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 Chapter 6: Turbulent Transport and its Modeling 

Part 3:  Homogeneous Shear Flow 

(1) Pope 5.4.5; also recall discussion Chapter 4 Part 7, shear-stress spectrum) 

In homogeneous turbulence1 𝑢(𝑥, 𝑡) and 𝑝′(𝑥, 𝑡) are statistically homogeneous and 

𝑈𝑖,𝑗  must be uniform, although it may be 𝑓(𝑡) (Pope Ex. 5.41).  In homogeneous 

shear flow 𝑆 = 𝑈𝑖,𝑗 = constant, which can be realized in wind tunnel experiments 

by using screens controlling the inflow velocity profile. 

 

 

At x/h = 0, the RS are nearly uniform normal to the flow direction, which persists 

downstream.  However, they show increasing values in the axial direction, which 

can be removed using a refence frame moving with the mean velocity 𝑈 such that 

the turbulence is approximately homogeneous, as per Fig. 5.31. 

 

 
1 Homogeneous turbulence: the time-averaged properties of the flow are uniform and 

independent of position → invariant under translation, i.e., shift in the origin of the coordinate 

system. For example, whereas 𝑢2, 𝑣2, 𝑤2 may differ from each other, each must be constant 

throughout the system.  The time-averaged gradients of the fluctuating components, i.e., (
𝜕𝑢

𝜕𝑦
)
2

 

are equal to zero. 

𝑈 = 𝑓(𝑦) 

𝑉 = 𝑊 = 0 

𝑆 =
𝜕𝑈

𝜕𝑦
= constant 
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An important conclusion is that after the initial development time the flow 

becomes self-similar when statistics are normalized by 𝑆 and 𝑘, as shown in Table 

below. 

 
Between 𝑥/ℎ = 7.5 and 11, 𝑘(𝑡) increases by 65%, yet normalized Reynolds 

stresses nearly constant.  

 

𝜏 = 𝑘/𝜀 = turbulent time scale nearly constant such that 𝑆𝑘/𝜀~ constant. 

 

 𝐿11 increases by 30%, but when normalized nearly constant. 

Despite axial variation, in frame 

of reference moving at 𝑈𝑐, 

 𝑢𝑖𝑢𝑗 ≈ {
const   𝑖𝑓 𝑖 = 𝑗
0          𝑖𝑓 𝑖 ≠ 𝑗
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The TKE equation for homogeneous shear flow is (Pope Ex. 5.40): 

 
𝑑𝑘

𝑑𝑡
= 𝑃 − 𝜀 

 

Such that  
𝜏

𝑘

𝑑𝑘

𝑑𝑡
=
𝑃

𝜀
− 1 

 

Which has solution: 

 

𝑘(𝑡) = 𝑘(0) exp [
𝑡

𝜏
(
𝑃

𝜀
− 1)] 

 

Since 𝑃/𝜀 ≈ 1.7, 𝑘(𝑡) grows exponentially in time and both 𝜀 and 𝐿 = 𝑘3/2/𝜀 =

𝑘1/2/𝜏 also grow exponentially.  Recall for grid turbulence P = 0, and 𝑘(𝑡), 𝜀(𝑡), and 

𝐿(𝑡) decay with time with decay exponent 𝑛 between 1.15 and 1.45, as per Chapter 

5 Part 2. 

 

(2) Bernard 6.6 

 

Idealized flow such that 𝑆 = 𝑑𝑈/𝑑𝑦 > 0 =constant superimposed on 

homogeneous/isotropic turbulence.   

 

𝑘 equation in homogeneous shear flow: 

 
𝑑𝑘

𝑑𝑡
= 𝑃 − 𝜀 

 

Where the production term 

𝑃 = −𝑢𝑣
𝑑𝑈

𝑑𝑦
 

 

Is positive, since 𝑢𝑣 < 0 associated with 𝑆 > 0. 
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𝜀 equation in homogeneous shear flow: 

𝑑𝜀

𝑑𝑡
= 𝑃𝜀

1 + 𝑃𝜀
2 + 𝑃𝜀

4 − 𝛶𝜀⏟     

For homogeneous isotropic turbulence 

 

𝑃𝜀
1 + 𝑃𝜀

2 = −(𝜀𝑖𝑗
𝑐 + 𝜀𝑖𝑗)𝑆 = −2𝜀𝑆 = 2𝜀

𝑃

𝑢𝑣
 

 

For homogeneous shear flow 

 

−
𝑢𝑣

𝑘
≈ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≈ 0.3 

 

Such that: 

 

𝑃𝜀
1 + 𝑃𝜀

2 = 𝐶𝜀1𝑃
𝜀

𝑘
 

 

