*} \neq f(x)$.

In far wake

$$
\frac{\Delta U}{U_{e}} \rightarrow 0 \text { as } x \rightarrow \infty
$$

Such that Eq. (15) simplifies to:

$$
-\alpha^{*} f+\beta^{*} \eta f^{\prime}=g^{\prime}
$$

Taking the ratio of Eqs. (10) and (11) gives:

$$
\frac{\alpha^{*}}{\beta^{*}}=\frac{\frac{\Delta U_{x}}{\Delta U}}{\frac{l_{x}}{l}} \equiv n=\text { constant }
$$

Assuming the rate of growth of $l(x)$ and the rate of decay of $\Delta U(x)$ are equal, then their ratio is a constant. Consequently,

$$
\begin{gather*}
\frac{\Delta U_{x}}{\Delta U}=\frac{l_{x}}{l} n \\
\ln \Delta U=n \ln l+C=\ln l^{n}+C \\
\Delta U=C l^{n} \tag{12}
\end{gather*}
$$

Substituting Eq. (12) into (11), gives

$$
\begin{align*}
& \beta^{*}=\frac{U_{e}}{\Delta U} \frac{d l}{d x}=\frac{U_{e}}{C l^{n}} \frac{d l}{d x} \\
& \frac{\beta^{*} C}{U_{e}} d x=\frac{d l}{l^{n}} \tag{13}
\end{align*}
$$

Integrating Eq. (13) yields:

$$
\begin{align*}
& \frac{\beta^{*} C}{U_{e}}\left(x-x_{0}\right)=\frac{l^{1-n}}{(1-n)} \\
& \underbrace{(1-n) \frac{\beta^{*} C}{U_{e}}}_{\alpha}\left(x-x_{0}\right)=l^{1-n} \\
& l(x)=\alpha^{m}\left(x-x_{0}\right)^{m} \tag{14}
\end{align*}
$$

Where $x_{0}=$ virtual origin and

$$
m=\frac{1}{1-n}
$$

Substituting Eq. (14) into (12) gives

$$
\begin{equation*}
\Delta U(x)=C \alpha^{m-1}\left(x-x_{0}\right)^{m-1} \tag{15}
\end{equation*}
$$

Recall definition of total mean flux of momentum per unit length in spanwise direction:

$$
\begin{gathered}
M=\rho \int_{-\infty}^{\infty} \bar{U}\left(\bar{U}-U_{e}\right) d y=\text { constant } \neq f(x) \\
M=-\rho U_{e}^{2} \theta=- \text { body drag, which induces wake }
\end{gathered}
$$

Where:

$$
\begin{equation*}
\theta=\int_{-\infty}^{\infty} \frac{\bar{U}}{U_{e}}\left(1-\frac{\bar{U}}{U_{e}}\right) d y \tag{16}
\end{equation*}
$$

Represents the momentum thickness, in analogy to boundary layer theory, and it is constant in wake flow.

Substituting $\bar{U}=U_{e}-\Delta U f(\eta)$ into Eq. (16) gives:

$$
\begin{gathered}
\theta=\int_{-\infty}^{\infty} \frac{U_{e}-\Delta U f(\eta)}{U_{e}}\left(1-\frac{U_{e}-\Delta U f(\eta)}{U_{e}}\right) d y \\
\theta=\int_{-\infty}^{\infty}\left(1-\frac{\Delta U f(\eta)}{U_{e}}\right)\left(x-x+\frac{\Delta U f(\eta)}{U_{e}}\right) \underbrace{d y} \\
\theta=\frac{\Delta U}{U_{e}} \int_{-\infty}^{\infty}\left(1-\frac{\Delta U f(\eta)}{U_{e}}\right) f(\eta) l d \eta
\end{gathered}
$$

Dividing by l :

$$
\frac{\theta}{l}=\frac{\Delta U}{U_{e}}[\int_{-\infty}^{\infty} f(\eta) d \eta-\underbrace{\frac{\Delta U}{U_{e}} \int_{-\infty}^{\infty} f^{2}(\eta) d \eta}_{\frac{\Delta U}{U_{e}} \rightarrow 0 \text { far wake }}]
$$

Therefore,

$$
l \Delta U=\frac{U_{e} \theta}{\int_{-\infty}^{\infty} f(\eta) d \eta}=\text { constant } \neq f(x)
$$

$\therefore l \Delta U \neq f(x)$ and equal to a constant in the far wake, as previously assumed, i.e., assumption $n=$ constant.

