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Chapter 6: Turbulent Transport and its Modeling 

Part 1:  Molecular Momentum Transport 

 

𝜌𝑢𝑖𝑢𝑗 = turbulent momentum flux 

𝜌𝑢𝑣 = 𝑥 momentum  𝜌𝑢 in 𝑦 direction due to turbulent 𝑣, for 𝑉 = (𝑈 + 𝑢, 𝑣, 𝑤) 

 

Classical ideas for modeling turbulent transport were based on molecular 

momentum transport for ideal (non-dense) gas: molecules far apart and inter-

molecular forces are weak. Molecules in free flight with brief collisions at which 

time their direction and speed change. 

 

 

Across plane separating the gas in two regions, the molecules do not attract or 

repel each other (contrasting to liquids); therefore, the primary source of shear 

stress is that due to microscopic transport of momentum due to random molecular 

motions. 
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Newtonian fluid stress rate of strain relationship 

 

𝜏21 = 𝜇 (
𝜕𝑣1
𝜕𝑥2

+
𝜕𝑣2
𝜕𝑥1

) 

= 𝜇
𝜕𝑣1
𝜕𝑥2

 

 

Which can be derived for ideal gas using four facts from kinetic theory: 

 

1) Molecules that cross the plane 𝑥2 = constant begin their free flight on 

average at distance ±
2

3
𝑙 (𝑙 = mean free path) from the plane. 

 

2) Mean free path 𝑓(𝑑, 𝑛): 

𝑙 = 1/√2𝜋𝑑2𝑛 

 

Since molecules have a distribution of speeds and they are moving relative to each 

other, 𝑅𝐻𝑆 =
3

4
𝑅𝐻𝑆 or if assume Maxwellian distribution of velocities RHS = 

0.707∙RHS. 

 

3) Flux of velocities across 𝑥2-plane per unit area =
1

4
𝑛𝑣, where 𝑣 = average 

molecular speed (without regard direction). 

 

4) Average molecular speed 

 

𝑣 = [
8𝑘𝑇

𝜋𝑚
]
1/2

= 𝑓(𝑇) 

 

For 𝑉 = 𝑣1(𝑥2)�̂�1 

𝑑 = molecular diameter 

𝑛 = number density of 

molecules per unit volume 

𝑘 = Boltzmann constant 

𝑚 = molecular mass 
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Shear stress 𝑥2-plane 

                                               𝜏21 = 

x-momentum of one particle from above:  

𝑚𝑣1|𝑥2+
2
3𝑙
= 𝑚 [𝑣1 +

𝑑𝑣1
𝑑𝑥2

(
2

3
𝑙) +⋯ ]

𝑥2

 

x-momentum of one particle from below: 

𝑚𝑣1|𝑥2−
2
3
𝑙
= 𝑚 [𝑣1 +

𝑑𝑣1
𝑑𝑥2

(−
2

3
𝑙) + ⋯ ]

𝑥2

 

 

Net flux = difference between the momentum of a particle from above minus one 

particle from below times the rate that the particles cross a unit area 
1

4
𝑛𝑣: 

𝜏21 =
1

4
𝑛𝑣  × [𝑚𝑣1|𝑥2+

2
3𝑙
−𝑚𝑣1|𝑥2−

2
3𝑙
] 

=
1

4
𝑛𝑣  × 𝑚

4

3
𝑙
𝑑𝑣1
𝑑𝑥2

 

 

i.e., comparing with 𝜏𝑖𝑗 = 𝜇(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) 

𝜇 =
1

3
𝑛𝑣𝑚𝑙 =

2

3𝑑2
[
𝑚𝑘𝑇

𝜋3
]
1/2

=
1

3
𝜌𝑣𝑙 

= 𝑓(molecular properties and T)= 𝑓(𝑣, 𝑙) 

𝜇 ↑   m ↑ 

𝜇 ↓   d ↑ 

𝜇 ≠ 𝑓(𝑝) 

𝜇 ↑  √𝑇↑ 

More complete theory includes inter molecular forces and better agreement T 

dependence.  

Viscous liquids need more advanced models considering intermolecular forces, but 

results in same 𝜏𝑖𝑗 = 𝜇(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) relationship. 

