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Chapter 6: Turbulent Transport and its Modeling 

Part 2:  Lagrangian Analysis of Turbulent Transport 

Gradient transport law requires mixing length (𝑙) ≪ region over which mean 

velocity can be assumed linear. For turbulent transport, 𝑙 determined by eddy 

size/action ≫ molecular mean free path as per molecular viscosity and viscous 

shear stress tensor. 

 

 

 

Figure shows linear approximation mean velocity profile is only valid for very small 

distances.  

However, concept that turbulent mixing in which fluid particles carry momentum 

from initial to final points over a mixing time to cause net momentum transport 

may have some validity.  
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To analyze the validity of  

𝜎12
𝑇 = −𝜌𝑢𝑣 = 𝜇𝑇

𝜕𝑈

𝜕𝑦
 

Using 𝑈 = 𝑈 + 𝑢 nomenclature, the turbulent motions that cause 𝑢 and 𝑣 to be 

correlated are explored using DNS data for channel flow. 

 

 

Consider set of particles arriving at 𝑎 at time 𝑡, which originated at 𝑏 following 

various paths 𝑋(𝑠) such that 𝑋(𝑡) = 𝑎  and 𝑋(𝑡 − 𝜏) = 𝑏 where 𝑋(𝑠) and 𝑏 are a 

random ensemble of realizations. 𝜏 > 0 = motion at earlier times than 𝑡.  Note that 

𝑠 = time such that 𝑠 <  𝑡 = motion prior arrival at a and 𝑠 >  𝑡 =  future time, 

i.e., 𝑠 at 𝑏 =  𝑡 − 𝜏 and at 𝑎 =  𝑡. 

 
𝑑𝑋(𝑠)

𝑑𝑠
= 𝑈(𝑋(𝑠), 𝑠) = 𝑈(𝑋(𝑠), 𝑠) + 𝑢(𝑋(𝑠), 𝑠)     (1) 

 

 

At time 𝑡: 

𝑈𝑎 = 𝑈𝑎 + 𝑢𝑎     (2) 

At time 𝑡 − 𝜏: 

𝑈𝑏 = 𝑈𝑏 + 𝑢𝑏     (3) 

 

Lagrangian Eulerian Reynolds decomposition using 

ensemble average where both 

terms are random since 𝑋(𝑠) 

is random. 
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Integration of Eq. (1) between 𝑡 − 𝜏 and 𝑡 gives: 

∫ 𝑑𝑋(𝑠)
𝑡

𝑡−𝜏

= ∫ 𝑈(𝑋(𝑠), 𝑠)𝑑𝑠
𝑡

𝑡−𝜏

 

𝑎 − 𝑏 = 𝐿 

Where 𝐿 represents the change in particle position from 𝑏 to 𝑎 in time 𝜏. 

 

Eq. (2) minus Eq. (3) gives: 

 

𝑢𝑎 = 𝑢𝑏 + (𝑈𝑏 − 𝑈𝑎)⏟      
1

+ (𝑈𝑎 − 𝑈𝑏)⏟      
2

     (4) 

 

Where 𝑈𝑏 represents the ensemble average = sum of all 𝑏 velocities divided by 

number of 𝑏 particles; and similarly, for 𝑈𝑎. 

 

Eq. (4) expresses 𝑢𝑎 in terms of value at earlier time 𝑢𝑏 plus factors that led to its 

change. 

 

1) Change in local mean (ensemble average) velocity field between a and b. 

2) Change in instantaneous velocity due to acceleration or deceleration caused 

by pressure or viscous forces = difference in instantaneous values of 

velocities. 

 

Thus, even for 𝑈𝑏 = 𝑈𝑎, i.e., non-accelerating flow 𝑢𝑎 ≠ 𝑢𝑏 due to changes in local 

mean velocity 

  

Substituting Eq. (4) into 𝑢𝑎𝑣𝑎 (time average) yields 

 

𝑢𝑎𝑣𝑎 = 𝑢𝑏𝑣𝑎⏟
1

+ 𝑣𝑎(𝑈𝑏 − 𝑈𝑎)⏟        
2

+ 𝑣𝑎(𝑈𝑎 − 𝑈𝑏)⏟        
3

     (5) 

 

Note for statistically stationary flow time average = ensemble average. 

Scalar version of Eqs. (2) 

and (3) for x-component 
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In Eq. (5) 𝑢𝑎𝑣𝑎 represents the Reynolds stress 𝜎12
𝑇 , such that 𝑢𝑎𝑣𝑎 is time averaged 

between 𝑡 −  𝜏 and 𝑡. 

 

For small 𝜏, 𝑢𝑏𝑣𝑎 converges to 𝑢𝑎𝑣𝑎, whereas for large 𝜏, 𝑢𝑏𝑣𝑎 goes to zero, which 

gives an upper limit to the mixing time.  

 

Term 2 is referred to as displacement transport term = ΦD = 𝑣𝑎(𝑈𝑏 − 𝑈𝑎) and 

represents momentum transport due to eddy mixing over time interval for which 

𝑢𝑎𝑣𝑎 is correlated. If locally mean velocity is linear this term will yield gradient 

diffusion/viscosity model, as will be shown later using its Taylor series 

representation. 