For 𝑃𝜀
4 and 𝛶𝜀  same expressions as isotropic turbulence: 

 

𝑃𝜀
4 − 𝛶𝜀 = 𝑆𝑘

∗𝑅𝑇

1
2
𝜀2

𝑘
− 𝐺∗

𝜀2

𝑘
 

 

And for the palenstrophy, assuming vortex stretching not preempted by 

dissipation, it is assumed that: 

 

𝐺∗ = (𝑆𝑘
∗ − 𝐶𝜀3)√𝑅𝑇 + 𝐶𝜀2 

 

Where 𝐶𝜀3 = 0 produces standard model for RANS.  Therefore, the 𝜀 equation 

becomes: 

𝑑𝜀

𝑑𝑡
= 𝐶𝜀1𝑃

𝜀

𝑘
+ 𝐶𝜀3𝑅𝑇

1
2
𝜀2

𝑘
− 𝐶𝜀2

𝜀2

𝑘
 

Same as isotropic decay due 

homogeneous/isotropic 

turbulence assumption. 
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And it needs to be solved in conjunction with 

 
𝑑𝑘

𝑑𝑡
= 𝑃 − 𝜀 

 

Once a model is introduced for  

𝑃 = −𝑢𝑣
𝑑𝑈

𝑑𝑦
 

 

EFD and DNS show exponential growth 𝐾 and 𝜀, but 𝑆𝑡 < 30; and following 

asymptotic relationships: 

𝑆𝑘

𝜀
≈ 6     (1) 

𝑃

𝜀
≈ 1.8     (2) 

 

although in some cases LES statistics still not converged at 𝑆𝑡 = 30. 

 

Using 𝑡∗ = 𝑆𝑡 and 𝑘∗(𝑆𝑡) = 𝑘(𝑡)/𝑘(0), the equation for 𝑘 becomes 

 
𝑑𝑘∗

𝑑𝑡∗
=
𝜀

𝑆𝑘
(
𝑃

𝜀
− 1)𝑘∗     (3) 
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And for 𝑆𝑡 < 30, substituting Eqs. (1) and (2), the solution to Eq. (3) becomes 

 

𝑘∗(𝑡∗) = 𝑒0.13𝑡
∗
 

 

With similar analysis 𝜀 equation, with 𝐶𝜀3 = 0, (i.e., neglecting vortex stretching 

term) results in an exponential growth for 𝜀∗(𝑡∗). 

 

Long time EFD and simulations not achievable. Two hypotheses put forward: 

 

1) 𝑃 = 𝜀 such that 𝑘 and 𝜀 asymptote to constant values (Townsend 1956) 

 

2) 𝑘 and 𝜀 continue exponential growth, which is not physical as unlimited 

growth 𝑘 unrealistic → only pertains to ideal case. 

 

To solve 𝑘 and 𝜀 equations for long time growth 𝑢𝑣 model needed.  

 

𝑢𝑣 = −𝒯22𝑣
2𝑆 

 

Where for isotropic turbulence 𝑣2 = 2𝑘/3. 

 

Assume 𝒯22 ∝ eddy turnover time 𝑘/𝜀, same as 𝑘 − 𝜀 model approach: 

 

𝒯22 =
3

2
𝐶𝜇
𝑘

𝜀
 

 

 

 

 

Appendix A.1, Prob. 6.2 Bernard 
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Such that the set of equations becomes: 

 

𝑑𝑘

𝑑𝑡
= 𝐶𝜇

𝑘2

𝜀
𝑆2 − 𝜀 

𝑑𝜀

𝑑𝑡
= 𝐶𝜀1𝐶𝜇𝑘𝑆

2 + 𝐶𝜀3𝑅𝑇

1
2
𝜀2

𝑘
− 𝐶𝜀2

𝜀2

𝑘
 

 

And solution to these equations can be used to illustrate physics of homogeneous 

shear flow at long times. 

 

𝐶𝜀2 = 1.45 same value as isotropic turbulence self-similarity solutions. 

𝐶𝜇 = 0.09 and 𝐶𝜀1 = 1.9 same values used for near wall BL.  

𝐶𝜀3 = 0 → no vortex stretching. 

𝐶𝜀3 = 0.1 → used to investigate of vortex stretching in homogeneous shear flow. 

 

 

 

Fig. 6.15 shows EFD solutions for short time (𝑆𝑡 < 10), trends look similar. 
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Fig. 6.16 shows long time solutions (𝑆𝑡 < 60): 

- 𝐶𝜀3 = 0 → exponential growth 

- 𝐶𝜀3 ≠ 0 → growth plateaus and 𝑃 = 𝜀 equilibrium achieved, as predicted 

by Townsend. 