𝑥1 force 

unit area 
= net flux momentum across 𝑥2 plane 
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Modelling Turbulent Transport by Analogy to Molecular Transport 

Newtonian fluids (incompressible flow) 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 2𝜇휀𝑖𝑗 

= −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗  

 

In analogy the turbulent Reynolds stresses are modeled using the eddy viscosity 

concept 

𝑎𝑖𝑗 = −𝜌𝑢𝑖𝑢𝑗 +
2

3
𝜌𝑘𝛿𝑖𝑗 = 𝜌𝜈𝑡 (𝑈𝑖,𝑗 + 𝑈𝑗,𝑖)⏟      = 𝜌𝜈𝑡𝑆𝑖𝑗  

 

Anisotropic RS is modeled using isotropic eddy viscosity 𝜈𝑡 or 𝜇𝑡 = 𝜌𝜈𝑡, which may 

be contrasted with 𝜇 definition for ideal gas; however, no reason to believe 

turbulent motions are without directional biases that are not aligned with 𝑆𝑖𝑗.  

Nonetheless eddy viscosity concept forms the basis of traditional RANS modeling, 

which focuses on modeling of 𝜈𝑡. 

For example, consider 1D shear flow: 

𝜏12
𝜌
= −𝑢𝑣 = 𝜈𝑡

𝑑𝑈

𝑑𝑦
 

Large scale turbulent eddies are most important in transporting momentum across 

the flow, which are mostly driven by inertia and pressure forces vs. viscosity. 

Assume −𝜌𝑢𝑣 due to turbulent eddies with transverse size 𝑙 and intensity 

characterized by velocity scale 𝑢0. 

휀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 

𝜇 = isotropic viscosity 

= property of the fluid 

Mean flow rate of strain 
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Therefore, 𝑢𝑣 < 0, as per previous discussion Chapter 3 RANS equations. 

Assume 𝐴𝑝 → 𝐵 and viceversa 𝐵𝑝 → 𝐴, where 𝑝 = fluid particles, which interact 

and merge with the flow (transporting momentum) 

 

−𝜌𝑢𝑣 = 𝑓 (𝜌, 𝑙, 𝑢0,
𝑑𝑢

𝑑𝑦
)

−
𝑢𝑣

𝑢0
2 = 𝑓 (

𝑙

𝑢0

𝑑𝑢

𝑑𝑦
)

}
 
 

 
 

 

 

Assume linear relationship and eddy viscosity: 

−𝑢𝑣 = 𝐶𝑢0
2
𝑙

𝑢0

𝑑𝑢

𝑑𝑦
 

= 𝐶𝑙𝑢0
𝑑𝑢

𝑑𝑦
 

i.e., 

𝜈𝑡 = 𝐶𝑙𝑢0 

 

Dimensional analysis 

𝑢0 = turbulent velocity scale 

𝑙 = turbulent length scale  
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Which is also consistent with ideal gas theory: 

𝜇 =
1

3
𝜌𝑢𝑙 

 

The time scale for eddy turnover times is: 

𝑙/𝑢0 

And time scale for mean flow  

|
𝑑𝑢

𝑑𝑦
|
−1

 

Therefore assume: 

𝑙

𝑢0
= |
𝑑𝑢

𝑑𝑦
|
−1

 

i.e.,  

𝑢0 = 𝑙 |
𝑑𝑢

𝑑𝑦
| 

 

𝜈𝑡 = 𝐶𝑙𝑢0 = 𝐶𝑙
2 |
𝑑𝑢

𝑑𝑦
| 

Or 

𝜇𝑡 = 𝐶𝜇𝜌 𝑙
2 |
𝑑𝑢

𝑑𝑦
| 

 

1) This approach is the Prandtl mixing length theory. 𝑙 depends on the type of 

flow.  

𝑙 ∝ larger scale eddies 

Free shear-flow: 𝑙 = 𝑐𝛿 where 𝑐 = 𝑓(mixing layer, jet, wake),  

BL: 𝑙 = 𝑘𝑦, i.e., eddy size ∝ 𝑦 near wall 

                     = 𝑐𝛿  away from the wall 

𝛿 = appropriate width of viscous flow 
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2) 𝑘 − 휀 model 

 

𝑢 = √𝑘 and 𝑙 = 𝑘3/2/휀 = length associated eddy turnover time l/u 

 

𝜇𝑡 = 𝐶𝜇𝜌
𝑘2

𝜀
→ additional equations needed to model 𝑘 and 휀. 

 

 

Eddy viscosity concept is based on ideal gas molecular transport; thus, assumes: 

1) Mixing occurs over well-defined mixing time. 

2) Momentum preserved between collisions. 

3) Linear velocity variation over the mixing length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