 

 

 

ΦD < 0 since for 𝑣𝑎 < 0, 𝑈𝑏 − 𝑈𝑎 > 0 and for 𝑣𝑎 > 0, 𝑈𝑏 − 𝑈𝑎 < 0. 

 

Term 3 is referred as ΦA and is absent in molecular model (and gradient model) 

since molecules are assumed to retain their momentum over the mixing time. In 

fact, this term represents the changes in momentum of fluid particles due to 

viscous and pressure forces. 

In this figure 

𝑈 = 𝑈𝑎 
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Channel Flow DNS  

 

For all 𝜏+ values, the sum of 𝑢𝑏𝑣𝑎, ΦA and ΦD must equal 𝑢𝑎𝑣𝑎, but magnitude 

of each term varies with 𝜏+. 

𝑢𝑏𝑣𝑎 goes to zero for large 𝜏+ =
𝜏𝑈𝜏

𝑦
, whereas for 𝜏+ = 0,  𝑢𝑎𝑣𝑎 = 𝑢𝑏𝑣𝑎. 

ΦA trend for short-term (𝜏+ < 100) strongly depends on 𝑦+, although 

ΦA(𝜏
+ = 0) = 0. For large 𝜏+, independent of 𝑦+, its value tends to 𝑢𝑎𝑣𝑎. 

ΦA = 𝑣𝑎(𝑈𝑎 − 𝑈𝑏) = 𝑣𝑎(𝑈𝑎 + 𝑢𝑎) − 𝑣𝑎(𝑈𝑏 + 𝑢𝑏) 

=   𝑣𝑎𝑈𝑎    +    𝑣𝑎𝑢𝑎    −    𝑣𝑎𝑈𝑏    −    𝑣𝑎𝑢𝑏 

 

 

 

ΦD decreases towards a minimum close in value to 𝑢𝑎𝑣𝑎 before rising back towards 

zero. For large 𝜏+, ΦD → 0 

ΦD = 𝑣𝑎(𝑈𝑏 − 𝑈𝑎) =    𝑣𝑎𝑈𝑏∞    −    𝑣𝑎𝑈𝑎 

𝑓′𝑔 = 0 

Goes to 0 

as 𝜏+ → ∞ 

Goes to 0 

as 𝜏+ → ∞ 
 = 0 for all 𝜏+ 

No correlation between 𝑎 and 

𝑏 as their distance increases 

= 0 for 

all 𝜏+ 

Goes to 0 

as 𝜏+ → ∞ 

𝑢𝑏𝑣𝑎 

 

ΦD 

|ΦD| = max 

ΦA 

 

𝑢𝑏𝑣𝑎 = 0 

 

𝑦+ =
𝑦𝑈𝜏
𝜈

 

𝑈𝜏 = [𝜈
𝑑𝑈

𝑑𝑦
(0)]

1/2

=√
𝜏𝑤

𝜌
 

𝑈𝜏 = friction velocity 

4 

𝑢𝑎𝑣𝑎 
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ΦD minimum same order of magnitude as 𝑢𝑎𝑣𝑎 at time 𝜏𝐷 = mixing time as 

reflects most closely idea of gradient hypothesis.  

 

 

𝑢𝑣 < 0 = transport 𝑢 towards wall 

Shows 𝑢𝑣 ≈ ΦD and Term 1 + Term 3 only small effect at time 𝜏𝐷. 

 

Conclusion: 

For averaging  0 ≤ 𝜏+ ≤ 𝜏𝐷:  ΦD ≈ 𝑢𝑎𝑣𝑎 and ΦA relatively small 

Whereas for averaging  0 ≤ 𝜏+ ≤  ∞:  ΦA=𝑢𝑎𝑣𝑎 and ΦD = 0. 

Since 𝜏 represents the time/spatial difference between 𝑎 and 𝑏, for 𝜏=𝜏𝐷, ΦD 

defines the mixing time and can be used to provide a model for 𝑢𝑣, which is related 

to mean flow gradient transport. 

 

 

 

 

Lower half of channel 

0 < 𝑦+ < 1000 

Time averaging from 

t-𝜏𝐷 to t.  Showing 

that gradient model 

works for this flow 

and conditions. 

𝑢𝑣 

𝑢𝑎𝑣𝑎  

 ΦD  - - - 

ΦA + 𝑢𝑏𝑣𝑎 
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Transport Producing Motions 

 

 

 

N paths that lead to 𝑢𝑎𝑣𝑎 < 0, i.e., 𝑢𝑎 and 𝑣𝑎 opposite sign must be greater than 

events same sign. 

(a) Ranks from most + to most –  

(b) partial sums ∑𝑢𝑖𝑣𝑖, a point is reached (𝑁0) where sign change from + to −    ∴ 

𝑛 > 𝑁0 responsible 𝑢𝑣 < 0 since other contributions cancel out between + and −.  