Substituting Eqs. (14) and (15) for $l \Delta U$ gives:

$$
\begin{equation*}
l(x) \Delta U(x)=\alpha^{m}\left(x-x_{0}\right)^{m} C \alpha^{m-1}\left(x-x_{0}\right)^{m-1} \neq f(x) \tag{17}
\end{equation*}
$$

i.e., $m+m-1=0 \rightarrow m=1 / 2$, such that:

$$
\begin{align*}
l(x) & =\alpha^{1 / 2}\left(x-x_{0}\right)^{1 / 2} \tag{18}\\
\Delta U(x) & =C \alpha^{-1 / 2}\left(x-x_{0}\right)^{-1 / 2} \tag{19}
\end{align*}
$$

Circular cylinder reaches self-similarity about 80-90 diameters downstream for mean variables and larger distance for turbulence variables.

Using control volume analysis, a relationship between θ and $\operatorname{drag}(D)$ can be established (Betz Method):

$$
D=\rho U_{e}^{2} \int_{-\infty}^{\infty} \frac{\bar{U}}{U_{e}}\left(1-\frac{\bar{U}}{U_{e}}\right) d y=\rho U_{e}^{2} \theta
$$

Now, that relations for $l(x)$ and $\Delta U(x)$ are established, it is possible to find the mean velocity field \bar{U}, by determining $f(\eta)$ via

$$
\begin{equation*}
-\alpha^{*} f+\beta^{*} \eta f^{\prime}=g^{\prime} \tag{20}
\end{equation*}
$$

once a model for $g(\eta)=-\overline{u v} /(\Delta U)^{2}$ is proposed.

Traditional approach \rightarrow eddy viscosity model with $v_{t}=$ constant.

$$
\begin{equation*}
\overline{u v}=-v_{t} \frac{\partial \bar{U}}{\partial y}=-(\Delta U)^{2} g(\eta) \tag{21}
\end{equation*}
$$

Recall

$$
\frac{\partial \bar{U}}{\partial y}=-\frac{\Delta U}{l} f^{\prime}
$$

And substituting into Eq. (21) gives

$$
\begin{gather*}
v_{t} \frac{\Delta U}{l} f^{\prime}=-(\Delta U)^{2} g(\eta) \\
g(\eta)=-v_{t} \frac{f^{\prime}}{l \Delta U}=-\frac{f^{\prime}}{R_{t}} \tag{22}
\end{gather*}
$$

Where:

$$
R_{t}=\frac{l \Delta U}{v_{t}}
$$

Is a constant Reynolds number; since $l \Delta U=$ constant.
Substituting Eq. (22) into (20) gives

$$
\begin{equation*}
-\alpha^{*} f+\beta^{*} \eta f^{\prime}=-\frac{f^{\prime \prime}}{R_{t}} \tag{23}
\end{equation*}
$$

Moreover, recall

$$
m=\frac{1}{1-n}=\frac{1}{2} \rightarrow n=-1
$$

And

$$
n=\frac{\alpha^{*}}{\beta^{*}} \rightarrow \beta^{*}=-\alpha^{*}
$$

Consequently, Eq. (23) can be rewritten as

$$
\begin{align*}
-\alpha^{*}\left(f+\eta f^{\prime}\right) & =-\frac{f^{\prime \prime}}{R_{t}} \\
f^{\prime \prime}-R_{t} \alpha^{*}\left(f+\eta f^{\prime}\right) & =0 \tag{24}
\end{align*}
$$

Rewriting Eq. (24) as

$$
f^{\prime \prime}-R_{t} \alpha^{*} \frac{d}{d \eta}(\eta f)=0
$$

$$
f+\eta f^{\prime}=\frac{d}{d \eta}(\eta f)
$$

And integrating with respect to η gives:

$$
\frac{d f}{d \eta}-R_{t} \alpha^{*}(\eta f)=C
$$

Where $C=0$, due to $\mathrm{BC} f^{\prime}(0)=0$

$$
\frac{d f}{f}=R_{t} \alpha^{*} \eta d \eta
$$

Integrating again with respect to η

$$
\begin{gathered}
\ln f=R_{t} \alpha^{*} \frac{\eta^{2}}{2}+C \\
f(\eta)=C e^{\alpha * \frac{\eta^{2}}{2} R_{t}}
\end{gathered}
$$

Where $C=1$, due to $\mathrm{BC} f(0)=1$.
Substituting the definitions of $\alpha^{*}=\frac{U_{e} l}{(\Delta U)^{2}} \frac{d \Delta U}{d x}$ and $R_{t}=\frac{\Delta \Delta U}{v_{t}}$ combined with Eqs. (18) and (19) gives:

$$
\begin{gathered}
f(\eta)=\exp \left(\frac{U_{e} l^{2}}{\Delta U v_{t}} \frac{d \Delta U}{d x} \frac{\eta^{2}}{2}\right) \\
=\exp \left[-\frac{\ell}{2} \frac{U_{e} \alpha\left(x-x_{0}\right)}{\ell \alpha^{-1+2}\left(x-x_{0}\right)^{-1 / 2} v_{t}} \alpha^{-1 \gamma^{2}}\left(x-x_{0}\right)^{-3 / 2} \frac{\eta^{2}}{2}\right] \\
f(\eta)=e^{-\frac{U_{e} \alpha}{4 v_{t}} \eta^{2}}
\end{gathered}
$$