Asymptotic values for 𝑘 and 𝜀 are found by setting 𝑑𝑘/𝑑𝑡 = 𝑑𝜀/𝑑𝑡 = 0, resulting 

in: 

𝑘∞ =
√𝐶𝜇(𝐶𝜀2 − 𝐶𝜀1)

2

𝐶𝜀3
2

 𝜈𝑆 

𝜀∞ =
𝐶𝜇(𝐶𝜀2 − 𝐶𝜀1)

2

𝐶𝜀3
2

 𝜈𝑆2 

 

The magnitude of the asymptotic values increases with the inverse square of 𝐶𝜀3, 

which highlights importance vortex stretching as an additional source of 

dissipation. 

 

𝐶𝜀3 ≠ 0 likely most realistic physics, i.e., vortex stretching maintains independent 

physical process. Related to considering high Re equilibrium solution for self-similar 

flows. 
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(3) The Spectral view of the energy cascade (Pope 6.6) 

 

For large Re, energy-containing and dissipative motions have clear separation of 

scales 𝐿11/𝜂~𝑅𝑒
3/4 ≫ 1 and bulk of TKE is contained in motions of length scale 𝑙, 

where 6𝐿11 > 𝑙 >
1

6
𝐿11 = 𝑙𝐸𝐼, with characteristic velocity 𝑘1/2.  

 

Since 𝑙~ℒ large-scale motions anisotropic and 𝑓(geometry). Timescale 𝜏 =

𝐿11/𝑘
1/2 is large compared to mean-flow time scale ℒ/𝑈 and 𝑓(flow history), i.e., 

smaller eddies turn over at a higher rate than the larger eddies. 

 

∴ energy-containing motions do not have universal form arising from statistical 

equilibrium. 

 

Anisotropy and production of turbulence confined to energy-containing motions 

and viscous dissipation is negligible. 

 

Initial steps energy cascade, energy removed by inviscid processes (Production) and 

transferred to smaller scales 𝑙 < 𝑙𝐸𝐼 at rate 𝒯𝐸𝐼~
𝑢0
3

𝑙0
 which scales with 𝑢𝑟𝑚𝑠

3 /𝐿11 =

𝑘3/2/𝐿11.  𝒯𝐸𝐼  is not universal ∴ non-dimensional ratio 𝒯𝐸𝐼/(𝑘
3/2/𝐿11) is not 

universal. 

 

Energy spectrum balance for homogeneous shear flow (Hinze Chapter 4):2 

 
𝜕

𝜕𝑡
𝐸(𝜅, 𝑡)    =    𝑃𝑘(𝜅, 𝑡)    −

𝜕

𝜕𝑘
𝑇𝑘(𝜅, 𝑡)     − 2𝜈𝜅

2𝐸(𝜅, 𝑡)     (1) 

 

 

 

𝑃𝑘 = product of the mean velocity gradient 𝜕𝑈𝑖/𝜕𝑥𝑗  and anisotropic part of the 

spectrum tensor. 

 

 
2 Can be compared with Chapter 5 Part 3 ℛ𝑖𝑗  equation for homogeneous turbulent flow, whereas 

Eq. (1) is for homogeneous shear flow. 

Rate of change 

energy spectrum 

Production 

due to shear 

Spectral 

transfer 

Dissipation 
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𝑃𝑘 = ℰ(𝜅, 𝑡)
𝑑𝑈

𝑑𝑦
= 2𝜋𝜅2 [2𝐸12 − 𝜅1

𝜕𝐸𝑖,𝑖  

𝜕𝜅2
] 

 

𝑃(𝜅𝑎,𝜅𝑏) = ∫ 𝑃𝑘

𝜅𝑏

𝜅𝑎

𝑑𝜅 

 

Represents contribution to the production from wave number range (𝜅𝑎, 𝜅𝑏). 

 

𝑃 = 𝑃(0,∞) ≈ 𝑃(0,𝜅𝐸𝐼) 

 

i.e.,  

 
𝑃(𝜅𝐸𝐼,∞)

𝑃
≪ 1 

 

Most of the anisotropy contained in energy-containing range. 

 

𝑇𝑘(𝜅, 𝑡) represents the spectral energy transfer rate, i.e., net rate at which energy 

is transferred from modes of lower wave number than 𝜅 to those with wave 

numbers higher than 𝜅. 