Fraction (𝑁 − 𝑁0)/𝑁 reveals useful information on how 𝑢𝑣 is created. 
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𝑢𝑎𝑣𝑎 = 𝑢𝑏𝑣𝑎⏟
1

+ 𝑣𝑎(𝑈𝑏 − 𝑈𝑎)⏟        
2

+ 𝑣𝑎(𝑈𝑎 − 𝑈𝑏)⏟        
3

     (5) 

 

𝑢𝑎𝑣𝑎 terms 1,2 and 3 for (𝑁 − 𝑁0)/𝑁 fraction of events time interval from 𝑡 – 𝜏𝐷 

to 𝑡. For large portion of the channel 𝑢𝑎𝑣𝑎 and ΦD follow same trend. Fraction is 

generally 20% and rises to 30% at 𝑦+ = 30. Towards the center of the channel, 

i.e., large 𝑦 +, all the terms go to 0 due to + and – cancellation, as it would be 

expected in a symmetric flow.  

 

 

 

 

 

 

Shows 𝑢𝑎𝑣𝑎 and 𝑣𝑎(𝑈𝑏 − 𝑈𝑎) 

are relatively rare events <1% 
% of events, 

i.e., 0.3=30% 
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Events that make significant contributions to 𝑢𝑣 → vortical eddies with streamwise 

orientation. 

Sweep event: high speed flow towards wall, dominant contribution in buffer layer. 

Ejection event: low speed flow ejected outward, occurs outside buffer layer. 

Mixing time = time over which coherent vortices exert influence over motions of 

fluid particles.  
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Gradient Transport  

If gradient transport is valid, it should be due to ΦD under further hypothesis that 

change in local mean velocity along particle paths is linear such that a Taylor series 

in the y direction can be used: 

𝑏 = 𝑎 − 𝐿 

𝑈𝑏 = 𝑈𝑎−𝐿 = 𝑈𝑎 − 𝐿2
𝑑𝑈

𝑑𝑦
+⋯ 

ΦD = 𝜈𝑎(𝑈𝑏 − 𝑈𝑎) = −𝜈𝐿2
𝑑𝑈

𝑑𝑦
+⋯ 

which shows ΦD equivalent gradient transport model; thus, 

 

𝜈𝑡 = 𝜈𝑎𝐿2 = ∫ 𝜈(𝑋(𝑡), 𝑡)𝜈(𝑋(𝑠), 𝑠)
𝑡

𝑡−𝜏

𝑑𝑠 

 

Define Lagrangian auto-correlation function: 

𝑓𝜈𝜈(𝑠) =
𝜈(𝑋(𝑡), 𝑡)𝜈(𝑋(𝑠), 𝑠)

𝜈(𝑋(𝑡), 𝑡)
2

  

 

                                               𝜈𝑡 = 𝜈
2𝒯22     (6) 

 

Where 𝒯22 is a Lagrangian integral scale defined by 

 

                                               𝒯22 = ∫ 𝑓𝜈𝜈(𝑠)𝑑𝑠
0

−∞

 

And 𝑓𝜈𝜈(𝑠) = 0 for |𝑠| large. 

𝐿 = ∫ 𝑈(𝑋(𝑠), 𝑠)
𝑡

𝑡−𝜏

𝑑𝑠 

�̅� = 0 

𝜏 =  𝜏𝐷 

 

−𝑢𝑣 = 𝜐𝑇
𝜕𝑈

𝜕𝑦
= −ΦD 
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If gradient transport were physically accurate then 𝜈𝑡 in Eq. (6) should approximate 

the model eddy viscosity 

𝜈𝑡 = −
𝑢𝑣

𝑑𝑈/𝑑𝑦
 = physical 𝜈𝑡 vs. 𝜈2𝒯22 

 

Same discrepancies for 𝑦+ > 500 where physical 𝜈𝑡 = constant and modeled 

decreases; and near wall where physical < modeled. Note 𝜈𝑡 > 0 over whole 

domain as per 𝑑𝑈/𝑑𝑦, except center channel where both equal 0; and vice versa 

for upper channel where 𝑑𝑈/𝑑𝑦 < 0 and 𝑢𝑣>0. 

 

Obvious differences gradient transport vs actual 𝑢𝑣. 

Large differences near wall, whereas smaller in outer part ∴ more suitable central 

part despite 𝜈𝑡 differences shown above. 

Near wall where gradient 𝑈 

largest and particles travel 

much greater distances than 

linear approximation 
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However, not satisfied for rough wall as 𝜈𝑡 shows unphysical behavior; and 

numerical methods unstable for 𝜈𝑡 < 0. 

𝜈𝑡 = −
𝑢𝑣

𝑑𝑈/𝑑𝑦
 

 

 

 

 

 

Rough 

side 

𝜈𝑡 = ±∞ 

𝑈 max closer 

rough wall 

𝑑𝑈

𝑑𝑦
= 0  

Smooth 

side 

Larger 𝑢𝑣 

Zero crossing  𝑢𝑣 

closer smooth wall 

𝜈𝑡 = 0 

Negative 

𝜈𝑡 region 