α only effects scaling of distances \rightarrow can be chosen arbitrarily $\rightarrow \alpha=d$, such that:

$$
f(\eta)=e^{-\frac{R_{d} \eta^{2}}{4}}
$$

Is a Gaussian function where:

$$
R_{d}=\frac{U_{e} d}{v_{t}} \text {, i.e., } v_{t}=\frac{U_{e} d}{R_{d}}
$$

And

$$
\eta=\frac{y}{\sqrt{d\left(x-x_{0}\right)}}
$$

Experimental measurements of

$$
\frac{U_{e}-\bar{U}}{\Delta U}=f(\eta)
$$

In the far wake of a circular cylinder at several cross sections are shown in Fig. 11.3.

Figure 11.3 Comparison of the self-similar turbulent wake velocity profile of a cylinder with physical experiments at $R_{d}=1360: \bullet, x / d=500 ;+, x / d=650 ; \circ, x / d=800 ; \times, x / d=950 ;-$, Eq. (11.44). Data from [9]. Reproduced from the Australian Journal of Scientific Research (Vol. A2, 1949), with permission of CSIRO Publishing.
$\eta<0.3$ good fit using $R_{d}=61.04$.

Outer part discrepancies due to using $v_{t}=$ constant and intermittency. Including an intermittency factor $\gamma(\eta)$ shows better agreement.

Integrating

$$
l \Delta U=\frac{U_{e} \theta}{\int_{-\infty}^{\infty} f(\eta) d \eta}=C
$$

Using

$$
f(\eta)=e^{-\frac{R_{d} \eta^{2}}{4}}
$$

Gives

$$
C=\sqrt{\frac{R_{d}}{\pi}} \frac{U_{e} \theta}{2}=2.204 U_{e} \theta
$$

Such that

$$
\frac{\Delta U(x)}{U_{e}}=2.204 \frac{\theta}{d} \sqrt{\frac{d}{x-x_{0}}}
$$

Introducing the drag coefficient

$$
c_{D} \equiv \frac{D}{\frac{1}{2} \rho d U_{e}^{2}}
$$

And recalling that

$$
D=\rho U_{e}^{2} \theta
$$

It is found that:

$$
\frac{\theta}{d}=\frac{1}{2} c_{D}
$$

Such that:

$$
\frac{\Delta U(x)}{U_{e}}=\frac{2.204 c_{D}}{2} \sqrt{\frac{d}{x-x_{0}}}
$$

Appendix A

A. 1

$$
\begin{equation*}
\frac{\partial}{\partial x}\left[\bar{U}\left(\bar{U}-U_{e}\right)\right]+\frac{\partial}{\partial y}\left[\bar{V}\left(\bar{U}-U_{e}\right)\right]+\frac{\partial}{\partial y} \overline{u v}=0 \tag{1A}
\end{equation*}
$$

Recall

$$
\begin{gather*}
\bar{U}=U_{e}-\underbrace{\bar{V}=l}_{\underbrace{\Delta U f(\eta)}_{\text {velocity defect }}} \begin{array}{c}
\frac{d \Delta U}{d x} G(\eta)-\Delta U \frac{d l}{d x} H(\eta) \\
-\overline{u v}=(\Delta U)^{2} g(\eta) \\
\frac{\partial \overline{u v}}{\partial y}=-\frac{\Delta U^{2}}{l} g^{\prime}
\end{array},(5 A) \tag{2A}
\end{gather*}
$$

Differentiating Eq. (2A) with respect to x :

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\bar{U}-U_{e}\right)=-f \frac{d \Delta U}{d x}+\Delta U f^{\prime} \frac{\eta}{l} \frac{d l}{d x} \tag{6A}
\end{equation*}
$$

Differentiating Eq. (2A) with respect to y :

$$
\begin{equation*}
\frac{\partial}{\partial y}\left(\bar{U}-U_{e}\right)=-\frac{\Delta U}{l} f^{\prime} \tag{7A}
\end{equation*}
$$

