Chapter 6: Turbulent Transport and its Modeling

Part 4: Vorticity Transport
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Where ¢;;; = alternating tensor equal to 1 when indices are even permutation of
(123), -1 for odd permutation and 0 if any two of the indices are equal.

Note that §;; and g;j are the only isotropic 2" and 3™ order tensors and there is
no iotropic 1% order tensor.

Eijk = Ejki and & = &;j, i-e., unchanged by moving indices two places right or
left. Whereas movement one place changes sign: €;;, = —¢&;.

Also note relation between 6l-j and &;:
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Returning to rotational form RANS equation in which (uiuj)j is replaced by the

vorticity flux u;w; = rate at which w; is transported in the it direction by u;.

%+ k can be solved similarly as p and since k = 0 on boundaries, forces and

moments readily obtained.



Assume unidirectional channel flow where Q = (U,0,0) and Q = (0,0, ;) such

that:
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Taylor derived gradient transport law:

With vL, = Tzzﬁ, same as momentum gradient transport since v; independent
from the quantity being transported.

Substituting Eq. (2) into (1) gives:
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Note that ww, = 0 for purely 2D turbulent flow and for gradient transport when
0, =0.

Compare with similar equation using (uiuj)j gradient transport model

This shows that in the vorticity transport v; is not differentiated; however, there
- . . . . . an .
are difficulties near boundaries since the vorticity flux and = have opposite signs

close to the wall, as shown by DNS and Fig. below, which results in unacceptable
negative eddy viscosity.
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Fig. 6.17 Wall-normal vorticity flux in channel flow. —, Tan ; — —, dS/dy.

As per turbulent momentum transport, but including possibility of 3D flow:
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Starting from instantaneous vorticity equation
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Integrating in time betweent — 7 and t:

t t
0 — .Q}’ = j Qk(s) (s)ds +J vV20;(s)ds
t—7 t—7
[Vortex stretching|




Define flux correlation as uf* a)] as was done for velocity (u,v,) and using Eq. (3):
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Where it is assumed that 7 is large enough that mixing condition u* Jb 0is

satisfied.

Term 1 can be developed similarly as what was done for ®, in momentum
transport.

Taylor series for .(2_}’:
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Substituting Eq. (5) in Term 1 gives:
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Recall definition:

L, = j UR(K(S),S) ds = f (U_k()_((s),s) + uk()_((s),s)) ds (7)
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And substitute Eq. (7) into (6) to obtain:
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Where the first term is 0 under the assumption that 7 is large enough.

4



Therefore, term 1 becomes:
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For term 2, substituting mean and fluctuating quantities for (2, and a_x] gives:
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The last term is neglected since it contains only fluctuating quantities and is
nonlinear. Also, the first term is neglected as nonlinear in the mean flow. -

Therefore, term 2 becomes:
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Term 3 is omitted for simplicity.



Equation 4 is equivalent to:
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To obtain a more useful form of Eq. (8), it is necessary to introduce the Lagrangian
correlation coefficients T, g and Qg (7) via
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Such that Eqg. (8) becomes:

UgWp = —TakUaUx a_xk + Qaﬂkua a_xkﬂk (11)

Vorticity transport in Channel Flow

Consider now unidirectional shear flows with mean velocity U(y) and .(2_3 =

—dﬁ/dy is the only non-zero mean vorticity component. With these assumptions
five vorticity flux components are identically zero. As an example, consider uwy:
The zero vorticity flux components are:

U] = VW, = W3 = UW, = Vw; =0 Appendix A.1




The remaining correlations in Eq. (8) are non-zero and are given by:

VW,
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Where additional Lagrangian
(10):
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integral scales are defined according to Eqgs. (9) and
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With similar definition for Q3,3, 0,33 and Q33.

ww,; and ww, do not originate in gradient physics and would be predicted to be
zero if vortex stretching was neglected.

Using DNS best fit data as shown in figures uses 7,5 = 4.8, 7,3 = 12.3, Q535 =
5.5, Q%5 = 9.5, Qs = 16.3,and Q0,5 = 0.95.

Thus, including the first-order vortex stretching model, the essentials of turbulent
vorticity flux can be accounted for. Gradient terms capture most of the transport
away from the wall, while the stretching terms account for non-gradient transport

for vw; and uws.
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Figure 6.17 Vaw,: e, DNS results; —, prediction from Eq. (6.62). From [21]. Copyright ©Springer
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Figure 6.18 Uw,: », DNS results; —, prediction from Eq. (6.63). From [21]. Copyright ©Springer-Verlag.

Figure 6.19 wa,: e, DNS results; —, prediction from Eq. (6.60). From [21]. Copyright ©Springer-Verlag.
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Figure 6.20 Wa,: », DNS results; —, prediction from Eq. (6.61). From [21]. Copyright ©Springer-Verlag.
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Appendix A
A.l

UW] = VW, = W3 = UW, = Vw, =0

Consider uw;:
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It can be immediately recognized that all the terms, except for the last one, are
identically zero, since 2, = {2, = 0in a channel flow.

The last term

Can be rewritten as

B 1ouf —
uw; = Q13 E_ax ;=0 (14)
3

This expression shows that also the last term needs to be zero in order to satisfy
the requirement of symmetry with respect to reflections in the x — y plane.

Similarly, for vw, and wws, the only term containing .(2_3 is:
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VW, = Qp3U; _ax 3 = Q23 _ax ;=0 (24)
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Ww3z = Q333U3 a_xgﬂs. = (333 a_x3~Q3 =0 (34)

The remaining two vorticity fluxes are uw, and vw;.



Recall vorticity components definition:

Substituting them into Egs. (1A), (2A), (3A):

uw; = uw, —uv, =0 - uw, = uv,

Vw, = vu, —vw, = 0 - vu, = vw,

Wws = Wu, —wu, =0 - wry, = wu,,

And using several identities appropriate to channel flow gives:

UW, = UV, = —VU, = —UW, = WU, = WU, = —uw,, (44)

And the equality of the first and last terms in this relation implies that each of the

correlations are zero.

For uw, and vw; the only term containing .(2_3 is:

_ ou, — I
UW; = Q123U Wﬂ3 = Quy UV, 23 =0
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__ ouy — L
VW, = Qz13U; _ax 3 = Q13vu,fl3 =0
3

And they are both zero according to the equalities shows in Eq. (4A).
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