 

Rate of gain of energy in (𝜅𝑎, 𝜅𝑏) due to spectral transfer is: 

 

∫ −
𝜕

𝜕𝑘
𝑇𝑘(𝜅, 𝑡)

𝜅𝑏

𝜅𝑎

𝑑𝜅 = 𝑇𝑘(𝜅𝑎) − 𝑇𝑘(𝜅𝑏) 

 

Since for 𝑇𝑘(𝜅𝑎 = 0) = 𝑇𝑘(𝜅𝑏 = ∞) = 0, this term makes no contribution to the 

balance of TKE. 

𝑇𝑘 = 𝑇𝑘
1 + 𝑇𝑘

2 

 

 

 

 

Interaction triads 

of wave numbers  

𝜅+ 𝜅′ + 𝜅′′ = 0 

Kinematic effect of 

mean velocity 

gradients has on the 

spectrum. 

Hinze 4-4 
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1) For 𝜅 < 𝜅𝐸𝐼 in energy-containing range all terms significant except for 

dissipation. Assuming 𝑘(0,𝜅𝐸𝐼) ≈ 𝑘, 𝜀(0,𝜅𝐸𝐼) ≈ 0 and 𝑃(0,𝜅𝐸𝐼) ≈ 𝑃, integration 

of Eq. (1) over the energy-containing range gives 

 
𝑑𝑘

𝑑𝑡
≈ 𝑃 − 𝑇𝐸𝐼     (2) 

 
Where 𝑇𝐸𝐼 = 𝑇𝑘(𝜅𝐸𝐼).  Energy is generated by P and transferred to 𝑇𝐸𝐼. 
 

2) In the inertial subrange, 𝜅𝐸𝐼 < 𝜅 < 𝜅𝐷𝐼, and spectral transfer only significant 
process so that integration of Eq. (1) from 𝜅𝐸𝐼 to 𝜅𝐷𝐼  gives: 
 

0 ≈ 𝑇𝐸𝐼 − 𝑇𝐷𝐼     (3) 
 
Where 𝑇𝐷𝐼 = 𝑇𝑘(𝜅𝐷𝐼).  Energy cascades without change in the inertial 
subrange. 
 
 



12 
 

 
3) In the dissipation range 𝜅 > 𝜅𝐷𝐼, integration of Eq. (1) from 𝜅𝐷𝐼  to ∞ gives: 

 
0 ≈ 𝑇𝐷𝐼 − 𝜀     (4) 

 
 Energy dissipates such that 𝑇𝐷𝐼 = 𝜀. 
 
Eqs. (2), (3) and (4) highlight the essential characteristics of the energy cascade and 
adding them together gives: 
 

𝑑𝑘

𝑑𝑡
= 𝑃 − 𝜀 
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The cascade timescale 
 
Flow of energy in inertial subrange analogous to incompressible continuity 
equation  
 

𝐴1𝑉1 = 𝐴2𝑉2 
 
Through variable area stream tube. 
 

𝑇𝐸𝐼 =
𝑢0
3

𝑙0
= [

𝑚2

𝑠3
] = [

𝑚2

𝑠2
/𝑠] = rate of change of energy, analogue to 𝑄 = 𝐴𝑉 = 

flowrate = constant and 𝐴 analogue to 𝐸(𝜅) = energy per wave number = 

m2/s2/1/m = [
𝑚3

𝑠2
]. So, the speed (in units of wave number per time [1/𝑚𝑠]) at 

which energy travels through the cascade is: 
 

𝜅̇(𝜅) =
𝑇𝐸𝐼
𝐸(𝜅)

=
𝜀

𝐶𝜅−5/3𝜀2/3
=
𝜅5/3𝜀1/3

𝐶
 

 
And it can be noted that this speed increases rapidly with increasing 𝜅. 
 
It follows from the solution of (with speed in units of wave number per unit time): 

 
𝑑𝜅

𝑑𝑡
= 𝜅̇ 

Integrated from 𝜅𝑎 to 𝜅𝑏 

 

∫
𝐶

𝜅5/3𝜀1/3
𝑑𝜅 = 𝑡(𝜅𝑎,𝜅𝑏)

𝜅𝑏

𝜅𝑎 

 

 

Thus, the time needed for the energy to flow from 𝜅𝑎 to 𝜅𝑏 is: 

 

𝑡(𝜅𝑎,𝜅𝑏) =
3

2
𝐶𝜀−1/3(𝜅𝑎

−2/3
− 𝜅𝑏

−2/3
)  
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And substituting for 𝜀−1/3: 

 

 𝜀−1/3 =
1

(
𝑢3

𝐿 )
1/3

=
𝐿1/3

𝑢
=
𝐿

𝑢
𝐿−2/3 = 𝜏𝐿−2/3 

𝑡(𝜅𝑎,𝜅𝑏) = 𝜏
3

2
𝐶((𝜅𝑎𝐿)