Expanding the derivatives in Eq. (1A) yields:

$$
\begin{equation*}
\frac{\partial \bar{U}}{\partial x}\left(\bar{U}-U_{e}\right)+\bar{U} \frac{\partial}{\partial x}\left(\bar{U}-U_{e}\right)+\frac{\partial \bar{V}}{\partial y}\left(\bar{U}-U_{e}\right)+\bar{V} \frac{\partial}{\partial y}\left(\bar{U}-U_{e}\right)+\frac{\partial}{\partial y} \overline{u v}=0 \tag{8A}
\end{equation*}
$$

Substituting Eqs. (3A), (5A), (6A) and (7A) into (8A) gives:

$$
\begin{align*}
\frac{\partial \bar{U}}{\partial x}\left(\bar{U}-U_{e}\right) & +\bar{U}\left(-f \frac{d \Delta U}{d x}+\Delta U f^{\prime} \frac{\eta}{l} \frac{d l}{d x}\right)+\frac{\partial \bar{V}}{\partial y}\left(\bar{U}-U_{e}\right) \\
& +\left(l \frac{d \Delta U}{d x} G(\eta)-\Delta U \frac{d l}{d x} H(\eta)\right)\left(-\frac{\Delta U}{l} f^{\prime}\right)-\frac{\Delta U^{2}}{l} g^{\prime}=0 \tag{9A}
\end{align*}
$$

Using continuity:

$$
\frac{\partial \bar{U}}{\partial x}+\frac{\partial \bar{V}}{\partial y}=0 \rightarrow \frac{\partial \bar{U}}{\partial x}=-\frac{\partial \bar{V}}{\partial y}
$$

Such that Eq. (9A) simplifies to:

$$
\begin{aligned}
-\bar{U} f \frac{d \Delta U}{d x}+ & \bar{U} \Delta U f^{\prime} \frac{\eta}{l} \frac{d l}{d x}-\Delta U f^{\prime} \frac{d \Delta U}{d x} G(\eta)+\frac{\Delta U^{2}}{l} f^{\prime} \frac{d l}{d x} H(\eta)-\frac{\Delta U^{2}}{l} g^{\prime} \\
& =0
\end{aligned}
$$

Using Eq. (2A), \bar{U} can be substituted by $U_{e}-\Delta U f(\eta)$ such that Eq. (10A) becomes:

$$
\begin{gather*}
\left(-U_{e}+\Delta U f\right) f \frac{d \Delta U}{d x}+\left(U_{e}-\Delta U f\right) \Delta U f^{\prime} \frac{\eta}{l} \frac{d l}{d x}-\Delta U f^{\prime} \frac{d \Delta U}{d x} G(\eta) \\
+\frac{\Delta U^{2}}{l} f^{\prime} \frac{d l}{d x} H(\eta)-\frac{\Delta U^{2}}{l} g^{\prime}=0 \tag{11A}
\end{gather*}
$$

Dividing Eq. (11A) by $\Delta U^{2} / l$ gives

$$
\begin{aligned}
\frac{-U_{e} l f}{\Delta U^{2}} \frac{d \Delta U}{d x} & +\frac{f^{2} l}{\Delta U} \frac{d \Delta U}{d x}+\frac{U_{e} \eta f^{\prime}}{\Delta U} \frac{d l}{d x}-f f^{\prime} \eta \frac{d l}{d x}-\frac{l f^{\prime}}{\Delta U} \frac{d \Delta U}{d x} G(\eta)+f^{\prime} \frac{d l}{d x} H(\eta) \\
& =g^{\prime}(12 A)
\end{aligned}
$$

Defining

$$
\begin{equation*}
\alpha^{*}=\frac{U_{e} l}{(\Delta U)^{2}} \frac{d \Delta U}{d x} \tag{13A}
\end{equation*}
$$

And

$$
\begin{equation*}
\beta^{*}=\frac{U_{e}}{\Delta U} \frac{d l}{d x} \tag{14A}
\end{equation*}
$$

Eq. (12A) becomes:

$$
\begin{gathered}
-\alpha^{*} f+\alpha^{*} \frac{\Delta U}{U_{e}} f^{2}+\beta^{*} \eta f^{\prime}-\beta^{*} \frac{\Delta U}{U_{e}} f f^{\prime} \eta-\alpha^{*} \frac{\Delta U}{U_{e}} f^{\prime} G(\eta)+\beta^{*} \frac{\Delta U}{U_{e}} f^{\prime} H(\eta)=g^{\prime} \\
-\alpha^{*} f+\beta^{*} \eta f^{\prime}+\alpha^{*} \frac{\Delta U}{U_{e}}\left(f^{2}-f^{\prime} G(\eta)\right)-\beta^{*} \frac{\Delta U}{U_{e}}\left(f f^{\prime} \eta-f^{\prime} H(\eta)\right)=g^{\prime}
\end{gathered}
$$