−2/3 − (𝜅𝑏𝐿)
−2/3)      (5) 

 

Using the relations 

 

𝜅𝐸𝐼 =
2𝜋

𝑙𝐸𝐼
, 𝑙𝐸𝐼 =

1

6
𝐿11,

𝐿11
𝐿
≈ 0.4 

 

Into Eq. (5) gives 

𝑡(𝜅𝐸𝐼,∞) = 𝜏
3

2
𝐶 ((𝜅𝐸𝐼𝐿)

−
2
3 − (∞𝐿)−

2
3) 

= 𝜏
3

2
𝐶(𝜅𝐸𝐼𝐿)

−2/3       

≈ 𝜏
3

2
𝐶 (
2𝜋

𝑙𝐸𝐼

𝐿11
0.4
)
−
2
3

 

≈ 𝜏
3

2
𝐶 (
12𝜋

𝐿11

𝐿11
0.4
)
−
2
3

 

≈ 𝜏
3

2
𝐶 (
12𝜋

0.4
)
−
2
3

 

≈ 0.0725𝜏𝐶 

 

Substituting C~1.5 = Kolmogorov universal constant 

𝑡(𝜅𝐸𝐼,∞) ≈ 0.109𝜏 

𝑡(𝜅𝐸𝐼,∞) ≈
1

10
𝜏 =

1

10

𝑘

𝜀
 

 

i.e., lifetime of energy from 𝑡𝐸𝐼 → ∞ = 1/10 total lifetime. 
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Spectral energy-transfer models  

 

For 𝜅 > 𝜅𝐸𝐼 ,  

0 = −
𝑑

𝑑𝜅
𝑇𝑘(𝜅) − 2𝜈𝜅

2𝐸(𝜅)     (6) 

 

From 1940-1970 many models for 𝑇𝑘(𝜅) to obtain 𝐸(𝜅) using Eq. (6) → most of 

these models are non-local due to interaction of wave number triads in energy 

transfer. 

 

Simplest local model Pao (1965): 

 

𝑘̇ ≡
𝑇𝑘(𝜅)

𝐸(𝜅)
= 𝑓(𝜀, 𝜅) 

Using dimensional analysis 

 

𝑇𝑘(𝜅) = 𝑘̇𝐸(𝜅) = 𝐸(𝜅)𝛼
−1𝜀1/3𝜅5/3 

 

Where 𝛼 = constant. 

 

Substituting this expression into Eq. (6) and integrating gives (Pope Ex. 6.36) 

 

𝐸(𝜅) = 𝐶𝜀2/3𝜅−5/3 exp[−
3

2
𝐶(𝜅𝜂)4/3] 

 

i.e., Pao energy spectrum for the dissipation range. 
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Appendix A 

A.1 

𝑡∗ = 𝑆𝑡 

𝑘∗(𝑡∗) = 𝑘 (
𝑡∗

𝑆
) 

Similarly 

𝜀∗(𝑡∗) = 𝜀 (
𝑡∗

𝑆
) 

 

Evolution equation for 𝜀: 

 

𝑑𝜀

𝑑𝑡
= 𝐶𝜀1𝑃

𝜀

𝑘
+ 𝐶𝜀3𝑅𝑇

1
2
𝜀2

𝑘
− 𝐶𝜀2

𝜀2

𝑘
 

 

Written in non-dimensional form and assuming 𝐶𝜀3 = 0: 

𝑆
𝑑𝜀∗

𝑑𝑡∗
= 𝐶𝜀1𝑃

𝜀∗

𝑘∗
− 𝐶𝜀2

(𝜀∗)2

𝑘∗
     (1𝐴) 

Using  

 
𝑆𝑘

𝜀
≈ 6 

And  
𝑃

𝜀
≈ 1.8 

 

Eq. (1A) becomes: 

𝑑𝜀∗

𝑑𝑡∗
= (𝐶𝜀1 (

𝑃

𝜀∗
𝜀∗

𝑆𝑘∗
) − 𝐶𝜀2 (

𝜀∗

𝑆𝑘∗
)) 𝜀∗ 

 

And substituting 𝐶𝜀1 = 1.45 and 𝐶𝜀2 = 1.9: 

 
𝑑𝜀∗

𝑑𝑡∗
= (𝐶𝜀1

1.8

6
−
𝐶𝜀2
6
) 𝜀∗ = 0.1183𝜀∗ → 𝜀∗ = 𝑒0.1183𝑡

∗
 


